九年级上册数学第六章知识点
北师大版九年级数学上册说课稿:6.2 反比例函数的图象与性质

北师大版九年级数学上册说课稿:6.2 反比例函数的图象与性质一. 教材分析北师大版九年级数学上册第六章《反比例函数的图象与性质》是本章的重要内容。
本节内容是在学生已经掌握了比例函数的基础上进行学习的,通过本节内容的学习,使学生能够掌握反比例函数的图象与性质,并能够运用反比例函数解决实际问题。
教材从学生已有的知识出发,通过观察实例,引导学生发现反比例函数的图象与性质,培养学生从实际问题中抽象出反比例函数模型解决问题的能力。
二. 学情分析九年级的学生已经掌握了比例函数的知识,对于图象与性质的学习也已经有一定的基础。
但是反比例函数与比例函数在图象与性质上有很大的不同,学生可能难以理解反比例函数的图象是一条不间断的曲线,以及反比例函数的性质。
因此,在教学过程中,需要教师通过实例,引导学生观察、分析、归纳出反比例函数的图象与性质。
三. 说教学目标1.知识与技能目标:学生能够理解反比例函数的图象是一条不间断的曲线,能够掌握反比例函数的性质,并能够运用反比例函数解决实际问题。
2.过程与方法目标:通过观察实例,学生能够从实际问题中抽象出反比例函数模型,培养学生的抽象思维能力。
3.情感态度与价值观目标:学生在学习过程中,能够体验到数学与生活的紧密联系,增强学生对数学的兴趣。
四. 说教学重难点1.教学重点:学生能够理解并掌握反比例函数的图象与性质。
2.教学难点:学生能够理解反比例函数的图象是一条不间断的曲线,以及反比例函数的性质。
五. 说教学方法与手段在本节课的教学过程中,我将采用讲授法、引导发现法、实例分析法等教学方法,结合多媒体课件、反比例函数模型等教学手段,引导学生观察、分析、归纳出反比例函数的图象与性质。
六. 说教学过程1.导入:通过出示实例,引导学生观察反比例函数的图象,激发学生的学习兴趣。
2.新课导入:介绍反比例函数的定义,引导学生发现反比例函数的图象与性质。
3.实例分析:通过分析实例,引导学生归纳出反比例函数的性质。
北师大版九年级数学上册第六章《反比例函数》

探究一:初步了解反比例函数的形式,探究反比例函数
1.游泳池体积150(立方米),那么底面积s(平方米)和 高h(米)之间的关系式为:h=___1_5__0_____.
s
2.京沪高速铁路全长约为1318km,列车沿京沪高速铁路 从上海驶往北京,列车行完全程所需的时间t(h)与行驶
说一说
你能举出生活中反比例函 数的例子吗?
基础练习
1.下列函数表达式中,x表示自变量,哪些是反 比例函数?若是,请指出相应的k值。
(1)y = 0.4(2) y =5-x (3) y = 3x1
x
(4)xy = - 2(5)y =
x 2
(6) y =
1 6x
2. y是x的反比例函数,下图给出了x与 y的一些值:
x -5 -2 -1
y
2
5
12
① 求出这个反比例函Hale Waihona Puke 的表达式;2 77
② 根据函数表达式完成上表。
解: 1设y k k 0
x
当x -1, y -2时,k -1 2 -2
y 2 x
互动课堂
问题1:
若
y n6 x
是反比例函数,则n应
满足的条件是n 6.
问题2: 已知y是x的反比例函数,当x=2 时,y=5求:当x=1时,y的值.
北师大版九年级数学上册
第六章 反比例函数 6.1 反比例函数
函数的定义
一般地.在某个变化过程中,有两个变量x和y, 如果给定一个x的值,相应地y就有唯一确定的 值和它相对应,那么我们称y是x的函数,其中x 叫自变量,y叫因变量.
回顾与思考
如果y=kx+b(k、b为常数,k≠0),那么y 是x的一次函数.
数学九年级上册每章知识点

数学九年级上册每章知识点第一章:有理数1. 有理数的概念和分类- 有理数的定义- 正数、负数和零的分类- 有理数的大小比较2. 有理数的加法和减法- 有理数的加法原则- 有理数的减法原则3. 有理数的乘法和除法- 有理数的乘法原则和性质- 有理数的除法原则和性质4. 有理数的运算性质- 加法和减法的交换律、结合律和分配律- 乘法和除法的交换律、结合律和分配律第二章:线性方程和一次不等式1. 变量和代数式- 变量的概念- 代数式的概念和性质2. 一元一次方程- 一元一次方程的定义和基本形式- 解一元一次方程的方法3. 一元一次不等式- 一元一次不等式的定义和基本形式- 解一元一次不等式的方法4. 实际问题与一元一次方程或不等式- 将实际问题转化成一元一次方程或不等式- 解决实际问题的步骤和方法第三章:多项式与因式分解1. 代数式的加减法- 代数式的加法原则和性质- 代数式的减法原则和性质2. 一元多项式- 一元多项式的定义和基本形式- 一元多项式的加减法原则3. 一元多项式的乘法- 一元多项式的乘法原则和性质- 一元多项式的乘法公式4. 因式分解- 因式分解的定义和基本方法- 因式分解的应用第四章:平面直角坐标系与图形初步1. 平面直角坐标系- 平面直角坐标系的概念和构造- 坐标表示和坐标轴上的点2. 点、线和线段- 点的坐标和图形的位置关系- 直线和线段的定义和表示3. 直角和垂线- 直角的概念和判定条件- 垂线的概念和判定条件4. 三角形和四边形- 三角形的分类和性质- 四边形的分类和性质第五章:相似与全等1. 平行线与比例- 平行线的概念和判定条件- 比例的概念和性质2. 相似三角形- 相似三角形的定义和判定条件- 相似三角形的性质和应用3. 全等三角形- 全等三角形的定义和判定条件- 全等三角形的性质和应用4. 相似和全等图形的应用- 利用相似和全等图形求解实际问题- 利用相似和全等图形进行图形的设计以上是数学九年级上册每章的知识点概述。
北师大版数学九年级上册知识点总结

九年级上册数学各章节知识点总结第一章 证明(二)一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)。
(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)。
(4)全等三角形的对应边相等、对应角相等。
推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”)。
二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。
等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a ④等腰三角形的三角关系:设顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A∠-︒ 2、等腰三角形的判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
(2)有两条边相等的三角形是等腰三角形. 三、等边三角形性质:(1)等边三角形的三个角都相等,并且每个角都等于60°。
(2)三线合一 判定:(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形(3)有一个角是60°的等腰三角形是等边三角形。
四、直角三角形 (一)、直角三角形的性质 1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。
3、直角三角形斜边上的中线等于斜边的一半4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 其它性质:1、直角三角形斜边上的高线将直角三角形分成的两个三角形和原三角形相似。
01-第六章1反比例函数

解析 ∵24= 1 xy,∴xy=48,即y= 48 (x>0),
2
x
∴y是x的反比例函数.
当x=6时,y= 48 =8.
6
因此斜边长= 62 82 =10(m).
答:两条直角边长x与y之间的关系式是y= 48 (x>0),y是x的反比例函数,
x
当x=6时,另一条直角边长为8 m,斜边长为10 m.
型,最后解决实际问题. (2)一定要在列出的关系式后面注明自变量的取值范围.
1 反比例函数
栏目索引
例2 由欧姆定律可知,电压不变时,电流强度I与电阻R成反比例,已知电 压不变,电阻R=12.5欧姆时,电流强度I=0.2安培. (1)求I与R的函数表达式; (2)当R=5欧姆时,求电流强度.
分析 因为I与R成反比例,所以可设I=U R (U≠0),解析式中只有U一个待定 系数,所以只要将R=12.5,I=0.2这一组数据代入I=U (U≠0)即可.
每小时注水量h(单位:m3)的函数关系式为
,自变量的取值范围
是
.
答案 t= 60 ;h≥6
h
解析 依题意可得t= 60 .
h
∵要在10 h内注满水,∴ 60 ≤10,解得h≥6.
h
1 反比例函数
栏目索引
7.用反比例函数表达式表示下列问题中两个变量间的对应关系: (1)小明完成100 m赛跑时,所用时间t(s)随他跑步的平均速度v(m/s)的变 化而变化; (2)一个密闭容器内有0.5 kg气体,气体的密度ρ随容器体积V的变化而变化; (3)压力为600 N时,压强p随受力面积S的变化而变化; (4)三角形的面积为20,一边上的高h随这一边的长a的变化而变化.
x
北师大版九年级上册数学全册各章知识点汇总

最新新北师大版九年级数学(上册)知识点汇总
第一章特殊平行四边形
第二章一元二次方程
第三章概率的进一步认识
第四章图形的相似
第五章投影与视图
第六章反比例函数
第一章特殊平行四边形
1.1菱形的性质与判定
菱形的定义:一组邻边相等的平行四边形叫做菱形.
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角.
菱形是轴对称图形,每条对角线所在的直线都是对称轴.
※菱形的判别方法:一组邻边相等的平行四边形是菱形.
对角线互相垂直的平行四边形是菱形.
四条边都相等的四边形是菱形.
1.2 矩形的性质与判定
※矩形的定义:有一个角是直角的平行四边形叫矩形
.矩形是特殊的平行四边形.
..
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角.(矩形是轴对称
图形,有两条对称轴)
※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义).
对角线相等的平行四边形是矩形.
四个角都相等的四边形是矩形.
※推论:直角三角形斜边上的中线等于斜边的一半.
1.3 正方形的性质与判定
正方形的定义:一组邻边相等的矩形叫做正方形.
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质.(正方形是轴对称图形,有两条对称轴)
※正方形常用的判定:有一个内角是直角的菱形是正方形;
邻边相等的矩形是正方形;
对角线相等的菱形是正方形;
对角线互相垂直的矩形是正方形.
正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):
※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形.
※
※
鹏翔教图3。
九年级上册数学月考知识点

九年级上册数学月考知识点第一章直线与角一、定义和性质1. 直线的定义和符号表示2. 角的定义和符号表示3. 同位角、邻补角、互补角的概念4. 直角、钝角、锐角的性质二、角的分类和关系1. 对顶角和对称角的概念2. 平行线与平行线之间的角的性质3. 同位角与内错角的性质第二章三角形一、三角形的定义和分类1. 三角形的定义和符号表示2. 三角形的分类及特点(按边、按角)3. 特殊的三角形(等边三角形、等腰三角形、直角三角形)二、三角形的性质与判定1. 三角形内角和的性质(三角形内角和为180°)2. 外角与内角的关系(外角等于与之相对的内角的和)3. 三角形的判定方法(SSS判定法、SAS判定法、ASA判定法)第三章勾股定理与三角比一、勾股定理1. 勾股定理的概念和性质2. 勾股定理在实际问题中的应用二、三角比的定义和性质1. 正弦、余弦、正切的定义和计算公式2. 三角比的运用(求角度、求边长)第四章平移与坐标一、平移1. 平移的概念和性质2. 平移的坐标表示方法3. 平移与图形的关系二、坐标与图形1. 直角坐标系的概念和表示2. 点的坐标、线段的坐标和中点公式3. 图形关于坐标轴的对称性第五章几何证明一、几何证明的基本方法和步骤1. 几何证明的基本方法(演绎法、逆证法、数学归纳法等)2. 几何证明的基本步骤(引入、论证、得证)二、几何证明的典型问题1. 利用等腰三角形证明性质(等腰三角形底边角相等)2. 利用三角形全等证明性质(三角形全等的判定依据)第六章成比例与相似一、成比例1. 成比例的定义和性质(正比例、反比例)2. 成比例的计算和应用二、相似及其性质1. 相似的概念和符号表示2. 相似三角形的性质(对应角相等、对应边成比例)三、相似三角形的判定1. AAA判定相似2. SAS判定相似第七章平行与垂直一、平行线与平行四边形1. 平行线的定义和性质2. 平行四边形的性质和判定二、垂线和垂直二字线1. 垂线的定义和性质2. 垂直二字线的性质和判定第八章统计与概率一、统计1. 统计调查的方法和步骤2. 频数表和频数直方图的制作3. 统计数据的分析和应用二、概率1. 概率的概念和性质2. 事件的概率计算(等可能事件、不等可能事件)以上是九年级上册数学月考的知识点概述。
九年级上册数学各章节知识点总结(最新最全)

九年级上册数学各章节知识点总结(最新
最全)
1. 有理数与整式有理数与整式
- 有理数的概念及表示方法
- 有理数的大小比较
- 有理数的加法、减法、乘法、除法运算法则
- 整式的定义和基本运算
2. 方程与不等式方程与不等式
- 一元一次方程的概念、解法及应用
- 恒等方程和条件方程
- 一元一次不等式的概念及解法
- 一元一次方程与不等式的综合应用
3. 函数与图像函数与图像
- 函数的概念及表示
- 函数的增减性和奇偶性
- 函数的概率和函数的平移、翻折、对称变换
- 函数图像的特点和简单的函数图像绘制
4. 图形的性质图形的性质
- 平行线与相交线
- 三角形的定义及分类
- 三角形的性质与判定
- 常见四边形的性质及判定
5. 相似与全等相似与全等
- 相似的概念及相似三角形的判定
- 相似比的计算
- 全等的概念及全等三角形的判定
- 全等三角形的性质和应用
6. 三角函数三角函数
- 角的概念及角的度量
- 反义函数、同角三角函数特殊值
- 三角函数的图像
- 三角函数的性质及简单的计算与应用7. 圆圆
- 圆的定义和性质
- 圆上的弧和弦
- 切线与圆的位置关系
- 圆的周长和面积的计算
以上是九年级上册数学各章节知识点的总结,请根据具体情况进行查阅和复习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册数学第六章知识点
九年级上册数学第六章主要包括以下知识点:
1. 一次函数:通过直线的方程y = kx + b来表示,其中k为斜率,b为截距。
学习如
何确定一次函数的斜率和截距,以及如何绘制一次函数的图像。
2. 直线的性质:如何判断一条直线是水平线、竖直线或斜线;如何计算两条直线之间
的夹角;如何确定两条直线是否平行或垂直等。
3. 直线的方程:学习如何根据已知条件写出直线的方程,并理解直线的截距式、一般
式和点斜式等不同形式的表示方法。
4. 求解一次函数方程:学习如何解一次函数方程,即找到使方程成立的x的值。
可以
通过图象法、代入法和消元法等不同的方法来解方程。
5. 线性规律和线性关系:学习如何利用线性规律和线性关系解决实际问题,如工资收入、水电费用、距离和时间等相关问题。
6. 平移和伸缩变换:学习如何利用一次函数的平移和伸缩变换来获得更多的函数图像,理解平移和伸缩对直线的影响。
以上是九年级上册数学第六章的主要知识点,希望对你有帮助!。