分式的乘除法法则

合集下载

分式的乘除法

分式的乘除法

分式的乘除法【教材研学】一、分式的乘除法1. 分式的乘除法法则:(1) 分式的乘法法则:两个分式相乘,用分子的积做积的分子,分母的积做积的分母. 用字母表示为:bdac d c b a =⨯ (2)分式的除法法则:两个分式相除,将除式的分子、分母颠倒位置后,与被除式相乘。

用字母表示为:bc ad c d b a d c b a =⨯=÷ (3)分式的乘方法则:分式乘方是把分子、分母各自乘方。

用公式表示为:n nn n ab a b a b a b a b =个43421⋯⨯⨯=)((n 是正整数) 老师:根据分式的乘除法法则,怎样进行分式乘除法的混合运算?小明:可以按照从左到右的顺序逐步进行。

比如:2232232222222xy x x y x y x y x y x y x y =•=÷=÷• 小刚:可将除法首先统一为乘法,再进行乘法运算。

比如:22222222xy x x y x y x y x y x y =••=÷• 老师:这两种做法都对,在运算过程中,可利用乘法的交换律、结合律,结果保留最简分式或整式.2.分式乘除法中的求值题分式乘除法中,求值题一般有两种要求:(1)求值.这时可以选择直接求值,也可以选择化简后再求值,常常是将分式先化简成最简形式,然后再代入求值比较方便;(2)先化筒再求值.二、探究活动:问题:在上一节学习了分式的约分,为整式的乘除法做好了准备。

那么约分在分式的乘除法中有哪些应用呢?探究:分式的乘除法作为分式的运算,要求结果保留最简分式或整式,因而在分式乘除法运算中经常会用到约分。

分式的乘除法运算通常有两种思路:(1)直接利用法则相乘,然后再约分。

比如:abc b a abc c b a a bc 54100804525162222==⨯。

(2)在分式相乘前,能约分的先约分;依据法则相乘.比如:ab b a c b a a bc 5415445251622=⨯=⨯ 一般地,选择第(2)中方法较为简便。

分式的乘除法教学课件

分式的乘除法教学课件

机械设计
在机械设计中,机器的效率和功率可以用分 式表示,通过分式的乘除法可以计算出机器 的效率和功率等参数。
分式乘除法的扩展与提高
05
分式的约分与通分
要点一
约分
将分式化简为最简形式的过程,通过约简分子和分母中的 公因式来实现。
要点二
通分
将两个或多个分式化为相同分母的过程,以便进行加法或 减法运算。
乘法法则的应用
总结词
掌握分式乘法法则的应用是解决复杂分式问题的关键。
详细描述
分式乘法法则的应用可以通过多种方式进行。例如,在解决物理、化学等实际问 题时,常常需要使用分式乘法法则来计算复杂分式的结果。此外,在数学竞赛和 数学研究中,分式乘法法则也是解决复杂数学问题的关键技巧之一。
分式除法法则
02
通分
对于分母不同的分式,可以进行通分, 将它们转化为同分母的分式,便于进 行乘除运算。
注意事项和常见错误
01
符号的处理
在进行分式的混合运算时,应注意符号的处理,特别是 加减法的转换和括号内的运算符号。
02
避免运算顺序混乱
在复杂的混合运算中,应遵循正确的运算顺序,避免因 顺序错误导致计算结果错误。
03
忽略约分的简化
在运算过程中,应注意约分的运用,避免因忽略约分导 致计算结果复杂化。
分式乘除法在日常生活中的应 用
04
物理问题中的应用
电路计算
在电路中,电流、电压和电阻之间的 关系可以用分式表示,通过分式的乘 除法可以计算出电路中的电流、电压 和功率等参数。
力学问题
在力学中,力、质量和加速度之间的 关系可以用分式表示,通过分式的乘 除法可以计算出物体的加速度、速度 和位移等参数。

11.分式的运算

11.分式的运算

③相同字母的幂取指数最高的。

4,(1)
1 2ab2c3d
+
1 3a3b2c
+
1 4a2b2c2
(2)
1+1− x x
1− 1− xy xy
注意:整式与分式的运算,根据题目特点,将整式化为分母为“1”的分式;
例 5:(1)已知: 2m − 5n = 0 ,求下式的值: (1+ n − m ) ÷ (1+ n − m )
m m−n
m m+n
(2)
1+
n m
− −
m 2n
÷
m2
m2 − n2 − 4mn +
4n2
一题多解
例 6:已知:= x2 M− y2
2xy − y2 + x − y x2 − y2 x + y
,则 M
=
________
例 7:
[ (a
1 + b)2

(a
1 − b)2
]÷( a
1 +b

a
1) −b
11.分式的运算
基础知识 1、分式的定义与意义(变成习惯思维,见到分式想到分母不能为 0)
A
定义:(A、B为整式,B中含有字母,不是系数且B ≠ 0)
B
2x + 2
例 1: 取什么值时试判断 (3x −1)(x +1) 有意义。
2x +1
例 2,当 x 取何值时,分式 1− 1 有意义?
x
2、分式的乘除法法则:注意约分,找公因式

D. x x -1

7.
(2011

分式的乘除法

分式的乘除法

x y x y y x y
x y



x2 z
y 3

x6 z3
y3 ;



x3 y2 z
2

x6 y4 ; z2




b2 a
2n


b4n a2n
(n为正整数);




2b3 3a 2
3


8b9 27a6
.
2、计算:
b d b c bc a c a d ad
分式的乘方法则:把分子、分母分别乘方.

n m
k

nk (k是正整数) mk
二、边学边导,基础过关:
计算:①
ay2 b2 x

a2x by2

ay2 a2 x b2 x by2
a3 b3

2b a


4a 2 4bc 2
三是运算顺序;
四是结果的符号.
五、拓展延伸,智力闯关:
3 2
(a b)2 8ab (a b)2 4ab
原式= x 2 1 y4 2

x2 x2

9 4
=
x x

2 3

(x (x

3)( x 2)( x

3) 2)
=
x x

3 2
②( xy x2 )
x y =x( y x) xy
xy x y
=
x2 y

m2 4m m2 4
4

5.2.分式的乘除法(教案)

5.2.分式的乘除法(教案)
在讲授过程中,我特别强调了分式乘除法则,并且用了一些具体的案例来说明。但是,从学生们的反馈来看,可能还需要更多不同类型的例题来帮助他们更好地理解和消化这些规则。
小组讨论的环节,我发现学生们在交流中能够互补不足,互相学习。但是,也有个别小组在讨论时偏离了主题,这提醒我在今后的教学中,需要更加明确讨论的目标和范围,确保讨论的有效性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式乘除法的基本概念。分式乘除法是指对两个或多个分式进行乘法或除法运算的方法。它在数学运算中非常重要,可以帮助我们解决生活中的许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设我们要计算两个物体的速度比,我们可以通过分式乘除法来得到答案。这个案例展示了分式乘除法在实际中的应用,以及它如何帮助我们解决问题。
5.2.分式的乘除法(教案)
一、教学内容
本节课选自教材第五章第二节“分式的乘除法”。主要内容包括:
1.掌握分式乘法的法则,能够正确进行分式的乘法运算。
-分式乘法法则:a/b × c/d = ac/bd(b、d不为0)
2.掌握分式除法的法则,能够正确进行分式的除法运算。
-分式除法法则:a/b ÷ c/d = a/b × d/c(b、c、d不为0)
3.重点难点解析:在讲授过程中,我会特别强调分式乘法法则和分式除法法则这两个重点。对于难点部分,比如分式乘除混合运算的顺序和符号处理,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式乘除法相关的实际问题,如计算购物打折后的价格。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用代数式的分式乘除法来计算几何图形的面积比。

分式的乘除法

分式的乘除法

• 三、巩固练习
计算:
2 y (1) 3 xy 3x
(3) 4 x
2
2
a a(a 2) (2) 2 (a 2) 2a
4 xy y 2 2 (4 x y ) 2x y
• 四、能力提升
1.

3b 3a 2 a b 8a b 4ab 2a
2
2 2
• 观察下列运算
2 4 2 4 5 2 52 ,........... , 3 5 3 5 7 9 7 9 2 4 2 5 25 5 2 5 9 59 ,.... 3 5 3 4 3 4 7 9 7 2 72 b d b d 猜一猜 ?....... ? a c a c 你能总结出分式乘除法的法则吗?与同伴交流。
3除法的法则:
两个分式相乘,把分子相乘的积作为积 的分子,把分母相乘的积作为积的分母; 两个分式相除,把除式的分子和分母颠 倒位置后再与被除式相乘.(遇除变乘,除 式变倒式)
a d a c a c a d a d 字母 表示: b c bc b c b d b d
2

x 1 x 3x 2 ( x 1) 2 x 4x 4 x 1
链接
• 五、拓展延伸
yzx zx y x yz 已知 p, 求 p p 2 p 3 . x yz yzx zx y
• 四、能力提升
81 a 2 9a 1 2.先化简,再求 2 ,其中a= a 6a 9 2 a 6 a 9
遇除变乘, 除式变倒式

• 二、例题应用
例1 计算
6a 2 y (1) 2 8 y 3a

八年级数学上册分式知识点

八年级数学上册分式知识点

八年级数学上册分式知识点八年级数学上册分式知识点在我们的学习时代,不管我们学什么,都需要掌握一些知识点,知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。

哪些才是我们真正需要的知识点呢?下面是店铺帮大家整理的八年级数学上册分式知识点,仅供参考,欢迎大家阅读。

八年级数学上册分式知识点1分式知识点1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

2.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。

3.分式值为零的条件:分式AB=0的条件是A=0,且B≠0.(首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。

)4.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

用式子表示为(其中A、B、C是整式),5.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是确定几个式子的最简公分母。

几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。

求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。

6.分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。

约分的关键是找出分式中分子和分母的公因式。

(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;(2)找公因式的方法:①当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,先把多项式因式分解。

分式通分、乘、除_.加、减法_及分式方程

分式通分、乘、除_.加、减法_及分式方程

复习: 1、如何进行分式的约分?请举例说明。 2、如何进行分式的通分?请举例说明。 3、请将下列各分式进行约分:
4a b (1) 2 6ab
2
3a b( x y ) (2) 3 9ab ( y x)
2
a 3 (3) 2 a 6a 9
a 4 (4) 2 a 4a 4
2
4、完成下列运算,你想到了什么?说出来与同学们分享.
A A M A A M , ( 其中M是不等于零的整式)。 B BM B B M
与分数类似,根据分式的基本性质,可 以对分式进行约分和通分.
做一做
1、约分 :
16 x y (1) 4 20 xy
x ( 4) 2 x 2x
2
3
x 4 (2) 2 x 4x 4
2
x xy (3) 2 x
1 1 (2)求分式 的最简公分母。 2 与 2 4x 2x x 4
4 x 2 x 2 x ( 2 x ) 2 x( x 2)
2
x 4 ( x 2)( x 2)
2
把这两个分式的分母中所有的因式都取到, 其中,系数取正数,取它们的积,即 2 x( x 2)( x 2)就是这两个分式的最简公分母。
答:成立
a c ac b d bd a c a d ad b d b c bc
分式的乘除法运算法则:
这里abcd 都是整式, bcd都不 为零
你会用语言叙 述一下吗?
分式乘分式,用分子的积做积的分子, 分母的积做积的分母; 分式除以分式:把除式的分子、分母颠 倒位置后,与被除式相乘。
2
2 2
3
x y yx 3m n 4mn (7 ) ;( 8 ) 。 3 2 yx x y 2mn 9m n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档