高一数学组合应用问题
高中数学排列与组合练习 (8)

高考调研 ·新课标 ·数学(选修2-3)
题型三
涂色问题
涂色问题曾在历届高考题中多次出现,下面举几例以期抛 砖引玉. 例3 如下图所示,一个地区分为5个行政区域,现给地图
着色,要求相邻区域不得使用同一颜色.现有4种颜色可供选 择,则不同的着色方法共有________种.(以数字作答)
第13页
高考调研 ·新课标 ·数学(选修2-3)
第 4页
高考调研 ·新课标 ·数学(选修2-3)
(3)“恰有一个盒子内放2个球”,即另外的三个盒子放2个 球,每个盒子至多放1个球,即另外三个盒子中恰有一个空 盒.因此,“恰有一个盒子放2球”与“恰有一个盒子不放球” 是一回事.故也有144种方法. (4)先从四个盒子中任取两个有C42种,问题转化为:“4个 球,两个盒子,每盒必放球,有几种方法?”从放球数目看, 可分为(3,1),(2,2)两类.第一类:可从4个球中先选3个,然 后放入指定的一个盒子中即可,有C43·C21种方法;第二类:有 C42种方法.因此共有C43·C21+C42=14(种).由分步乘法计数 原理得“恰有两个盒子不放球”的方法有C42·14=84(种).
3.重复计数 例3 几种? 【错解1】 排在排头的有除甲之外的A61种情形,排在排尾 7个人排成一排,甲不在排头,乙不在排尾的排法有
的也有除乙之外的A61种情形,两端排好后余下的排中间有A55种 情形,所以不同的排法有A61A61A55=4 320种. 【错解2】 头尾两个位置可从甲、乙之外的5人中选两人
第 5页
高考调研 ·新课标 ·数学(选修2-3)
探究1 解排列组合问题的“16字方针”是:有序排列、无 序组合;分类为加,分步为乘.
第 6页
高考调研 ·新课标 ·数学(选修2-3)
高一数学组合应用题

组合应用题
一.简单组合问题
二.带附加条件的组合问题
1.某些元素有特殊归类问题
例1.平面上有五个兰点和七个红点,其中有三个红点与两个兰点在同一条直线上,
除此以外,再无三点共线,问过两个不
同颜色的点,共可作多少条直线?
2.组合中的有重复问题:
例2.由数1、2、3、4可组成多少个不同的和?
3.“不相邻”的组合问题:
例3.现有十只灯,为节约用电,可以将其中的三只灯关掉,但不能关掉相邻的两只
或三只,也不能关掉两端的灯,关灯方
法有多少种?
4.其他问题
例4.有12个代表名额,分给7个学校,每校至少1个,有多少分法?
作业:
1.有划船运动员10人,其中3人会划右舷,2人会划左舷,其余5人都会划,现要从中选出6人,平均分配在船的两舷,有多少种选法?
2.以正方体的四个顶点为顶点可以确定多少个三棱锥?
3.某仪表显示屏上一排7个小孔,每个小孔可显示红与黄两种颜色信号,若每次有三
个小孔同时给出信号,但相邻的两孔不能同时给出信号,求此显示屏可显示多少种不同的信号?
4.在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植一垄,为有利于作物生长,要求A、B两种作物的间隔不小于6垄,不同的选垄方法有多少种?(99高考)
5.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形有多少个?(96高考)
6.四面体的一个顶点为A,从其它顶点与各棱的中点中取3个点,使它们和点A在同一平面上,不同取法有多少种?(97高考)。
高一数学中的组合数学初步是什么

高一数学中的组合数学初步是什么在高一数学的学习中,我们会接触到一个新的领域——组合数学初步。
组合数学听起来似乎有些高深莫测,但实际上它与我们的日常生活和许多实际问题都有着紧密的联系。
组合数学简单来说,就是研究如何按照一定的规则安排和选取事物的数学分支。
它关注的是计数、排列和组合等问题。
先来说说计数。
假设我们要从班级里选出一名班长,有 50 名同学可供选择,那么有多少种不同的选法呢?这就是一个简单的计数问题。
再比如,从一副扑克牌中抽取 5 张牌,有多少种可能的组合?这也是组合数学要研究的内容。
排列则是考虑顺序的选取方式。
比如,从 10 个不同的数字中选取 3 个并按照一定的顺序排列,有多少种排列方式?如果我们要给书架上的 5 本书进行排序,又有多少种不同的排列顺序?组合则不考虑顺序。
从 10 个同学中选出 3 个参加比赛,不考虑他们的出场顺序,有多少种选法?组合数学会告诉我们答案。
组合数学在现实生活中有很多实际应用。
比如,在密码学中,为了保证密码的安全性,需要生成复杂的组合;在彩票游戏中,计算中奖的可能性就涉及到组合数学的知识;在计算机科学中,算法的优化、数据的存储和检索等也离不开组合数学。
在高一数学中,我们学习的组合数学初步知识主要包括基本的计数原理、排列组合的公式和应用。
基本的计数原理有两个,分别是分类加法计数原理和分步乘法计数原理。
分类加法计数原理是指,如果完成一件事有 n 类不同的方案,在第1 类方案中有 m1 种不同的方法,在第 2 类方案中有 m2 种不同的方法……在第 n 类方案中有 mn 种不同的方法,那么完成这件事共有 N = m1 + m2 +… + mn 种不同的方法。
比如说,从甲地到乙地,有 3 条陆路可走,2 条水路可走,那么从甲地到乙地共有 3 + 2 = 5 种不同的走法。
分步乘法计数原理是指,如果完成一件事需要 n 个步骤,做第 1 步有 m1 种不同的方法,做第 2 步有 m2 种不同的方法……做第 n 步有mn 种不同的方法,那么完成这件事共有 N =m1 × m2 × … × mn 种不同的方法。
高一数学应用题解析与讲解

高一数学应用题解析与讲解数学是一门重要的学科,不仅涉及到理论与公式的运用,还与我们日常生活的应用息息相关。
在高一数学学习中,我们将接触到许多数学应用题,这些题目旨在帮助我们将数学知识应用于实际场景中,培养我们的解决问题的能力。
本文将对高一数学应用题进行解析与讲解,帮助大家更好地理解与掌握数学应用题的解题方法。
1. 几何应用题几何应用题是高一数学学习中的重点之一,涉及到平面几何和立体几何等内容。
下面我们以一个平面几何的应用题为例进行解析。
例题1:某校操场的形状是一个半径为50米的圆形,现需要在操场四周修建一条宽3米的跑道,求跑道的面积。
解析:首先,我们需要明确题目的要求,即求跑道的面积。
根据题目中的描述,我们可以得知,跑道的形状是一个内半径为50米、外半径为53米的圆环。
因此,我们可以通过计算两个圆的面积之差来求得跑道的面积。
内圆的面积为πr^2,外圆的面积为πR^2,其中r为内半径,R为外半径。
跑道的面积即为外圆的面积减去内圆的面积。
所以,跑道的面积为πR^2 - πr^2 = π(R^2 - r^2) = π(53^2 - 50^2) = 9π ≈ 28.27平方米。
在这个例题中,我们运用了几何知识中圆环的面积公式,并通过计算求得了跑道的面积。
这个例题不仅考察了对几何知识的掌握,还培养了我们解决实际问题的能力。
2. 概率与统计应用题概率与统计是数学的一个重要分支,与我们日常生活中的数据、概率密切相关。
下面我们以一个概率与统计的应用题为例进行解析。
例题2:某班级有30个学生,其中20个学生会游泳。
现从班级中随机抽取2个学生,求这2个学生都会游泳的概率。
解析:首先,根据题目中给出的信息,班级总共有30个学生,其中20个学生会游泳。
我们需要计算的是从班级中随机抽取2个学生,这两个学生都会游泳的概率。
根据概率的定义,概率等于“有利结果的个数除以总结果的个数”。
在这个题目中,有利结果就是两个学生都会游泳,总结果就是从班级中随机抽取2个学生。
高中数学组合优秀教案

高中数学组合优秀教案
主题:组合数
主要内容:组合数的概念及性质,组合数的运算法则,组合数在实际问题中的应用
一、学习目标
1. 理解组合数的概念和性质。
2. 掌握组合数的运算法则。
3. 能够灵活运用组合数解决实际问题。
二、教学重点
1. 组合数的定义和性质。
2. 组合数的运算法则。
3. 实际问题中组合数的应用。
三、教学难点
1. 灵活运用组合数解决实际问题。
2. 深入理解组合数的概念和性质。
四、教学过程
1. 导入:通过一个有趣的问题引出组合数的概念,让学生产生兴趣。
2. 授课:讲解组合数的定义和性质,介绍组合数的运算法则。
3. 拓展:通过练习让学生掌握组合数的运算技巧。
4. 应用:通过实际问题让学生灵活运用组合数解决问题。
5. 总结:回顾本节课的内容,强调组合数在数学中的重要性。
五、教学反馈
1. 布置作业:留作业巩固学习成果。
2. 点评作业:对学生的学习情况进行评价,及时纠正错误。
3. 反馈教学:根据学生的反馈对教学方法进行调整,提高教学效果。
六、教学资源
1. 教材:《高中数学》
2. 辅助教材:《高中数学组合数专题讲义》
3. 多媒体教学设备:电脑、投影仪
七、教学评估
1. 学生态度:学生是否主动参与课堂活动。
2. 学生表现:学生是否能够熟练运用组合数解决问题。
3. 教学效果:学生是否能够掌握组合数的相关知识和技能。
高一数学排列组合二项式定理及其应用分析总结归纳

02
二项式定理及其应用
二项式定理的展开式
二项式定理:(a+b)^n = a^n + n*a^(n-1)*b + n*(n-1)/2*a^(n-2)*b^2 + ... + b^n 展开式特点:每一项的系数是n的阶乘除以(n-k)的阶乘 展开式应用:求解组合问题、概率问题、数列问题等 展开式计算:利用公式进行计算,注意系数和指数的变化规律
多项式定理的应用:在数学、 物理、工程等领域有广泛应用
多项式定理的证明:通过数学 归纳法进行证明
多项式定理的推广:将二项式 定理推广到更高阶的多项式
二项式定理的扩展形式
二项式定理的推广:从n次方推广到任意次方 二项式定理的拓展:从整数推广到实数 二项式定理的推广和拓展:从二项式定理推广到多项式定理 二项式定理的推广和拓展:从二项式定理推广到组合定理
用
期望值:二项 式定理在期望 值计算中的应
用
方差:二项式 定理在方差计
算中的应用
在统计学中的应用
概率计算:二项式定理可以用于计算概率,例如计算抛硬币、掷骰子等事件的概率。 统计推断:二项式定理可以用于统计推断,例如进行假设检验、参数估计等。 统计模型:二项式定理可以用于建立统计模型,例如建立线性回归模型、逻辑回归模型等。 数据分析:二项式定理可以用于数据分析,例如进行数据清洗、数据可视化等。
计算期望:二项 式定理可以用来 计算期望,如 E(X) = Σ[k * P(X=k)]
在代数中的应用
求解多项式方 程:利用二项 式定理求解多
项式方程
求函数值:利 用二项式定理
求函数值
求极限:利用 二项式定理求
极限
求导数:利用 二项式定理求
排列组合综合应用问题

10. 15 人按照下列要求分配,求不同的分法种数。
(1)分为三组,每组5人,共有__C_15_5C __15_0C__55_/_A_33__ 种不同的分法。
(2)分为甲、乙、丙三组,一组7人,另两组各4人,共有
_____C __17_5C __84_C__44_A_33__/_A_22 种不同的分法。
(3)分为甲、乙、丙三组,一组6人,一组5人,一组4人,
共有 ____C__16_5C__95_C__44_A_3_3____种不同的分法。
11. 8名同学选出4名站成一排照相,其中甲、乙两人都不 站中间两位的排法有__C __6 4A _4 4 _ __C _2 1 C _7 _3A _2 1 _A _3 3 _ _C _6 2 _A _2 2 _A _2 2 _种。
4.某城新建的一条道路上有12只路灯,为了节省用电而不 影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能 熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有 ( A)
C C (A)C
3 8
种(B)A
3 8
种
(C)
3 种 (D) 3 种
9
11
5. 对某种产品的6件不同的正品和4件不同的次品,一一进行 测试,至区分出所有次品为止,若所有次品恰好在第5次测 试时全部发现,则这样的测试方法有种可能?
2.平均分配问题中,给出组名的分步求;若没给出组名的, 一定要在给出组名的基础上除以组数的全排列数。
3.部分平均分配问题中,先考虑不平均分配,剩下的就是 平均分配。这样分配问题就解决了。
结论:给出组名(非平均中未指明
各组个数)的要在未给出组名的种 数的基础上,乘以组数的阶乘。
二、搭 配 问 题 例2:某乒乓球队有8男7女共15名队员,现进行
高一数学中的排列与组合问题如何解决

高一数学中的排列与组合问题如何解决在高一数学的学习中,排列与组合是一个让许多同学感到头疼的部分。
但其实,只要我们掌握了正确的方法和思路,这些问题也能迎刃而解。
首先,我们要明确排列和组合的基本概念。
排列是指从给定的元素中,按照一定的顺序选取若干个元素进行排列;而组合则是指从给定的元素中,选取若干个元素组成一组,不考虑顺序。
简单来说,排列关注顺序,组合不关注顺序。
那如何判断一个问题是排列问题还是组合问题呢?这就需要我们仔细分析题目中的条件。
如果题目中明确提到了顺序的重要性,比如“排队”“排座位”“比赛的名次”等,那么通常就是排列问题;如果题目强调的是选取一组元素,而不关心其内部的顺序,比如“选几个人组成小组”“从一堆物品中选几个”等,那大概率就是组合问题。
在解决排列与组合问题时,我们有一些常用的方法和公式。
先来说说排列的公式。
如果从 n 个不同元素中取出 m 个元素进行排列,那么排列数记为 A(n, m) ,其计算公式为:A(n, m) = n! /(n m)!。
这里的“!”表示阶乘,例如 5! = 5 × 4 × 3 × 2 × 1 。
对于组合,从 n 个不同元素中取出 m 个元素的组合数记为 C(n, m) ,其计算公式为:C(n, m) = n! / m! ×(n m)!。
掌握了这些基本的公式后,我们通过一些具体的例子来看看如何应用。
比如,有 5 个不同的球,从中选取 3 个进行排列,有多少种不同的排法?这就是一个排列问题。
我们可以使用排列公式 A(5, 3) = 5! /(5 3)!= 5 × 4 × 3 = 60 种。
再比如,从 10 名学生中选出 3 名参加活动,有多少种选法?这是一个组合问题,使用组合公式 C(10, 3) = 10! / 3! ×(10 3)!= 120 种。
除了直接运用公式,我们还有一些特殊的解题方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必赢官方正版
[单选,A2型题,A1/A2型题]以下疾病的胸片显示肺血减少的是()A.二尖瓣关闭不全B.主动脉瓣关闭不全C.二尖瓣狭窄D.肺动脉瓣狭窄E.主动脉瓣狭窄 [单选]施工项目管理规划编制时,以为本企业的项目管理服务为宗旨,作为()处理。A.内部文件B.共享文件C.投标文件D.合同文件 [单选,A2型题,A1/A2型题]在《实验室认可管理办法》规定的认可原则中,未包含()。A.自愿申请原则B.非歧视原则C.专家评审原则D.国家认可原则E.国家强制原则 [单选]下列卵巢粘液性囊腺瘤声像图特点,哪一项是错误A.肿瘤体积较大B.囊腔内有较多的分隔C.囊内有细小点状回声D.少数有乳头状生长E.囊腔内无分隔 [单选]患者男性,65岁,因脑血栓后遗症,长期卧床,生活不能自理,入院时护士发现其骶尾部皮肤发红,除去压力无法恢复原来的肤色,护士使用50%乙醇按摩局部皮肤的作用是()A.消毒皮肤B.润滑皮肤C.去除污垢D.促进血液循环E.降低局部温度 [单选]下列哪项不属妇科杂病范畴()A.癥瘕B.不孕症C.阴痒D.妇人脏躁E.转胞 [单选]空气中水分含量约为()空气A.3-30g/m3空气B.2-20g/m3空气C.4-40g/m3空气 [配伍题,B1型题]一个昏迷病人被送到医院,医生对他进行处理,这种医患关系属于()。</br>医生劝病人“你应该参加一些晨间锻炼”,这种医患关系属于()。A.主动-被动型B.指导-合作型C.共同参与型D.强制-被动型E.指导-参与型 [单选,A1型题蟾酥B.蛇床子C.地肤子D.大蒜E.苦参 [单选]以下哪一部份不属于我国社会主义职业道德“五爱”的范畴()A.受劳动B.爱科学C.爱党D.爱人民 [单选]中度侧脑室扩张指其测量值()。A.1~3mmB.4~6mmC.7~10mmD.10~12mmE.>12mm [问答题,简答题]试述制定培训预算的程序。 [单选]在劳动争议调解中,贯彻"三方原则"体现了()的社会救济机制的特点。A.权利B.义务C.责任D.利益 [单选]罗茨鼓风机的特点是风量基本上不随风压而变化,而功率消耗随风压增高而()A.直线上升B.直线下降C.基本不变 [单选]下列哪种是气体激光器的工作物质()A.原子气体B.分子气体C.准分子气体D.离子气体E.以上均是 [填空题]各种车票的有效期从()起至有效期最后一日的()止计算。 [单选]内部过电压幅值的大小,是以系统的最高运行()的倍数来表示的。A、平均电压B、额定电压C、线电压D、相电压 [单选]男性,28岁。患急性粒细胞白血病接受化学治疗,中性粒细胞0.4×10/L。近1周来高热,咳嗽脓痰,右肺闻及较多湿啰音。X线胸片见右中肺野大片密影,隐约见密度减低区域。推测肺部感染最可能的病原体是()A.肺炎链球菌B.流感嗜血杆菌C.莫拉卡他菌D.铜绿假单胞菌E.溶血性链球 [单选]营业场外或周边发生异常情况,一般不应采取何种措施()。A.向保卫部门或单位领导求助B.向公安报警中心报警C.向联防单位求助D.营业人员主动快速出去处理 [单选,A1型题]医学心理学研究任务不包括()。A.研究心理因素对人体健康的影响及其机制B.研究个性的形成和发展C.研究自我调节对防病、治病和康复的作用D.研究疾病过程中的心理反应E.研究心理因素在疾病发展过程中的作用 [单选,A2型题,A1/A2型题]女性,60岁,颈后局限性肿痛6天,伴有畏寒、发热38.5℃,来急诊时已用抗生素治疗3天。体格检查见颈后发际下方肿胀,皮肤红肿,质地坚韧,界限不清,中央多个小脓头伴坏死组织,白细胞数16×10/L,中性粒细胞0.90(90%)。此时最恰当的治疗是选择()A.继 [单选]发展心理学是研究()的科学。A.认知发展规律B.心理的种族发展C.心理的种系发展D.心理发展规律 [单选,A2型题,A1/A2型题]结核性胸膜炎胸腔内是否用药的原则是()A.最好每个患者都注射结核药物B.一般情况下,抽胸水后没有必要胸腔内注入抗结核药物C.最好注射糖皮质激素D.可以注射胸膜粘连剂E.绝对不能胸腔内用药,以免产生胸膜反应 [单选]测血压时,应该注意A.测量时血压计"0"点与心脏、肱动脉在同一水平B.固定袖带时应紧贴肘窝,松紧能放入一指为宜C.听诊器胸件应塞在袖带内便于固定D.测量前嘱患者先休息10~20分钟E.放气速度应慢,约2mmHg/s [单选]集中就业和()都是解决残疾人就业的重要形式,二者相辅相成,互为补充,共同构成了残疾人就业的主渠道。A.按比例就业B.自主创业C.分散就业D.灵活就业 [单选]()反映的是企业的经营业绩情况,是业绩考核的重要指标。A.资产B.利润C.收入D.所有者权益 [单选]根据《循环经济促进法》,下列关于发展区域循环经济的表述,不正确的是()。A.市级以上人民政府应当统筹规划区域经济布局,合理调整产业结构B.各类产业园区应当组织区内企业进行资源综合利用,促进循环经济发展C.国家鼓励各类产业园区的企业进行废物交换利用和能量梯级利用 [填空题]乙炔装置AR476分析仪参比气是()。 [单选]下列各项中,不应在利润表“营业收入”项目列示的是()。A.政府补助收入B.设备安装劳务收入C.代修品销售收入D.固定资产出租收入 [单选]驾驶厂内机动车,应当依法取得()A、操作上岗证B、驾驶证C、企业内部通行证 [单选]一般而言,头皮裂伤清创缝合的时限允许放宽至()A.18小时B.24小时C.12小时D.8小时E.6小时 [单选]风湿性心脏瓣膜病二尖瓣关闭不全时,心脏听诊不可能发现下列哪项体征().A.心尖部全收缩期杂音向左腋下传导B.心尖部第一心音亢进C.肺动脉瓣区第二心音分裂D.心尖部第三心音E.心尖部短促舒张早期杂音 [填空题]下列符号的中文名称分别是:PRPP();IMP();XMP(); [单选,A1型题]不属于治疗梅毒的中药是()A.硼砂B.轻粉C.大风子D.苦参E.土茯苓 [多选]现代麻醉学的范畴是()A.临床麻醉B.急救复苏C.重症监测治疗D.疼痛治疗E.康复治疗 [单选]抗体特异性鉴定常采用()A.对流免疫电泳和区带电泳B.SDS-聚丙烯酰胺凝胶电泳法C.火箭电泳和血凝法D.凝胶电泳和血凝法E.双向免疫扩散法 [单选]下列药物不属于药酶抑制剂的是()A.红霉素B.氟康唑C.维拉帕米D.保泰松E.卡马西平 [单选]换长是以一辆()吨标准货车的长度作为换算标准折合而成数值。A.30B.40C.50 [填空题]浓硫酸不()与()大量放热,可发生()。 [判断题]泵站变电所中担负输送和分配电能任务的电路,一般称为一次电路。A.正确B.错误