模糊数学简介

合集下载

什么是模糊数学

什么是模糊数学
• 涉及学科 模糊代数,模糊拓扑,模糊逻辑,模糊分析, 模糊概率,模糊图论,模糊优化等模糊数学分支
分类、识别、评判、预测、控制、排序、选择;
人工智能、控制、决策、专家系统、医学、土木、 农业、气象、信息、经济、文学、音乐
• 模糊产品 洗衣机、摄象机、照相机、电饭锅、空调、电梯
• 研究项目 European Network of Excellence 120个子项目与模糊有关 LIFE (Laboratory for International Fuzzy Engineering Research)
Int. J. Uncertainty, Fuzziness, knowledge-based Systems
IEEE 系列杂志 主要杂志25种,涉及模糊内容20,000余种
• 国际会议 IFSA (Int. Fuzzy Systems Association) EUFIT、NAFIP、Fuzzy-IEEE、IPMU
绪论
一、什么是模糊数学 二、模糊数学的产生与基本思想 三、模糊数学的发展 四、为什么研究模糊数学
一、什么是模糊数学
•模糊概念 秃子悖论: 天下所有的人都是秃子
设头发根数n n=1 显然 若n=k 为秃子 n=k+1 亦为秃子
模糊概念:从属于该概念到不属于该概念之间 无明显分界线
年轻、重、热、美、厚、薄、快、慢、大、小、 高、低、长、短、贵、贱、强、弱、软、硬、 阴天、多云、暴雨、清晨、礼品。
•基本思想 用属于程度代替属于或不属于。 某个人属于秃子的程度为0.8, 另一个人属于 秃子的程度为0.3等.
三、模糊数学的发展
75年之前,发展缓慢;80以后发展迅速; 90-92 Fuzzy Boom

模糊数学原理及应用

模糊数学原理及应用

模糊数学原理及应用
模糊数学,也被称为模糊逻辑或模糊理论,是一种基于模糊概念和模糊集合的数学分析方法,用于处理不精确或不确定性的问题。

模糊数学允许将不明确的概念和信息进行量化和处理,以便更好地处理现实生活中存在的模糊性问题。

模糊数学的基本原理是引入模糊集合的概念,其中的元素可以具有模糊或不确定的隶属度。

模糊数学中的隶属函数可以用于刻画元素对于一个模糊集合的隶属程度。

模糊集合的运算可以通过模糊逻辑实现,模糊逻辑是概率逻辑和布尔逻辑的扩展,它允许使用连续的度量范围来推导逻辑结论。

模糊逻辑中的运算包括取补、交集和并集等,它们可以用来处理模糊概念之间的关系。

模糊数学在许多领域都有广泛的应用。

在控制系统中,模糊控制可以用于处理难以量化的问题,如温度、湿度和压力等。

在人工智能领域,模糊推理可以用于处理自然语言的不确定性和模糊性。

在决策分析中,模糊数学可以用于处理多个决策因素之间的不确定性和模糊性。

此外,模糊数学还在模式识别、图像处理、数据挖掘和人机交互等领域得到广泛应用。

通过使用模糊数学的方法,可以更好地处理现实世界中存在的不确定性和模糊性,从而提高问题解决的准确性和效率。

模糊数学基本概念

模糊数学基本概念

模糊数学是一种处理模糊和不确定性问题的数学方法,它基于模糊集合理论,用于描述和处理无法精确量化的概念和现象。

以下是模糊数学的一些基本概念:
模糊集合:模糊集合是一种将不确定性或模糊性引入集合概念的数学工具。

与传统的集合不同,模糊集合中的元素具有一定的隶属度,表示元素与集合的模糊关系。

隶属函数:隶属函数是模糊集合中元素与集合的隶属度之间的映射关系。

它描述了元素在模糊集合中的程度或概率。

模糊关系:模糊关系是一种描述模糊集合之间的关系的数学工具。

它反映了元素之间的模糊连接或模糊相似性。

模糊逻辑:模糊逻辑是一种处理模糊命题和推理的逻辑系统。

它扩展了传统的二值逻辑,允许命题具有模糊的真值或隶属度。

模糊推理:模糊推理是一种基于模糊规则和模糊推理机制进行推理和决策的方法。

它能够处理模糊的输入和输出,并提供模糊的推理结果。

模糊数学运算:模糊数学中存在一系列的运算,包括模糊集合的并、交、补运算,模糊关系的复合运算等。

这些运算用于处理模糊集合和模糊关系的操作。

模糊控制:模糊控制是一种应用模糊数学方法进行控制的技术。

它通过模糊逻辑和模糊推理实现对复杂系统的控制,具有适应性和容错性的特点。

以上是模糊数学的一些基本概念,它们构成了模糊数学理论的基础,被广泛应用于人工智能、决策分析、模式识别、控制系统等领域。

模糊数学和其应用

模糊数学和其应用

04
总结与展望
模糊数学的重要性和意义
模糊数学是处理模糊性现象的一种数学 理论和方法,它突破了经典数学的局限 性,能够更好地描述现实世界中的复杂 问题。
模糊数学的应用领域广泛,包括控制论、信 息论、系统论、人工智能、计算机科学等, 对现代科学技术的发展起到了重要的推动作 用。
模糊数学的出现和发展,不仅丰富 了数学理论体系,也促进了各学科 之间的交叉融合,为解决实际问题 提供了新的思路和方法。
随着计算机技术的发展,模糊 数学的应用越来越广泛,成为 解决复杂问题的重要工具之一 。
模糊数学的基本概念
模糊集合
与传统集合不同,模糊集合的成员关系不再是确 定的,而是存在一定的隶属度。例如,一个人的 身高属于某个身高的模糊集合,其隶属度可以根 据实际情况进行确定。
隶属函数
用于描述模糊集合中元素属于该集合的程度。隶 属函数的确定需要根据实推理规则不再是一 一对应的,而是存在一定的连续性。例如,在医 疗诊断中,病人的症状与疾病之间的关系可能存 在一定的模糊性,通过模糊逻辑可以进行更准确 的推理。
模糊运算
与传统运算不同,模糊运算的结果不再是确定的 数值,而是存在一定的隶属度。例如,两个模糊 数的加法运算结果也是一个模糊数,其隶属度取 决于两个输入的隶属度。
模糊数学在图像处理中的应用
总结词
模糊数学在图像处理中主要用于图像增强和图像恢复。
详细描述
通过模糊数学的方法,可以对图像进行平滑、锐化、边缘检测等操作,提高图像的视觉效果和识别能 力。例如,在医学影像处理中,可以利用模糊数学的方法对CT、MRI等医学影像进行降噪、增强和三 维重建等处理,提高医学诊断的准确性和可靠性。
02
模糊数学的应用领域
模糊控制

模糊数学

模糊数学

模糊性与随机性的区别
事物 事物分确定性现象与非确定性现象
- 确定性现象:指在一定条件下一定会发生的现象
- 非确定性现象分随机现象与模糊现象
* 随机性是对事件的发生而言,其事件本身有着明确的含义, 只是由于发生的条件不充分,事件的发生与否有多种可能性 * 模糊性是研究处理模糊现象的,它所要处理的事件本身是模 糊的
A : U {0,1} u A ( u),
其中
1, u A A ( u) 0, u A
函数 A 称为集合A的特征函数。
Ⅱ、模糊集合及其运算
美国控制论专家Zadeh教授正视了经典集合描述的 “非此即彼”的清晰现象,提示了现实生活中的绝大多数 概念并非都是“非此即彼”那么简单,而概念的差异常以 中介过渡的形式出现,表现为“亦此亦彼”的模糊现象。

ab ab a b ,a b 1 ab 1 (1 a )(1 b)

模糊集的并、交、余运算性质 幂等律:A∪A = A, A∩A = A; 交换律:A∪B = B∪A,A∩B = B∩A; 结合律:(A∪B)∪C = A∪(B∪C), (A∩B)∩C = A∩(B∩C) ; 吸收律:A∪(A∩B) = A,A∩( A∪B)= A; 分配律:(A∪B)∩C = (A∩C)∪(B∩C); (A∩B)∪C = (A∪C)∩(B∪C); 0-1律: A∪U = U,A∩U = A; A∪ = A,A∩ = ; 还原律: (Ac)c = A ;
模糊集合及其运算
u0 是固定的,而 A* 在随机变动。 特点:在各次试验中,
模糊统计试验过程:
(1)做n次试验,计算出
x 140 A( x) 190 140
也可用Zadeh表示法:

模糊数学法的原理及应用

模糊数学法的原理及应用

模糊数学法的原理及应用1. 引言模糊数学是一种基于模糊逻辑的数学方法,其目的是处理那些现实世界中存在不确定性和模糊性的问题。

相对于传统的二值逻辑,模糊数学可以更好地刻画事物的模糊性和不确定性,因此被广泛应用于各个领域。

2. 模糊数学的基本概念模糊数学的基本概念包括模糊集合、隶属函数和模糊关系等。

2.1 模糊集合模糊集合是指元素隶属于集合的程度可以是连续的,而不仅仅是二值的。

模糊集合可以用隶属函数来描述,隶属函数将元素和隶属度之间建立了映射关系。

2.2 隶属函数隶属函数描述了元素对模糊集合的隶属程度。

隶属函数通常是一个在区间[0, 1]上取值的函数,表示元素隶属于模糊集合的程度。

2.3 模糊关系模糊关系是指模糊集合之间的关系。

模糊关系可以用矩阵来表示,其中每个元素表示了模糊集合之间的隶属度。

3. 模糊数学的应用模糊数学在各个领域都有广泛的应用,下面将介绍几个常见的应用实例。

3.1 模糊控制模糊控制是一种通过模糊逻辑和模糊推理来进行控制的方法。

模糊控制可以应用于各种物理系统,例如温度控制、汽车驾驶等,通过模糊控制可以更好地应对系统不确定性和模糊性的问题。

3.2 模糊分类模糊分类是一种模糊集合的分类方法。

与传统的二值分类不同,模糊分类可以更好地处理具有模糊边界的样本。

模糊分类可以应用于各种模式识别和数据挖掘任务中。

3.3 模糊优化模糊优化是一种利用模糊数学方法进行优化的技术。

传统的优化方法通常需要准确的数学模型和目标函数,而模糊优化可以在模糊和不确定的情况下进行优化。

3.4 模糊决策模糊决策是一种基于模糊逻辑和模糊推理的决策方法。

模糊决策可以用于各种决策问题,例如投资决策、风险评估等,通过模糊决策可以更好地处理决策中的不确定性和模糊性。

4. 总结模糊数学是一种处理不确定性和模糊性的有效方法,它可以更好地刻画现实世界中存在的模糊信息。

模糊数学在控制、分类、优化和决策等领域都有广泛的应用。

随着人工智能和大数据技术的不断发展,模糊数学的应用将会更加重要和广泛。

模糊数学简介

模糊数学简介

§1.4 模糊等价关系与经典等价关系
模糊等价关系
若模糊关系R是 上各元素之间的模糊关系 模糊关系, 若模糊关系 是X上各元素之间的模糊关系, 且满足: 且满足: (1)自反性 自反性: (1)自反性:R(x, x) =1; I ≤R (⇔ rii =1 ) ; ⇔ (2)对称性 对称性: (2)对称性:R(x, y) =R(y, x); T=R(⇔ rij= rji) ; R ⇔ (3)传递性 传递性: (3)传递性:R2⊆R, R2≤R. 则称模糊关系 模糊关系R是 上的一个模糊等价关系 模糊等价关系. 则称模糊关系 是X上的一个模糊等价关系.
模糊等价关系与经典等价关系的联系
若R是X 上的模糊等价关系,当且仅当, ∀λ ∈ [0,1], R λ 是X 上的经典等价关系。
第二部分 模糊数学的基本应用
2. 1 模糊聚类分析基础 2.2 模糊模式识别基础 2.3 模糊综合评判基础 2.4 模糊线性规划
y
§2.1 模糊聚类分析
数据标准化
设论域X 为被分类对象, 设论域 = {x1, x2, …, xn}为被分类对象,每个 为被分类对象 对象又由m个指标表示其形状 个指标表示其形状: 对象又由 个指标表示其形状: xi = { xi1, xi2, …, xim}, i = 1, 2, …, n 于是,得到原始数据矩阵为 于是,
, sj = 1 n
1 其中 x j = n
∑x
ij
∑ (x
i =1
n
ij
− xj)
2
平移 • 极差变换 xij − min{ xij | 1 ≤ i ≤ n} ′ xij = max{ xij | 1 ≤ i ≤ n} − min{ xij | 1 ≤ i ≤ n}

模糊数学理论

模糊数学理论
2.1 模糊关系与模糊矩阵的概念 1)模糊关系
2) 模糊矩阵
2.2模糊等价关系与模糊相似关系 模糊等价关系与模糊相似关系 1)模糊等价关系 )
2)模糊等价矩阵 )
3)模糊相似关系与模糊相似矩阵 )
2.3 截矩阵与传递矩阵 1)截矩阵 )
Байду номын сангаас
2)模糊传递矩阵 )
3 模糊聚类分析
所谓聚类分析,就是用数学的方法把事物按一定要求 和规律进行分类,它有广泛的实际应用。在模糊数学产生 之前,聚类分析已是是数理统计中研究“物以类聚”的一 种多元分析方法,它通过数学工具定量地确定、划分样品 的亲疏关系,从而客观地、合理地分型划类。由于客观事 物之间在很多情况下并没有一个截然区别的界限,又由于 分类时所依据的数据指标的变化也大都是连续的,同时许 多客观事物之间的界限往往不一定很清晰,使传统的基于 数理统计原理的聚类分析方法遇到了困难。因此用模糊数 学观点解决聚类分析问题,必然会更符合于实际情况。这 种基于建立模糊相似关系对客观事物进行分类的方法,称 为模糊聚类分析。
注明: 统计量确定满意分类 注明:用F统计量确定满意分类
• 3.1 模糊聚类分析理论:
1)
2)
3)
4)
3.2 基于模糊等价关系的动态聚类分析
例题
此例题可以用截矩阵的方法来实现
3.3 基于模糊相似关系的聚类分析 1)建立模糊相似矩阵 )
2)传递闭包法 )
此外,还有直接聚类法、最大树法、编网法等。 此外,还有直接聚类法、最大树法、编网法等。
3)模糊集的表示
4)模糊集的运算 ) 模糊集与普通集一样, 模糊集与普通集一样,有相同的运算和相应的运 算规律。 算规律。
A与B的并集、交集及 的补集定义如下: 与 的并集 交集及A的补集定义如下 的并集、 的补集定义如下:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3)
84 Yamakawa F-logic I.C (模糊集成电路)
85 IFSA 成立国际模糊系统协会
我国:70 年代 王培庄,开始主要是理论研究,并且与经典数学相对应的各个领域都
有人研究,现在研究、利用模糊技术的领域已经深入到社会、经济等各个方面。
杂志:
*FSS-Fuzzy Set and Systems,
一、模糊数学简介、教学安排、
普通集合
(一)简介
1. 发展历史
美:65 L.A.zadeh 信息与控制(理论研究开始)
英:74 马丹尼
蒸汽机控制,80年丹麦哥本哈根的史密斯水泥公司首次用模
糊系统实现了对水泥窑炉的控制。88年,日立公司使日本仙台市地铁实现了模糊控制。
日:72 Sugeno
F-measure 语音控制模糊汽车(88),无人驾驶直升机(9
(3)特征函数定义
定义:设 X 为论域, A X ,称映射
A : X { 0 , 1}
1, x A
x |

A (x)

0,
x A
( A B )( x ) min{ A ( x ), B ( x )} A ( x ) B ( x )
Ac (x) 1 A(x)
*IEEE Transactions on Fuzzy Systems (1993),
*Fuzzy Mathematics etc.
IEEE 从1992年起,每年召开一次国际模糊学术会议。1995年 IEEE 给 Zadeh
授予了学会的荣誉勋章。
2.趋势
(1)研究与应用人数逐年上升
(2)应用领域逐步扩大,遍及社会,经济等等各个领域,如:
*在软科学方面,模糊技术已用到了投资决策、企业效益评估、区域发展规划、经济宏
观调控、中长期市场模糊预测等领域。
*工业过程控制方面,已实现了冶金炉窑模糊控制、化工过程模糊控制、水泥窑炉模糊
控制以及磨煤机模糊控制等。
*在人工智能与计算机领域,已经出现了模糊推理机、模糊控制计算机、模糊专家系统、
模糊数据库、模糊语音识别系统、图形文字模糊识别系统、模糊控制机器人等高新技术产
A c (x) 1 A(x)
5
5.性质:除互补律(补余律)外均成立。
例 4.考虑 X 0,1 , A( x ) x
~

Y (x)
x 25 2 1
1
5
, 25 x 100
例 3 考虑五个人构成的论域:
X x 1 , x 2 , x 3 , x 4 , x 5
x x x x x 1 , 2 , 3 , 4 , 5
~ 体温:39.8, 39.3, 38.5, 37.5, 36.5 “发高烧的人”= A
3.运算 并: A B 交: A B 差: A B 余(补): A c
对称差: A B ( A B ) ( A B
4.性质
①幂等律: A A A , A A A
②交换律: A B B A , A B B A
③结合律:
④分配律:
⑤吸收律: A ( A B) A , A ( A B) A
① a at ,t T ② b at ,t T b a
为集合 A 的特征函数。 A 由 A 唯一确定, A 也由 A 唯一确定。
定义: a 是{at } 的下确界,如果 a 满足
3
① a at ,t T ② b at , t T b a
A B A(x) B(x)
A B A(x) B(x)
A A(x) 0, x X
A X A(x) 1, x X
( A B)(x) max{ A(x), B(x)} A(x) B(x)
( A B)(x) min{A(x), B(x)} A(x) B(x)
(3)与其它学科结合越来越紧,如:
模糊神经网络
模糊遗传算法
……………………
(二)教学安排(课程内容):
(1)基本理论
*普通集合
1
*模糊集合
1
*分解定理
1
*隶书函数确定的若干方法
1
*模糊关系
3
*扩张原理与模糊数
2
(2)应用
*模糊模式识别
2
*模糊聚类分析
2
*模糊综合评判
2
*模糊推理(逻辑)
2
*模糊控制
2
(3)复习总结
1
说明:不要想着学完这门课程就能解决你的问题,应该仔细研究、明确你要解决的问
题,再考虑如何解决。
本课程的目的:一是学习、了解模糊数学的基本理论,为进一步学习打下基础(如果
需要);二是了解一些模糊数学的应用领域和应用方法。
(三)普通集合
1.基本概念:只有描述性定义,是数学里最基本的概念
记号 X,Y,A,B……..
品,同时还出现了 F-Prolog、Fuzzy-C 等语言系统。
*在地震科学方面,模糊技术已涉及到中长期地震预报、地震危险分析和潜在震源识别、
地震灾害预测以及减轻地震灾害对策等等。
3 *在航空航天及军事领域,模糊技术已用到了飞行器对接、C I 指定自动化系统等方面。
*模糊家电产品:模糊洗衣机,空调,烤箱,照相机,摄象机,……
x1 1 ; x 2 0 .9 ; x 3 0 .5
x 4 0.1 ; x 5 0
3.模糊集合的表示法 ① zadeh 表示法
论域 X x 1 , x 2 , , x n 或 X x 1 , x 2 , x n ,
~
~
~ A
A ( x1 )
③ 模糊向量表示法
~~
~
A ( A ( x1 ), A ( x n ))
~ X 中第 k 个元素 xk 的隶属度 A(xk ) ak 作为模糊向量 A 的第 k 个分量。
~ ④ 解析表示法:X 为 R 上某区间,给出 A(x) 表达式。
~ 为书写方便以后用 A 代替 A 。 4.关系与运算(对模糊集合是重新定义)

An {1}
n1
这样就在 P(X ) 和{映射|X 到{0,1}的映射}之间建立了一一对应
关系。以后经常使用特征函数代替集合,并用 A( x) 代替 A (x) 。
(4)用特征函数及其之间关系和运算表示集合之间的关系和运算
A B A(x) B(x) A B A(x) B(x) A A(x) 0, x X A X A ( x ) 1, x X ( A B )( x ) max{ A ( x ), B ( x )} A ( x ) B ( x )
A(xn )

n
~ A(xi )
x1
xn
i 1
xi

~
A
~
~
A ( x1 ) A ( xn )

~ A(xi)
x1
xn
i 1
xi
或写成:
~ A

X
~ A (x)
x
(无 dx )
② 序偶表示法
~
~
~
A ( A ( x 1 ), x 1 ), ( A ( x n ), x n ),
1.模糊概念:外延不分明的概念,如:
“伟人”、“聪明人”、“健康人”、“正直的人”“年轻人”,……“阴天”、“质量好”、“不 稳定”,…… 和普通集合的差别是什么?
我们知道:给定论域 X ,子集 A X
x X , x A 或 x A 二者必居其一且仅居其一。
A A
1, x完 全 属 于 A A(x)

Bn N {1, 2,},
n1

Bn
n1
6.映射与特征函数
x (1)映射:设 X ,Y 是两个集合,如果有一个法则 f ,使得对于 X 中任意元素 ,都
Y y 有 中唯一元素 与之对应,则称 f 是 X 到 Y 的映射。
* 以前见过映射吗? 单射:
满射:
一对一映射:
(2)映射的性质:①~⑩条,见6-7页,自看,自证,会用。 举几个映射例子
x X
1
A B
相等 有限集合、无限集合
幂集: P ( X ) X 的 子 集
2. 集合表示方法
① A ={ 模糊数学,计算方法,……} N ={1,2,3,……}
② 条件表示法
X 人 其身高大于 1 .7 米
X x P ( x ) P ( X ) A A X
两个模糊子集,隶属函为:
0,
0 x 50
~

O (x)
x 50 2 1
1
5
, 50 x 100
4
~ O ( 60 ) 0 .8 ~ O (80 ) 0 .97
1,
0 x 25
⑥两极律:
⑦复原律:
⑧补余律:
(A B)c Ac Bc (A B)c Ac Bc
⑨对偶律:


可以推广到任意有限多个集合。
5.集合族的并与交
A t , t T ,常见指标集: T {1, 2 , , n , } N
T [0, 1]
定义: A t { x t T
0, x完 全 不 属 于 A
例 1 考虑“发高烧”这个(模糊)概念 论域 T=[30,45 ] 36, 37, 38.5,39, 39.5 39.8,…… 38.5 度算不算发高烧? 不好回答,用一个数描述发高烧的程度,如:38.5 对应 0.5,即 38.5 属
相关文档
最新文档