北师大版九年级数学上册 第六章反比例函数及其应用练习题含答案
九年级数学上册第六章《反比例函数》测试卷-北师大版(含答案)

九年级数学上册第六章《反比例函数》测试卷-北师大版(含答案)(满分 120 分)一、选择题(每题3分,共30分) 1.下列函数中,是反比例函数的是( )A. y = -2xB. y =-12xC. y =11x- D. y =21x 2.已知点 P (-1,4)在反比例函数y = kx(k =0)的图象上,则K 值是( ) A. -14B.14 C. 4 D. -4 3.下列各点中,在函数y = -6x图象上的是( )A. (-2,-4)B.(2,3)C.(-1,6)D.(-12,3)4.反比例函数y =5m x-的图象在第二、四象限内,那么m 的取值范围是( ) A. m <0B. m >0C.m >5D. m <55. 函数4y=-x,当x >0时的图象为下图中的( )6.已知点(1,y 1),B (2,y 2),C (-3,y 3)都在反比例函数y =6x 的图象上,则y 1,y 2 ,y 3;的大小关系是( ) A. y 3<y 1 <y 2; B. y 1<y 2<y 3; C. y 2,y 1,y 3; D. y 3<y 2<y 1;7.关于反比例函数y = 4x的图象,下列说法正确的是( ) A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x 轴成轴对称D.两个分支关于原点成中心对称8.三角形的面积为4 c m²,底边上的高y(c m)与底边x(c m)之间的函数关系图象大致应为()9. 函数y= ax与y=αx-a(a≠0)在同一坐标系中的大致图象是()10.如图,函数y1=x-1和函数y2=-2x的图象相交于点M(2,m),N(-1,n),若y1<y2,则x的取值范围是()A.x<-1或0<x<2B.x<-1或x>2C.-1<x<0或0<x<2D.-1<x<0或x>2二、填空题(每题4分,共28分)11.反比例函数y=- 1x的图象在第__________象限,在每个象限内,y随x的增大而________ .12. 反比例函数y= kx过A(-1,4)和B(2,m)两点,则m= ___________________.13.对于函数y= 3x,当x>0时y__________0,这部分图象在第_____________象限.14.完成某项任务可获得500 元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式_________________________________.15.若点P(1,m),P,(2,n)在反比例函数y=kx(k<0)的图象上,则m_____n(填">""<"或"=").16.如图,已知点A在反比例函数图象上,A M⊥x轴于点M,且⊥AO M的面积为1,则反比例函数的解析式为______________________.17.如图,一次函数y= kx+b与反比例函数y=mx的图象交于A(2,1),B(-1,n)两点.连接OA,OB,则三角形OAB 的面积为____________.三、解答题(一)(每题6分,共18 分)18.某打印店要完成一批电脑打字任务,如果每天完成100 页,需8天完成任务.(1)每天完成的页数y与所需天数x之间是什么函数关系?(2)要求4天完成,每天应完成几页?19.已知反比例函数y =kx(k为常数,k≠0)的图象经过A(2,3).(1)求这个函数的解析式;(2)判断点B(-1,6)是否在这个函数的图象上,并说明理由.20.如图,反比例函数y =kx(k为常数,且k≠0)经过点A(1,3).(1)求反比例函数的解析式;(2)在x轴正半轴上有一点B,若⊥AOB 的面积为6,求直线AB的解析式.四、解答题(二)(每题8 分,共24 分)21.码头工人以每天30 吨的速度往一艘轮船上装载货物,装载完毕恰好用了8 天时间.(1)轮船到达目的地后开始卸货,卸货速度ν(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多少吨货物?22.如图,已知A (-4,2),B (n ,-4)是一次函数y =kx +b 的图象与反比例函数y =mx的图象的两个交点. (1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.23.如图,已知在平面直角坐标系x O y 中,0是坐标原点,点A (2,5)在反比例函数y =kx的图象上,过点A 的直线y =x +b 交x 轴于点 B. (1)求k 和b 的值; (2)求⊥OAB 的面积;(3)当-3≤x ≤-1时,反比例函数值的范围为_________________.五、解答题(三)(每题10 分,共 20 分) 24.一次函数y =k 1x +b 与反比例函数y =2k x(x <0)的图象相交于A ,B 两点,且与坐标轴的交点为(-6,0),(0,6),点B 的横坐标为-4. (1)试确定反比例函数的解析式;(2)求⊥AOB 的面积; (3)直接写出不等式后k 1x +b>2k x的解.25.对教室进行"薰药消毒".已知药物在燃烧释放过程中,室内空气中每立方米含药量y (毫克)与燃烧时间x (分钟)之间的关系如图所示(即图中线段 OA 和双曲线在 A 点及其右侧的部分),根据图象所示信息,解答下列问题: (1)写出从药物释放开始,y 与x 之间的函数关系式及自变量的取值范围; (2)据测定,当空气中每立方米的含药量低于 2 毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?参考答案一、1.B 2.D 3.C 4.D 5.B 6.D 7.D 8.B 9.A 10. A 二、11.二、四 增大 12. -2 13. > 一 14.500y x= 15. <16. y =-2x 17. 32三、18.解:(1)800y x=,反比例函数 (2)当x =4,800y x== 200(页) 19.解:(1) 6y x= (2)不在,理由如下: 当x = -1,61y =-= -6≠6 ⊥点B(-1,6)不在y =6x 的图象上。
北师大版九年级上册数学第六章 反比例函数含答案

北师大版九年级上册数学第六章反比例函数含答案一、单选题(共15题,共计45分)1、反比例函数y= 图象经过A(1,2),B(n,-2)两点,则n=()A.1B.3C.-1D.-32、如图,对称轴为x=2的抛物线y=反比例函数(x>0)交于点B,过点B作x轴的平行线,交y轴于点C,交反比例函数于点D,连接OB、OD。
则下列结论中:①ab>0;②方程的两根为0,4;③3a+b <0;④tan∠BOC=4tan∠COD不符合题意的有()A.0个B.1个C.2个D.3个3、如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC ﹣S△BAD为()A.36B.12C.6D.34、若点A(a,b)在双曲线y=上,则代数式ab﹣4的值为()A.-12B.-7C.-1D.15、若函数的图象如图所示,则函数和在同一平面直角坐标系中的图象大致是( )A. B. C.D.6、如图,双曲线y=与正比例函数y=kx的图象交于A,B两点,过点A作AC ⊥y轴于点C,连接BC,则△ABC的面积为()A.2B.C.4D.7、已知四边形是矩形,边在轴上,边在轴上,反比例函数经过矩形对角线的交点.若的面积为,则的值是( )A.10B.5C.D.8、如图,在平面直角坐标系中,直线与x轴、y轴分别交于点A 和点是线段上一点,过点C作轴,垂足为D,轴,垂足为E,.若双曲线经过点C,则k的值为()A. B. C. D.9、在反比例函数y= 的图象上有两点A(x1, y1)、B(x2, y2).若x 1<0<x2, y1<y2则k的取值范围是()A.k≥B.k>C.k<﹣D.k<10、双曲线与在第一象限内的图象如图所示,作一条平行于y轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.1B.2C.3D.411、如图,A 、 B是曲线上的点,经过A、 B两点向x 轴、y轴作垂线段,若S阴影=1 则 S1+S2=( )A.4B.5C.6D.812、已知某函数的图象C与函数y= 的图象关于直线y=2对称下列命题:①图象C与函数y= 的象交于点(,2);②(,-2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1, y1),B(x2, y2)是图象C上任意两点,若x1>x2,则y1-y2,其中真命题是()A.①②B.①③④C.②③④D.①②③④13、如图,函数(x>0)和(x>0)的图象分别是和.设点P在上,PA∥y轴交于点A,PB∥x轴,交于点B,△PAB的面积为()A. B. C. D.14、如图所示双曲线y=与y=﹣分别位于第三象限和第二象限,A是y 轴上任意一点,B是y=﹣上的点,C是y=上的点,线段BC⊥x轴于D,且4BD=3CD,则下列说法:①双曲线y=在每个象限内,y随x的增大而减小;②若点B的横坐标为﹣3,则C点的坐标为(﹣3,);③k=4;④△ABC的面积为定值7,正确的有()A.1个B.2个C.3个D.4个15、如图,在平面直角坐标系中,的顶点、在函数的图象上,轴.若且BC∥x轴,点、的横坐标分别为、,的面积为,则的值为()A. B. C. D.二、填空题(共10题,共计30分)16、如图所示,反比例函数在第一象限内分支上有一动点A,连接AO 并延长与另一分支交于点B,以AB为边作一个等边△ABC,使得点C落在第四象限内.在点A运动过程中,直接写出△ABC面积的最小值________.17、如图,点A是双曲线y=上的一个动点,连接AO并延长交双曲线于点B,将线段AB绕点B逆时针旋转60°得到线段BC,若点C在双曲线y=(k≠0,x<0)上运动,则k=________.18、如图,点为直线上的两点,过两点分别作y轴的平行线交双曲线()于两点. 若,则的值为________.19、y﹣1=可以看作________ 和________ 成反比例.20、如图,平行四边形ABCD的顶点A、C在双曲线y1=﹣上,B、D在双曲线y 2= 上,k1=2k2(k1>0),AB∥y轴,S▱ABCD=24,则k1=________.21、如图,在平面直角坐标系中,等腰三角形ABC的顶点A在y轴上,底边AB//x轴,顶点B、C在函数的图象上.若,点A的纵坐标为1,则k的值为________.22、菠菜每kgx元,花10元钱可买ykg的菠菜,则y与x之间的函数关系式为________ .23、反比例函数y=(2m﹣1)x ,在每个象限内,y随x的增大而增大,则m的值是________.24、如图,矩形OABC的面积为3,对角线OB与双曲线相交于点D,且,则k的值为________.25、已知y=2x m﹣1是y关于x的反比例函数,则m=________.三、解答题(共5题,共计25分)26、已知, 与成正比例, 与成反比例,且当时,; 时, .试求当时, 的值.27、如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数y=(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于1的常数).记△CEF的面积为S1,△OEF的面积为S2,求的值.(用含m的代数式表示)28、如图,P1.P2是反比例函数y=(k>0)在第一象限图象上的两点,点A1的坐标为(2,0),若△P1OA1与△P2A1A2均为等边三角形.(1)求此反比例函数的解析式;点的坐标.(2)求A229、当m为何值时,函数y=(m﹣3)x2﹣|m|是反比例函数?当m为何值时,此函数是正比例函数?=8,点A在双曲线y=,求k的值.30、如图,点A,B关于y轴对称,S△AOB参考答案一、单选题(共15题,共计45分)1、C2、C3、D5、B6、C7、A8、A9、D10、B11、D12、A13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、。
北师大版九年级上册数学第六章 反比例函数含答案

北师大版九年级上册数学第六章反比例函数含答案一、单选题(共15题,共计45分)1、如图,在轴正半轴上依次截取,过点分别作x轴的垂线,与反比例函数交于点,连接过点分别向作垂线段,构成的一系列直角三角形(图中阴影部分)的面积和等于()A. B. C. D.2、在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)3、我们知道,方程x2+2x﹣1=0的解可看作函数y=x+2的图象与函数y=的图象交点的横坐标,那么方程kx2+x﹣4=0(k≠0)的两个解其实就是直线y =kx+1与双曲线y=的图象交点的横坐标,若这两个交点所对应的坐标为(x1,)、(x2,),且均在直线y=x的同侧,则实数k的取值范围是()A. <k<B.﹣<k<C.﹣<k<0或0<k<D. <k<或﹣<k<04、在反比例函数图象的每一支曲线上,y都随x的增大而减小,则k 的取值范围是A.k>3B.k>0C.k<3D.k<05、如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x 轴上的一个动点,若的面积为4,则的值为)A.8B.-8C.4D.-46、直线y=3x与双曲线的一个分支(k≠0、x>0)相交,则该分支所在象限为()A.1B.2C.3D.47、如图,在平面直角坐标系中,点A1、A2、A3,…是x轴正半轴上的点,且OA1=A1A2=A2A3=…,分别过点A1、A2、A3,…作y轴的平行线,交反比例函数y=(x>0)的图象于点B1、B2、B3,…,则△AnBnBn+1的面积等于()A. B. C. D.8、函数y= 与y=mx﹣m(m≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.9、如图,已知的一边平行于轴,且反比例函数经过顶点和上的一点,若且的面积为,则的值为()A. B. C. D.10、如图,P(m,m)是反比例函数y=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为()11、如图,A、B是双曲线上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A. B. C.3 D.412、点(﹣1,y1),(2,y2),(3,y3)均在函数的图象上,则y1,y 2, y3的大小关系是( )A.y3<y2<y1B.y2<y3<y1C.y1<y2<y3D.y1<y3<y213、若正比例函数y=2kx与反比例函数y=(k≠0)的图象交于点A(m,1),则k的值是()A.- 或B.- 或C.D.14、若,点M(a,b)在反比例函数的图象上,则反比例函数的解析式为()15、如图,A、B两点在双曲线y= 上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.6二、填空题(共10题,共计30分)16、已知反比例函数的图象上三个点的坐标分别是,,,则,,的大小关系是________(用“< ”号连接).17、己知一次函数y=ax+b,反比例函数y= (a,b,k是常数,且ak≠0),若其中一部分x,y的对应值如下表,则不等式-8<ax+b< 的解集是________.x -4 -2 -1 1 2 4y=ax+b -6 -4 -3 -1 0 2y=-2 -4 -8 8 4 218、反比例函数y= 的图象在其象限内,y都随x的增大而增大,则k的取值范围是________.19、如图,平面直角坐标系xOy中,在反比例函数(k>0,x>0)的图象上取点A,连接OA,与的图象交于点B,过点B作BC∥x轴交函数的图象于点C,过点C作CE∥y轴交函数的图象于点E,连接AC,OC,BE,OC与BE交于点F,则=________.20、如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y= (x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为________。
北师大版九年级上册数学第六章 反比例函数 含答案

北师大版九年级上册数学第六章反比例函数含答案一、单选题(共15题,共计45分)1、对于反比例函数,下列说法不正确的是()A.点在它的图象上B.它的图象在第一、三象限C.当时,随的增大而增大 D.当时,随的增大而减小2、在平面直角坐标系中,将一块含有角的直角三角板如图放置,直角顶点的坐标为,顶点的坐标为,顶点恰好落在第一象限的双曲线上,现将直角三角板沿轴正方向平移,当顶点恰好落在该双曲线上时停止运动,则此时点的对应点的坐标为()A. B. C. D.3、在平面直角坐标系中,反比例函数图像在每个象限内,y随着x的增大而增大,那么它的图像的两个分支分别在()A.第一、三象限;B.第二、四象限;C.第一、二象限;D.第三、四象限.4、小明乘车从甲地到乙地,行车的速度v(km/h)和行车时间t(h)之间的函数图象是()A. B. C. D.5、在同一平面直角坐标系中,函数y=kx+1(k≠0)和y= (k≠0)的图象大致是()A. B. C. D.6、若函数的图象上有三个点(﹣1,y1),(,y2),(,y 3),则y1, y2, y3必的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y37、图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()A.当x=3时,EC<EMB.当y=9时,EC>EMC.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变8、不论m取何实数,抛物线y=2(x+m)2+m的顶点一定在下列哪个函数图象上()A.y=2x 2B.y=-xC.y=-2xD.y=x9、如图,在平面直角坐标系中,四边形是菱形,∠B=60°,反比例函数的图象经过点,若将菱形向下平移2个单位,点恰好落在反比例函数的图象上,则反比例函数的表达式为()A. B. C. D.10、在边长为1的4×4方格上建立直角坐标系(如图甲),在第一象限内画出反比例函数、、图象,它们分别经过方格中的一个格点、二个格点、三个格点;在边长为1的10×10方格上建立直角坐标系(如图乙),在第一象限内画出反比例函数图象,使它们经过方格中的三个或四个格点,最多可画出几条( )A.12B.13C.25D.5011、若反比例函数y=的图象经过点(-5,2),则k的值为()A.-10B.10C.-7D.712、如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于A,B,与反比例函数(k>0)在第一象限的图象交于点E,F,过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C,若,则△OEF与△CEF的面积之比是()A.2:1B.3:1C.2:3D.3:213、如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A (2,3),B(6,1)两点,当k1x+b<时,x的取值范围为()A. x<2B.2<x<6C. x>6D.0<x<2或x>614、下列函数中是反比例函数的是()A. B. C. D.15、已知点A(-1,5)在反比例函数y= (k≠0)的图象上,则该函数的解析式为()A.y=B.y=C.y=-D.y=5x二、填空题(共10题,共计30分)16、如图,函数y= 和y=﹣的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为________.17、当m=________ 时,函数y=(m﹣2)是反比例函数.18、小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1200牛和0.5米,那么动力F和动力臂之间的函数关系式是F=________ .19、如图,在平面直角坐标系中,ΔABC是等腰直角三角形,∠ACB=Rt∠,CA ⊥x轴,垂足为点A.点B在反比例函数的图象上.反比例函数的图象经过点C,交AB于点D,则点D的坐标是________.20、如图,平行四边形ABCD的顶点A在函数y=(x>0)的图象上,其余点均在坐标轴上,则平行四边形ABCD的面积为________.21、反比例函数的图像在第一、三象限,则m的取值范围是________22、两个反比例函数y= (k>1)和y= 在第一象限内的图象如图所示,点P在y= 的图象上,PC⊥x轴于点C,交y= 的图象于点A,PD⊥y轴于点D,交y= 的图象于点B,BE⊥x轴于点E,当点P在y= 图象上运动时,以下结论:①BA与DC始终平行;②PA与PB始终相等;③四边形PAOB的面积不会发生变化;④△OBA的面积等于四边形ACEB的面积.其中一定正确的是________(填序号)23、已知反比例函数y= (k是常数,k≠0)的图象在第二、四象限,点A(x1, y1)和点B(x2, y2)在函数的图象上,当x1<x2<0时,可得y 1________y2.(填“>”、“=”、“<”).24、已知y=2x m﹣1是y关于x的反比例函数,则m=________.25、若反比例函数y= 的图象经过点A(1,2),则k=________.三、解答题(共5题,共计25分)26、已知, 与成正比例, 与成反比例,且当时,; 时, .试求当时, 的值.27、如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).(1)求这两个函数的解析式;(2)当x取何值时,y1>y2.28、直线与反比例函数(其中)的图象交于、,求点的坐标.29、如图,等腰直角△POA的直角顶点P在反比例函数(x>0)的图象上,A点在x轴正半轴上,求A点坐标.30、在平面直角坐标系中,点P(m,6)在第一象限,且P是反比例函数y=(k>0)图象上的一点,OP与x轴正半轴的夹角α的正弦值满足:5sin2α﹣7sinα+2.4=0,求m的值及此反比例函数的解析式.参考答案一、单选题(共15题,共计45分)1、C2、A4、B5、C6、C7、D8、B9、A10、B11、A12、A13、D14、B15、C二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、三、解答题(共5题,共计25分)26、28、。
北师大版九年级数学上册第六章反比例函数单元测试题(含答案)

北师大版九年级数学上册第六章反比例函数单元测试题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.下列函数中是反比例函数的是( ) A .y =1x2B .y =x2C .y =5x -1D .y =1x -12.若反比例函数y =kx 的图象经过点(2,-1),则该反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限3.已知反比例函数y =6x ,当1<x <3时,y 的取值范围是( )A .0<y <1B .1<y <2C .2<y <6D .y >64.当三角形的面积S 为常数时,底边a 与底边上的高h 的函数关系的图象大致是( )5.在同一直角坐标系中,函数y =-ax与y =ax +1(a ≠0)的图象可能是( )6.对于函数y =4x ,下列说法错误的是( )A .这个函数的图象位于第一、第三象限B .这个函数的图象既是轴对称图形又是中心对称图形C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小7.两位同学在描述同一反比例函数的图象时,甲同学说:“这个反比例函数图象上任意一点到两坐标轴的距离的积都是3.”乙同学说:“这个反比例函数图象与直线y =x 有两个交点.”你认为这两个同学所描述的反比例函数关系式是( )A .y =-3xB .y =3xC .y =-3xD .y =3x8.如图所示,反比例函数y =-6x 在第二象限的图象上有两点A 、B ,它们的横坐标分别为-1、-3,直线AB 与x 轴交于点C ,则△AOC 的面积为( )A .8B .10C .12D .249.已知点A (-2,y 1)、B (-1,y 2)、C (3,y 3)都在反比例函数y =4x 的图象上,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 310.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x 的图象上.若点B 在反比例函数y =kx的图象上,则k 的值为( )A .-4B .4C .-2D .2第10题图 第12题图 第18题图二、填空题(每小题3分,共24分)11.写出一个当x >0时y 随x 的增大而减小的函数,它可以是_______. 12.如图,直线y =kx 与双曲线y =2x(x >0)交于点A (1,a ),则k = .13.现有一批救灾物资要从A 市运往B 市,如果两市的距离为500千米,车速为每小时x 千米,从A 市到B 市所需时间为y 小时,那么y 与x 之间的函数表达式为_______.y 是x 的 函数.14.若反比例函数y =k -3x 的图象位于第一、三象限内,正比例函数y =(2k -9)x 的图象过第二、四象限,则k 的整数值是 .15.函数y =(n +1)xn 2-5是反比例函数,且图象位于第二、四象限内,则n = . 16.在同一直角坐标系中,正比例函数y =k 1x 的图象与反比例函数y =k 2x 的图象有公共点,则k 1k 2 > 0(填“>”“=”或“<”).17.已知反比例函数y =4x ,则当函数值y -2时,自变量x 的取值范围是_______.18.如图所示,点A 、B 在反比例函数y =kx (k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为 .三、解答题(共66分)19.(8分)已知一次函数y =kx 与反比例函数y =3x 的图象都经过点A (m ,1).求:(1)正比例函数的表达式;(2)正比例函数与反比例函数的图象的另一个交点的坐标.20.(8分)如图所示是某一蓄水池的排水速度v (m 3/h)与排完水池中的水所用的时间t (h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的表达式;(3)如果要6h 排完水池中的水,那么每小时的排水量应该是多少? (4)如果每小时排水量是5 m 3,那么水池中的水要用多少小时排完?21.(8分)已知反比例函数y =m -5x(m 为常数,且m ≠5).(1)若在其图象的每个分支上,y 随x 的增大而增大,求m 的取值范围; (2)若其图象与一次函数y =-x +1图象的一个交点的纵坐标是3,求m 的值.22.(10分)如图是反比例函数y =kx 的图象,当-4≤x ≤-1时,-4≤y ≤-1.(1)求该反比例函数的表达式;(2)若点M ,N 分别在该反比例函数的两支图象上,请指出什么情况下线段MN 最短(不需要证明),并求出线段MN 长度的取值范围.23.(10分)如图,在平面直角坐标系xOy 中,已知四边形DOBC 是矩形,且D (0,4),B (6,0).若反比例函数y =k 1x (x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F .设直线EF 的表达式为y =k 2x +b .(1)求反比例函数和直线EF 的表达式; (2)求△OEF 的面积;(3)请结合图象直接写出不等式k 2x +b -k 1x >0的解集.24.(10分)制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y (℃),从加热开始计算的时间为x (min).据了解,当该材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图所示).已知该材料在操作加热前的温度为15 ℃,加热5 min 后温度达到60 ℃.(1)分别求出将材料加热和停止加热进行操作时,y 与x 的函数表达式;(2)根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?25.(12分)如图,在平面直角坐标系中A 点的坐标为(8,y ),AB ⊥x 轴于点B ,OB ∶AO =4∶5,反比例函数y =kx的图象的一支经过AO 的中点C ,且与AB 交于点D .(1)求反比例函数表达式;(2)若函数y =3x 与y =kx 的图象的另一支交于点M ,求三角形OMB 与四边形OCDB 的面积的比.参考答案一、选择题(每小题3分,共30分) 1.下列函数中是反比例函数的是( C ) A .y =1x2B .y =x2C .y =5x -1D .y =1x -12.若反比例函数y =kx 的图象经过点(2,-1),则该反比例函数的图象在( D )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限3.已知反比例函数y =6x ,当1<x <3时,y 的取值范围是( C )A .0<y <1B .1<y <2C .2<y <6D .y >64.当三角形的面积S 为常数时,底边a 与底边上的高h 的函数关系的图象大致是( B )5.在同一直角坐标系中,函数y =-ax与y =ax +1(a ≠0)的图象可能是( B )6.对于函数y =4x ,下列说法错误的是( C )A .这个函数的图象位于第一、第三象限B .这个函数的图象既是轴对称图形又是中心对称图形C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小7.两位同学在描述同一反比例函数的图象时,甲同学说:“这个反比例函数图象上任意一点到两坐标轴的距离的积都是3.”乙同学说:“这个反比例函数图象与直线y =x 有两个交点.”你认为这两个同学所描述的反比例函数关系式是( B )A .y =-3xB .y =3xC .y =-3xD .y =3x8.如图所示,反比例函数y =-6x 在第二象限的图象上有两点A 、B ,它们的横坐标分别为-1、-3,直线AB 与x 轴交于点C ,则△AOC 的面积为( C )A .8B .10C .12D .249.已知点A (-2,y 1)、B (-1,y 2)、C (3,y 3)都在反比例函数y =4x 的图象上,则y 1、y 2、y 3的大小关系是( D )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 310.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x 的图象上.若点B 在反比例函数y =kx的图象上,则k 的值为( A )A .-4B .4C .-2D .2第10题图 第12题图 第18题图二、填空题(每小题3分,共24分)11.写出一个当x >0时y 随x 的增大而减小的函数,它可以是 y =4x .12.如图,直线y =kx 与双曲线y =2x(x >0)交于点A (1,a ),则k = 2 .13.现有一批救灾物资要从A 市运往B 市,如果两市的距离为500千米,车速为每小时x 千米,从A 市到B 市所需时间为y 小时,那么y 与x 之间的函数表达式为 y =500x,y 是x 的 反比例 函数.14.若反比例函数y =k -3x 的图象位于第一、三象限内,正比例函数y =(2k -9)x 的图象过第二、四象限,则k 的整数值是 4 .15.函数y =(n +1)xn 2-5是反比例函数,且图象位于第二、四象限内,则n = -2 . 16.在同一直角坐标系中,正比例函数y =k 1x 的图象与反比例函数y =k 2x 的图象有公共点,则k 1k 2 > 0(填“>”“=”或“<”).17.已知反比例函数y =4x ,则当函数值y > -2时,自变量x 的取值范围是 x ≤-2或x >0 .18.如图所示,点A 、B 在反比例函数y =kx(k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为 4 .三、解答题(共66分)19.(8分)已知一次函数y =kx 与反比例函数y =3x 的图象都经过点A (m ,1).求:(1)正比例函数的表达式;(2)正比例函数与反比例函数的图象的另一个交点的坐标.解:(1)将(m ,1)代入y =3x 得x =3,∴A (3,1),将A (3,1),代入y =kx 得k =13,∴正比例函数表达式为y =13x .(2)由双曲线的中心对称性知另一个交点坐标为(-3,-1).20.(8分)如图所示是某一蓄水池的排水速度v (m 3/h)与排完水池中的水所用的时间t (h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量; (2)写出此函数的表达式;(3)如果要6h 排完水池中的水,那么每小时的排水量应该是多少? (4)如果每小时排水量是5 m 3,那么水池中的水要用多少小时排完? 解:(1)蓄水池的蓄水量为12×4=48(m 3). (2)函数的表达式为v =48t (t >0).(3)v =48t =486=8(m 3/h).(4)依题意有5=48t ,解得t =9.6(h). 所以如果每小时排水量是5 m 3,那么水池中的水要用9.6 h 排完.21.(8分)已知反比例函数y =m -5x(m 为常数,且m ≠5).(1)若在其图象的每个分支上,y 随x 的增大而增大,求m 的取值范围; (2)若其图象与一次函数y =-x +1图象的一个交点的纵坐标是3,求m 的值. 解:(1)∵在反比例函数y =m -5x图象的每个分支上,y 随x 的增大而增大, ∴m -5<0,解得m <5.(2)当y =3时,由y =-x +1,得3=-x +1,解得x =-2. ∴反比例函数y =m -5x图象与一次函数y =-x +1图象的交点坐标是(-2,3), ∴3=m -5-2,解得m =-1.22.(10分)如图是反比例函数y =kx 的图象,当-4≤x ≤-1时,-4≤y ≤-1.(1)求该反比例函数的表达式;(2)若点M ,N 分别在该反比例函数的两支图象上,请指出什么情况下线段MN 最短(不需要证明),并求出线段MN 长度的取值范围.解:(1)该反比例函数的表达式为y =4x;(2)当点M ,N 都在直线y =x 上时,线段MN 最短, 此时,M ,N 的坐标分别为(2,2)(-2,-2), MN 最小值为42,∴MN ≥4 2.23.(10分)如图,在平面直角坐标系xOy 中,已知四边形DOBC 是矩形,且D (0,4),B (6,0).若反比例函数y =k 1x(x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F .设直线EF 的表达式为y =k 2x +b .(1)求反比例函数和直线EF 的表达式;(2)求△OEF 的面积;(3)请结合图象直接写出不等式k 2x +b -k 1x>0的解集. 解:(1)反比例函数的表达式为:y =6x ,直线EF 的表达式为:y =-23x +5; (2)S △OEF =454;(3)不等式k 2x +b -k 1x >0的解是:32<x <6.24.(10分)制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y (℃),从加热开始计算的时间为x (min).据了解,当该材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图所示).已知该材料在操作加热前的温度为15 ℃,加热5 min 后温度达到60 ℃.(1)分别求出将材料加热和停止加热进行操作时,y 与x 的函数表达式;(2)根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?解:(1)y 与x 的函数表达式为y =⎩⎪⎨⎪⎧9x +15(0≤x <5),300x(x ≥5).(2)当y =15时,x =30015=20,所以从开始加热到停止操作,共经历了20 min. 25.(12分)如图,在平面直角坐标系中A 点的坐标为(8,y ),AB ⊥x 轴于点B ,OB ∶AO =4∶5,反比例函数y =k x的图象的一支经过AO 的中点C ,且与AB 交于点D . (1)求反比例函数表达式;(2)若函数y =3x 与y =k x的图象的另一支交于点M ,求三角形OMB 与四边形OCDB 的面积的比.解:(1)∵A 点的坐标为(8,y ),∴OB =8,∵OB ∶AO =4∶5,∴OA =10,由勾股定理得:AB =OA 2-OB 2=6,∵点C 是OA 的中点,且在第一象限内,∴C (4,3),∵点C 在反比例函数y =k x的图象上,∴k =12, ∴反比例函数表达式为:y =12x; (2)将y =3x 与y =12x 联立成方程组,得:⎩⎪⎨⎪⎧y =3x y =12x,∵M 是直线与双曲线另一支的交点, ∴M (-2,-6),∵点D 在AB 上,∴点D 的横坐标为8,∵点D 在反比例函数y =12x的图象上,∴点D 的纵坐标为32,∴D (8,32),∴BD =32,连接BC,如图所示,∵S△MOB=12·8·|-6|=24,∴S四边形OCDB=S△OBC+S△BCD=12·8·3+12·32·4=15,∴S△MOBS四边形OCDB=2415=85.。
北师大版九年级上册数学第六章 反比例函数 含答案

北师大版九年级上册数学第六章反比例函数含答案一、单选题(共15题,共计45分)1、如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴,若反比例函数y= (k>0,x>0)的图象经过AC的中点D,则k的值为()A.4B.5C.6D.82、方程的正根的个数为()A.0个B.1个C.2个D.3个3、反比例函数的图象经过点,,,则,,的大小关系为()A. B. C. D.4、反比例函数y= 的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t<B.t>C.t≤D.t≥5、下列四个点,在反比例函数y=图象上的是()A.(1,-6)B.(2,4)C.(3,-2)D.(-6,-1)6、反比例函数的图象过点,则k的值为()A.15B.C.-15D.7、如图,正比例函数与反比例函数的图象相交于A、C两点,过A作x轴的垂线交x轴于B,连结BC,若△ABC面积为S,则()A.S=1B.S=2C.S=3D.S=8、如图,菱形ABCD的两个顶点B,D在反比例函数y= 的图象上,对角线AC 与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5B.﹣4C.﹣3D.﹣29、已知反比例函数y=﹣,下列结论中错误的是()A.图象在二,四象限内B.图象必经过(﹣2,4)C.当﹣1<x<0时,y>8D.y随x的增大而减小10、点(-1,4)在反比例函数y= 的图象上,则下列各点在此函数图象上的是( ).A.(4,-1)B.(,1)C.(-4,-1)D.(,2)11、已知反比例函数两点在该图象上.下列命题:①该图象分别位于第二、第四象限;②过作轴,为垂足,连接,则的面积为;③若,则;④若,则其中真命题个数是()A. B. C. D.12、如图,矩形的顶点在反比例函数的图像上,点的坐标为则的值为()A.-18B.8C.9D.1813、如图,△P1OA1、△P2A1A2是等腰直角三角形,点P1、P2在函数y=(x>0)的图象上,斜边OA1、A1A2都在x轴上,则点A2的坐标是()A.(2 -2,0)B.(2 +2,0)C.(4 , 0)D.(2, 0)14、反比例函数y= 的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2)B.(3,2)C.(﹣2,﹣3)D.(﹣2,3)15、如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60B.80C.30D.40二、填空题(共10题,共计30分)16、若一个正比例函数的图象与一个反比例函数的图象的一个交点为(2,5),则另一个交点坐标为________.17、如图,已知一次函数和反比例函数的图象相交于,两点,则不等式的解集为________.18、若反比例函数y=的图象与一次函数y=x+k的图象有一个交点为(m,﹣4),则这个反比例函数的表达式为________.19、如图,点在反比例函数图象上,且(1,),是第三象限内反比例函数的图象上一个动点.过点作轴于点,过点作轴于点,连接.若四边形的面积为6,则点的坐标为________.20、如图,点A在反比例函数的图象上,轴,垂足为B,且,则________.21、如图,一直线经过原点O,且与反比例函数相交于点A、点B,过点A作AC⊥y轴,垂足为C,连接BC。
北师大版九年级上册数学第六章 反比例函数含答案

北师大版九年级上册数学第六章反比例函数含答案一、单选题(共15题,共计45分)1、某数学小组在研究一道开放题:“如图,一次函数y=kx+b与x轴、y轴分别交于A,B两点,且与反比例函数y=(x<0)交于点C(﹣6,n)和点D(﹣2,3),过点C,D分别作CE⊥y轴于点E,DF⊥x轴于点F,连接EF.你能发现什么结论?”甲同学说,n=1;乙同学说,一次函数的解析式是y=x+4;丙同学说,EF AB;丁同学说,四边形AFEC的面积为6.则这四位同学的结论中,正确的有()A.1个B.2个C.3个D.4个2、已知一次函数y=kx+b的图象经过第一、二、四象限,则函数y= 的图象在()A.第一、三象限B.第二、四象限C.第三、四象限D.第一、二象限3、已知y与x成反比例,当x = 3时,y = 4,那么当y = 3时,x的值为();A.4B.-4C.3D.-34、如图,函数与()在同一平面直角坐标系中的图像大致()A. B. C.D.5、已知反比例函数,下列结论中,不正确的是()A.图象必经过点(1,2)B.y随x的增大而增大C.图象在第一、三象限内D.若x>1,则0<y<26、已知点A(x1, y1),B(x2, y2)是反比例函数y=的图象上的两点,若x 1<0<x2,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<07、如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8B.﹣8C.4D.﹣48、如图,△AOB是直角三角形,∠AOB=90。
, 0B=2OA,点A在反比例函数的图象上,点B在反比例函数的图象上,则k的值是()A.-4B.4C.-2D.29、如图,是反比例函数和在轴上方的图象,轴的平行线分别与这两个函数图象相交于点,点在轴上.则点从左到右的运动过程中,的面积是()A.10B.4C.5D.从小变大再变小10、点A(-1,y1),B(-2,y2)在反比例函数y=的图象上,则y1,y2的大小关系是()A. y1>y2B. y1=y2C. y1<y2D.不能确定11、给出下列四个命题:(1)如果某圆锥的侧面展开图是半圆,则底面半径和母线之比为1:2;(2)若点A在直线y=2x-3上,且点A到两坐标轴的距离相等,则点A在第一或第四象限;(3)半径为5的圆中,弦AB=8,则圆周上到直线AB的距离为2的点共有四个;(4)若A(a,m)、B(a -1,n)(a0)在反比例函数的图象上,则m n。
2024-2025北师大版九年级(上)第六单元 反比例函数 单元测试卷(含答案)

第六单元反比例函数测试卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分,下列各小题均有四个答案,其中只有一个是正确的)1.下列函数中,y 是x 的反比例函数的是 ( )A. x(y-1)=1B.y =1x +1 C.y =1x2 D.y =13x 2.已知甲、乙两地相距s( km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度 v( km/h)的函数关系图象大致是 ( )3.已知反比例函数 y =kx(k ≠0)的图象经过点(2,3),若点(1,n)在反比例函数的图象上,则n 等于( )A.(-2,3)B.(-2,-3)C.(2,3)D.(3,2)5.已知反比例函数 y =−3x,则下列描述不正确的是 ( )A.图象位于第二、第四象限B.图象必经过点(-3,1)C.图象不可能与坐标轴相交D. y 随x 的增大而增大6.如果等腰三角形的面积为10,底边长为x ,底边上的高y ,则y 与x 的函数关系式为( )A.y =10xB.y =5xC.y =20xD.y =x 207.如图,在同一平面直角坐标系中,直线y =k ₁x (k ₁≠0)与双曲线y =k 2x(k 2≠0)相交于A ,B 两点,已知点 A 的坐标为(1,2),则点B 的坐标为 ( )A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)8.如图所示,A ,B 是函数 y =1x的图象上关于原点O 的任意一对对称点,AC 平行于y 轴,BC平行于x 轴,△ABC 的面积为S ,则 ( )A. S=1 B. S=2 C.1<S<2 D. S>29.在同一直角坐标系中,函数y= kx-k 与 y =kx (k ≠0)的图象大致是 ( )10.如图,在第一象限内,A 是反比例函数y= k1x (k 1⟩0)图象上的任意一点,AB 平行于 y 轴交反比例函数 y =k 2x(k 2<0)的图象于点 B ,作以 AB 为边的平行四边形 ABCD,其顶点 C,D在 y 轴上,若 S ABCD =7,则这两个反比例函数可能是 ( )A.y =2x 和y =−3x B.y =3x 和y =−4x C.y =4x 和y =−5x D.y =5x和y =−6x 二、填空题(本大题共5小题,每小题3分,共15分)11.反比例函数 y =(m +2)x m 2−10的图象分布在第二、四象限内,则m 的值为 .12.若A(-2,y ₁),B(--1,y ₂),C(1,y ₃)三点都在函数 y =kx(k<0)的图象上,则 y ₁,y ₂,y ₃的大小关系是 (用“>”“<”或“=”连接)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版九年级数学上第六章反比例函数及其应用练习题基础达标训练1. (2018台州)已知电流I (安培)、电压U (伏特)、电阻R (欧姆)之间的关系为I =UR,当电压为定值时,I 关于R 的函数图象是( )2. 反比例函数y =k x(k >0),当x <0时,图象在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限第3题图3. (2018广东省卷)如图所示,在同一平面直角坐标系中,直线y =k 1x (k 1≠0)与双曲线y =k 2x(k 2≠0)相交于点A ,B 两点,已知点A 的坐标为(1,2),则点B 的坐标是( ) A. (-1,-2) B. (-2,-1) C. (-1,-1) D. (-2,-2)4. 在同一平面直角坐标系中,函数y =mx +m (m ≠0)与y =m x(x ≠0)的图象可能是( )5. (2018兰州)如图,反比例函数y =k x(x <0)与一次函数y =x +4的图象交于A ,B 两点,A ,B 两点的横坐标分别为-3,-1,则关于x 的不等式kx<x +4(x <0)的解集为( )A. x <-3B. -3<x <-1C. -1<x <0D. x <-3或-1<x <0第5题图6. (2018天津)若点A (-1,y 1),B (1,y 2),C (3,y 3)在反比例函数y =-3x的图象上,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3B. y 2<y 3<y 1C. y 3<y 2<y 1D. y 2<y 1<y 37. (2018济宁)请写出一个过点(1,1),且与x 轴无交点的函数解析式:____________.8. (2018哈尔滨)已知反比例函数y =3k -1x的图象经过点(1,2),则k 的值为________. 9. (2018南宁)对于函数y =2x,当函数值y <-1时,自变量x 的取值范围________.10. (2018陕西)已知A ,B 两点分别在反比例函数y =3m x (m ≠0)和y =2m -5x (m ≠52)的图象上,若点A 与点B 关于x 轴对称,则m 的值为________.11. (2018连云港)设函数y =3x 与y =-2x -6的图象的交点坐标为(a ,b ),则1a +2b的值是________.12. (2018南京)函数y 1=x 与y 2=4x的图象如图所示,下列关于函数y =y 1+y 2的结论:①函数的图象关于原点中心对称;②当x <2时,y 随x 的增大而减小;③当x >0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是________.第12题图 第13题图13. (2018绍兴)如图,Rt △ABC 的两个锐角顶点A ,B 在函数y =k x(x >0)的图象上,AC ∥x 轴,AC=2.若点A 的坐标为(2,2),则点B 的坐标为________.14. (8分)(2018湘潭)已知反比例函数y =k x的图象过点A (3,1).(1)求反比例函数的解析式;(2)若一次函数y =ax +6(a ≠0)的图象与反比例函数的图象只有一个交点,求一次函数的解析式.15. (8分)如图,已知反比例函数y =kx的图象经过点A (4,m ),AB ⊥x 轴,且△AOB 的面积为2.(1)求k 和m 的值;(2)若点C (x ,y)也在反比例函数 y =k x的图象上,当-3≤x ≤-1时,求函数值y 的取值范围.第15题图16. (8分)如图,一次函数y =k 1x +b 与反比例函数y =k 2x的图象交于A (2,m ),B (n ,-2)两点.过点B 作BC ⊥x 轴,垂足为C ,且S △ABC =5. (1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k 1x +b >k 2x的解集;(3)若P (p ,y 1),Q (-2,y 2)是函数y =k 2x图象上的两点,且y 1≥y 2,求实数p 的取值范围.第16题图17. (8分)(2018河南)如图,一次函数y =-x +b 与反比例函数y =k x(x >0)的图象交于点A (m ,3)和B (3,1).(1)填空:一次函数的解析式为______________,反比例函数的解析式为______________;(2)点P 是线段AB 上一点,过点P 作PD ⊥x 轴于点D ,连接OP ,若△POD 的面积为S ,求S 的取值范围.第17题图能力提升训练1. 如图,A ,B 两点在反比例函数y =k 1x 的图象上,C ,D 两点在反比例函数y =k 2x的图象上,AC ⊥y轴于点E ,BD ⊥y 轴于点F ,AC =2,BD =1,EF =3,则k 1-k 2的值是( ) A. 6 B. 4 C. 3 D. 22. (2018云南)已知点A (a ,b )在双曲线y =5x上,若a 、b 都是正整数,则图象经过B (a ,0)、C (0,b)两点的一次函数的解析式(也称关系式)为__________.第3题图3. (2018烟台)如图,直线y =x +2与反比例函数y =kx的图象在第一象限交于点P ,若OP =10,则k 的值为________.4. (2018宁波)已知△ABC 的三个顶点为A (-1,-1),B (-1,3),C (-3,-3),将△ABC 向右平移m(m >0)个单位后,△ABC 某一边的中点恰好落在反比例函数y =3x的图象上,则m 的值为________.5. (2018成都)在平面直角坐标系x O y 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P ′(1x,1y)称为点P 的“倒影点”.直线y =-x +1上有两点A ,B ,它们的倒影点A ′,B′均在反比例函数y =k x的图象上,若AB =22,则k =__________.6. (8分)(2018德阳)如图,函数y =⎩⎪⎨⎪⎧2x ,(0≤x≤3)-x +9,(x >3)的图象与双曲线y =kx (k≠0,x >0)相交于点A (3,m)和点B .(1)求双曲线的解析式及点B 的坐标;(2)若点P 在y 轴上,连接PA ,PB ,求当PA +PB 的值最小时点P 的坐标.第6题图拓展培优训练1. (2019长郡第二届澄池杯)如图,直线y =x +4与双曲线y =k x(k ≠0)相交于A (-1,a )、B 两点,在y 轴上找一点P ,当PA +PB 的值最小时,点P 的坐标为________.第1题图 第2题图2. 如图,已知点(1,3)在函数y =k x(x >0)的图象上.正方形ABCD 的边BC 在x 轴上,点E 是对角线BD 的中点,函数y =k x(x >0)的图象又经过A 、E 两点,则点E 的横坐标为________.答案1. C 【解析】 当电压为定值时,I =UR为反比例函数,且R >0,I >0,∴只有第一象限有图象.2. C 【解析】∵在反比例函数y =k x中,k >0,∴反比例函数图象在第一、三象限内,∴当x <0时,函数图象在第三象限.3. A 【解析】如题图,A 、B 两点是关于原点对称的,又∵A 的坐标是(1,2),∴B 的坐标是(-1, -2).4. D 【解析】当m <0时,函数y =mx +m 的图象经过第二、三、四象限,函数y =mx的图象位于第二、四象限;当m >0时,函数y =mx +m 的图象经过第一、二、三象限,函数y =m x的图象位于第一、三象限,故选D.5. B 【解析】k x<x +4(x <0)表示x <0时,反比例函数图象在一次函数图象下方时x 的取值范围,∵反比例函数图象与一次函数图象交于A 、B 两点,点A 和点B 的横坐标分别为-3,-1,∴由函数图象可知,k x<x +4(x <0)的解集为:-3<x <-1.6. B 【解析】∵点A 、B 、C 在反比例函数图象上,将点A (-1,y 1),B (1,y 2),C (3,y 3)分别代入y =-3x 得,y 1=-3-1=3,y 2=-31=-3,y 3=-33=-1,∴y 2<y 3<y 1. 7. y =1x8. 19. -2<x <0 【解析】∵y <-1,即2x <-1,∴2x+1<0,整理得x (x +2)<0,解得-2<x <0.10. 1 【解析】设A (x ,y ),则B (x ,-y ),∵A 在y =3m x 上,B 在y =2m -5x上,∴⎩⎪⎨⎪⎧y =3mx-y =2m -5x,∴3m x +2m -5x=0,∴m =1. 11. -2 【解析】∵点(a ,b )是函数y =3x 与y =-2x -6的图象的交点,∴b =3a,b =-2a -6,即ab =3,2a +b =-6,则1a +2b =b +2a ab =-63=-2.12. ①③ 【解析】由函数图象可知①正确;由反比例函数在y 轴两边增减性不一样,故②错误;∵x >0,∴y =x +4x=(x)2+(2x )2-4+4=(x -2x )2+4,当x =2x时,函数有最小值,此时x =2,y =4,故函数图象最低点的坐标为(2,4),正确结论的序号是①③.13. (4,1) 【解析】∵点A (2,2)在函数y =kx (x >0)的图象上,∴2=k 2,得k =4,∵在Rt △ABC 中,AC ∥x 轴,AC =2,∴点B 的横坐标是4,∴y =44=1,∴点B 的坐标为(4,1).14. 解:(1)将点A (3,1)代入反比例函数解析式中,得1=k 3,∴k =3,∴反比例函数的解析式为y =3x;(2)已知一次函数y =ax +6(a ≠0), 联立两个解析式得⎩⎪⎨⎪⎧y =3x y =ax +6,整理得ax 2+6x -3=0①,∵一次函数与反比例函数图象只有一个交点, 则①式中Δ=62-4a ×(-3)=0, 解得a =-3≠0,∴一次函数解析式为y =-3x +6. 15. 解:(1)k =xy =2S △OAB =2×2=4,将点A (4,m)代入y =4x,得m =1;(2)当x =-3时,y =-43;当x =-1时,y =-4, ∴-4≤y ≤-43.16. 解:(1)将A (2,m ),B(n ,-2)代入y =k 2x得k 2=2m =-2n ,即m =-n ,则A (2,-n ),如解图,过A 作AE ⊥x 轴于E ,过B 作BF ⊥y 轴于F ,延长AE 、BF 交于D ,第16题解图∵A (2,-n),B (n ,-2), ∴BD =2-n ,AD =-n +2,BC =2, ∵S △ABC =12·BC ·BD ,∴12×2×(2-n)=5,解得n =-3, 即A (2,3),B (-3,-2),将A(2,3)代入y =k 2x得k 2=6,即反比例函数的解析式是y =6x,把A (2,3),B(-3,-2)代入y =k 1x +b 得⎩⎪⎨⎪⎧3=2k 1+b-2=-3k 1+b,解得k 1=1,b =1,∴一次函数的解析式是y =x +1;(2)不等式k 1x +b >k 2x的解集是-3<x <0或x >2;(3)分为两种情况:当点P 在第三象限时,要使y 1≥y 2,实数P 的取值范围是P ≤-2;当点P 在第一象限时,要使y 1≥y 2,实数P 的取值范围是P >0,综上所述,P 的取值范围是P ≤-2或P >0.17. 解:(1)y =-x +4,y =3x;(2)由(1)得3=3m,解得m =1,∴A 点坐标为(1,3),设P 点坐标为(a ,-a +4)(1≤a ≤3),则S =12OD ·PD =12a (-a +4)=-12(a -2)2+2,∵-12<0,∴当a =2时,S 有最大值,此时S =-12×(2-2)2+2=2,由二次函数的性质得,当a =1或3时,S 有最小值, 最小值为-12×(1-2)2+2=32,∴S 的取值范围是32≤S ≤2.能力提升训练1. D 【解析】设点A (m ,k 1m )、点B (n ,k 1n ),则点C(k 2m k 1,k 1m )、点D (k 2n k 1,k 1n),∵AC =2,BD =1,EF =3,∴⎩⎪⎨⎪⎧m -k 2mk 1=2k 2nk 1-n =1k 1m -k 1n =3,解得k 1-k 2=2.2. y =-5x +5或y =-15x +1 【解析】∵点A (a ,b ) 在双曲线y =5x 上,∴b =5a ,∵a ,b 都是正整数,∴a =1,b =5或a =5,b =1.①当a =1,b =5时,B (1,0),C (0,5),设一次函数的解析式为y =k 1x +b 1(k 1≠0),把B (1,0),C (0,5)代入,得⎩⎪⎨⎪⎧k 1+b 1=0b 1=5,解得⎩⎪⎨⎪⎧k 1=-5b 1=5,∴一次函数的解析式为y =-5x +5;②当a =5,b =1时,设一次函数解析式为y =k 2x +b 2(k 2≠0),把B (5,0),C (0,1)代入,得⎩⎪⎨⎪⎧5k 2+b 2=0b 2=1,解得⎩⎪⎨⎪⎧k 2=-15b 2=1,∴一次函数的解析式为y =-15x +1,综上所述,一次函数的解析式为y =-5x +5或y =-15x +1.3. 3 【解析】设点P (m ,m +2),由OP =10,可得m 2+(m +2)2=(10)2,∵m >0,解得m =1,又∵点P (1 ,3)在y =k x的图象上,∴k =3.4. 0.5或4 【解析】分两种情况讨论:①若为AC 中点(-2,-2)向右平移m 个单位后落在图象上,则有点(m -2,-2)在y =3x 上,代入得-2=3m -2,∴m =0.5;②若为AB 中点(-1,1)向右平移m 个单位后落在图象上,则有点(m -1,1)在y =3x 上,代入得1=3m -1,∴m =4,∴m 为0.5或4.5. -43【解析】设A 、B 的坐标分别为:A (a ,-a +1),B(b ,-b +1),∵AB =22,∴(a -b)2+(-a +1+b -1)2=(22)2,∴a -b =±2,由倒影点的定义得A ′(1a ,11-a ),B ′(1b ,11-b),又∵A ′、B ′都在函数y =kx 上,∴k =1a (1-a )=1b (1-b ),则a (1-a )=b (1-b ),整理得(a-b)(1-a -b)=0,∵a -b =±2,∴1-a -b =0,即a +b =1,解方程组⎩⎪⎨⎪⎧a +b =1a -b =2与⎩⎪⎨⎪⎧a +b =1a -b =-2,得⎩⎪⎨⎪⎧a =32b =-12或⎩⎪⎨⎪⎧a =-12b =32,∴k =1a (1-a )=-43.6. 解:(1)∵A (3,m )在直线y =2x 上, ∴m =2×3=6, ∴A (3,6),∵A (3,6)在双曲线y =kx上,∴k =3×6=18,∴双曲线的解析式为y =18x,当x >3时,联立解析式得 ⎩⎪⎨⎪⎧y =-x +9y =18x , 得⎩⎪⎨⎪⎧x =6y =3或⎩⎪⎨⎪⎧x =3y =6(舍去), ∴点B 的坐标为(6,3);(2)如解图,作A 关于y 轴的对称点A ′(-3,6),第6题解图 连接PA′, ∵PA ′=PA ,∴PA +PB =PA ′+PB ≥A′B , 当A ′,P ,B 三点共线,即P 在A′B 与y 轴的交点P ′处时,PA +PB 取到最小值, ∵A ′(-3,6),B (6,3),∴AB =(6+3)2+(3-6)2=310, ∴PA +PB 的最小值是310,设直线A′B 的函数关系式为y =kx +b ,已知直线过点A ′(-3,6),B (6,3),代入得⎩⎪⎨⎪⎧6=-3k +b 3=6k +b ,解得⎩⎪⎨⎪⎧k =-13b =5,∴y =-13x +5,令x =0,得y =5, ∴P ′(0,5),∴当PA +PB 取到最小值310时,点P 的坐标为(0,5). 拓展培优训练1. (0,52) 【解析】把点A 坐标代入y =x +4,得-1+4=a ,∴a =3,即A (-1,3),把点A坐标代入双曲线的解析式得3=-k ,解得k =-3,联立函数解析式得⎩⎪⎨⎪⎧y =x +4y =-3x ,解得⎩⎪⎨⎪⎧x 1=-1y 1=3(舍),⎩⎪⎨⎪⎧x 2=-3y 2=1,即点B 坐标为(-3,1),如解图,作点A 关于y 轴的对称点C ,则点C 坐标为(1,3),连接BC ,与y 轴的交点即为点P ,使得PA +PB 的值最小,设直线BC 的解析式为y =ax+b ,把B ,C 坐标代入得⎩⎪⎨⎪⎧-3a +b =1a +b =3,解得⎩⎪⎨⎪⎧a =12b =52,∴直线BC 解析式为:y =12x +52,令x =0,y =52,即点P 的坐标为(0,52).第1题解图2. 6 【解析】∵点(1,3)在函数y =k x 图象上,代入得:k =3,即y =3x,设A (a ,b),由题意知E (a +b 2,b 2),又∵函数图象在第一象限,经过点A 、E ,分别代入得⎩⎪⎨⎪⎧ab =3b 2(a +b2)=3,解得⎩⎪⎨⎪⎧a =62b =6或⎩⎪⎨⎪⎧a =-62b =-6(舍),∴点E 的横坐标为a +b 2= 6.。