【典型题】七年级数学下期末模拟试题及答案(1)
2023-2024学年七年级数学下学期期末模拟卷01(浙江专用)(全解全析)

2023-2024学年七年级数学下学期期末模拟卷01全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列选项中,可由如图2022年杭州亚运会会徽“潮涌”平移得到的是()A.B.C.D.【分析】根据平移的特征进行判断即可.【解】:由平移的特征可知,能够通过平移得到的是:故选:C.2.如图,已知直线a,b被直线c所截,那么∠1的内错角是()A.∠2B.∠3C.∠4D.∠5【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.【解】:∠1的内错角是∠3.故选:B.3.下列调查方式中正确的是()A.要了解一大批笔芯的使用寿命,采用全面调查的方式B.为了审核书稿中的错别字,采用抽样调查的方式C.为了解外地游客对湖州景点“原乡小镇”的满意程度,采用全面调查的方式D.要了解某班全体学生的视力情况,采用全面调查的方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解】:A、要了解一大批笔芯的使用寿命,适合采用抽样调查方式,故不符合题意;B、为了审核书稿中的错别字,适合采用全面调查的方式,故不符合题意;C、为了解外地游客对湖州景点“原乡小镇”的满意程度,适合采用抽样调查的方式,故不符合题意;D、要了解某班全体学生的视力情况,采用全面调查的方式,故符合题意.故选:D.4.已知,则下列式子一定正确的是()A.x=2,y=3B.2x=3y C.D.【分析】依据比例的基本性质以及等式的基本性质,即可得到成立的式子.【解】:A.由,可得3x=2y,故x=2,y=3不一定成立,本选项不合题意;B.由,可得3x=2y,故2x=3y不成立,本选项不合题意;C.由,可得﹣1=﹣1,即=﹣,故=不成立,本选项不合题意;D.由,可得+1=+1,故,本选项符合题意;故选:D.5.下列计算正确的是()A.(2x2y)2=4x4y2B.x3÷x=x3C.2x+3y=5xy D.(x+y)2=x2+y2【分析】直接利用积的乘方的运算法则、同底数幂的乘法法则、合并同类项法则、完全平方公式分别化简得出答案.【解】:A.(2x2y)2=4x4y2,原计算正确,故本选项符合题意;B.x3÷x=x2,原计算错误,故本选项不符合题意;C.2x与3y不是同类项,不能合并,原计算错误,故本选项不符合题意;D.(x+y)2=x2+2xy+y2,原计算错误,故本选项不符合题意;故选:A.6.若4x a+b﹣3y3a+2b﹣4=2是关于x,y的二元一次方程,则a+b的值为()A.﹣2B.﹣1C.0D.1【分析】根据二元一次方程的定义,得出a+b=1,3a+2b﹣4=1,解出a、b的值,然后把a、b的值代入a+b,计算即可得出结果.【解】:∵4x a+b﹣3y3a+2b﹣4=2是关于x,y的二元一次方程,∴,解得:,当a=3,b=﹣2时,a+b=3﹣2=1.故选:D.7.若关于x的分式方程﹣=1有增根,则a的值为()A.2B.﹣2C.4D.﹣4【分析】先求出分式方程的解,根据分式方程有增根,得到x=2,从而得到a的值.【解答】解:去分母得:x+x﹣a=x﹣2,∴x=a﹣2,∵分式方程有增根,∴x=2,∴a﹣2=2,∴a=4,故选:C.8.《九章算术》中第七章《盈不足》记载了一个问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“现有一些人合伙购买物品,若每人出8钱,则多出3钱;若每人出7钱,则还差4钱.问人数、物品价格各是多少?”设有x个人,物品价格为y钱,则下列方程组中正确的是()A.B.C.D.【分析】根据每人出8钱,则多出3钱,可得8x﹣3=y,根据每人出7钱,则还差4钱,可得7x+4=y,从而可以列出相应的方程组.【解答】解:由题意可得,,故选:B.9.如图所示,将两张相同的矩形纸片和三张不同的正方形纸片按如图方式不重叠地放置在矩形ABCD内若知道图中阴影部分的面积之和,则一定能求出()A.△AEH和△CFG的面积之差B.△DHG和△BEF的面积之和C.△BEF和△CFG的面积之和D.△AEH和△BEF的面积之和【分析】设GH、HE、EF、FG分别交DA、AB、BC、CD于点I、J、K、L,由HI=FK,GH=EF,证明GI=EK,设正方形IGLD和正方形KEJB的边长都是m,正方形EFGH的边长为n,则S△ADH=S△BCF =(2m+n)(m﹣n),S△ABE=S△CDG=m(2m﹣n),可求得S阴影=2mn,可推导出S△AEH﹣S△CFG=0;S△DHG+S△BEF=mn=×2mn;S△BEF+S△CFG=mn﹣n2;S△AEH+S△BEF=mn﹣n2,可知B符合题意.【解答】解:如图,设GH、HE、EF、FG分别交DA、AB、BC、CD于点I、J、K、L,∵HI=FK,GH=EF,∴HI+GH=FK+EF,∴GI=EK,设正方形IGLD和正方形KEJB的边长都是m,正方形EFGH的边长为n,∵AJ=HI=FK=m﹣n,∴AB=CD=m+m﹣n=2m﹣n,∵AD=BC=2m+n,JE=GL=m,∴S△ADH=S△BCF=(2m+n)(m﹣n),S△ABE=S△CDG=m(2m﹣n),∴S阴影=(2m﹣n)(2m+n)﹣2×(2m+n)(m﹣n)﹣2×m(2m﹣n),整理得S阴影=2mn,∵S△AEH﹣S△CFG=n(m﹣n)﹣n(m﹣n)=0,∴S△AEH﹣S△CFG的结果与S阴影值的大小无关,故A不符合题意;∵S△DHG+S△BEF=mn+mn=×2mn,∴△DHG和△BEF的面积之和可由S阴影的值求得,故B符合题意;∵S△BEF+S△CFG=mn+n(m﹣n)=mn﹣n2,∴△BEF和△CFG的面积之和不能由S阴影的值求得,故C不符合题意;∵S△AEH+S△BEF=n(m﹣n)+mn=mn﹣n2,∴△AEH和△BEF的面积之和不能由S阴影的值求得,故D不符合题意,故选:B.10.新定义:若两个分式A与B的差为n(n为正整数),则称A是B的“n分式”.例如:,则称分式是分式的“1分式”.根据以上定义,下列选项中说法错误的是()A.是的“3分式”B.若a的值为﹣3,则是的“2分式”C.若是的“1分式”,则a2=3b2D.若a与b互为倒数,则是的“5分式”【分析】根据新定义运算逐个验证正确与否即可.【解】:A、,A说法正确;B、,B说法正确;C、由已知条件得:,化简得:a2=2b2,C说法错误;D、由已知得:ab=1,,D说法正确.故选:C.第Ⅱ卷二、填空题(本大题共6个小题,每小题3分,共18分)11.若分式a2a−1有意义,a的取值范围是.【分析】根据分式有意义的条件,进行判断即可.【解】:∵分式a2a−1有意义,∴2a﹣1≠0,解得:a≠1 2.故答案为:a≠1 2.12.分解因式:2a2﹣6ab=.【分析】根据题中的公因式是2a,用提取公因式的方法进行因式分解.【解】:2a2﹣6ab=2a(a﹣3b),故答案为:2a(a﹣3b).13.七(2)班第一组的12名同学身高(单位:cm)如下:162,157,161,164,154,153,156,168,153,152,165,158.那么身高在155~160的频数是.【分析】从中找出身高在155~160的个数即可得出答案.【解】:身高在155~160的有157,156,158,则频数是3;故答案为:3.14.关于x,y的二元一次方程组{x+y=3x−3y=k的解满足x﹣y=﹣1,则k的值是.【分析】将两式相加,得到2x﹣2y=k+3,然后得到x−y=k+32,据此即可求解.【解】:{x+y=3①x−3y=k②,由②+①得2x﹣2y=k+3,∴x−y=k+3 2,∵x﹣y=﹣1,∴k+32=−1,解得k=﹣5.故答案为:﹣5.15.我们在学习代数公式时,可以用几何图形来推理论证.受此启发,在学习因式分解之后,小明同学将图1一张边长的a的正方形纸片剪去2个长为a,宽为b的长方形以及3个边长为b的正方形之后,拼成了如图2所示的长方形.观察图1和图2的阴影部分,请从因式分解的角度,用一个含有a、b等式表示从图1到图2的变化过程.【分析】利用代数式分别表示图1,图2阴影部分面积即可解答.【解】:由题可知,图1阴影部分面积为a2﹣2ab﹣3b2,图2是长为a+b,宽为a﹣3b a+b)(a﹣3b),∵两个图形阴影部分面积相等,∴a2﹣2ab﹣3b2=(a+b)(a﹣3b),故答案为:a2﹣2ab﹣3b2=(a+b)(a﹣3b).16.如图①,点E、F分别为长方形纸带ABCD的边AD、BC上的点,∠EFC=α,将纸带沿EF折叠成图②(G为ED和BF的交点),再沿BF折叠成图③(H为EF和DG的交点),则图③中的∠HFC =.(结果用含α的代数式表示)【分析】在图①中,由∠EFC=α得∠DEF=180°﹣α,∠EFB=180°﹣α,在图②中,∠EFB=180°﹣α,由折叠的性质得∠FEG =∠DEF =180°﹣α,再由三角形的外角定理得∠DGF =∠FEG +∠EFB =360°﹣2α,在图③中,由折叠的性质得∠DGF =360°﹣2α,∠EFB =180°﹣α,由三角形的外角定理得∠DHF =∠DGF +∠EFB =540°﹣3α,根据DH ∥CF 得∠DHF +∠HFC =180°,据此可得∠HFC 的度数. 【解】:在图①中, ∵四边形ABCD 是长方形, ∴AD ∥BC ,∴∠DEF +∠EFC =180°, ∵∠EFC =α,∴∠DEF =180°﹣∠EFC =180°﹣α, ∴∠EFB =180°﹣∠EFC =180°﹣α, ∴图②中,∠EFB =180°﹣α,由折叠的性质得:图②中,∠FEG =∠DEF =180°﹣α, ∵∠DGF 是△EFG 的一个外角,∴∠DGF =∠FEG +∠EFB =180°﹣α+180°﹣α=360°﹣2α, 由折叠的性质得:图③中,∠DGF =360°﹣2α,∠EFB =180°﹣α, ∵∠DHF 四△HGF 的一个外角,∴∠DHF =∠DGF +∠EFB =360°﹣2α+180°﹣α=540°﹣3α, 在图③中,DH ∥CF , ∴∠DHF +∠HFC =180°,∴∠HFC =180°﹣∠DHF =180°﹣(540°﹣3α)=3α﹣360°.三、解答题(本大题共8个小题,共72分.解答应写出文字说明,证明过程或演算步骤) 17.解二元一次方程组.(1){3x −2y =9x +2y =3;(2){x +3y =14x−23−y−22=1.【分析】(1)利用加减消元法解得x =3,再用代入法求得y =0即可;(2)先将式子去分母,再用加减消元法解得x =6,再用代入法求得y =83即可.【解】:(1){3x −2y =9①x +2y =3②①+②,得4x =12, ∴x =3.把x =3代入②,得3+2y =3, 解得y =0所以原方程组的解为{x =3y =0;(2){x +3y =14①x−23−y−22=1②,②化简得:2(x ﹣2)﹣3(y ﹣2)=6,即2x ﹣3y =4③, ①+③得:3x =18,解得:x =6,将x =6代入①得:6+3y =14,解得:y =83,∴原方程组的解为:{x =6y =83. 18.先化简,再求值:(a ﹣3b )2﹣(a +b )(a ﹣b )+(4ab 2﹣2b 3)÷b ,其中a =12,b =−14.【分析】先根据完全平方公式、平方差公式和多项式除以单项式法则去掉括号,再合并同类项,然后把a ,b 的值代入化简后的式子,进行有理数的混合运算即可.【解】:原式=a 2﹣6ab +9b 2﹣a 2+b 2+4ab ﹣2b 2=a 2﹣a 2+9b 2+b 2﹣2b 2+4ab ﹣6ab =8b 2﹣2ab , 当a =12,b =−14时,原式=8×(−14)2−2×12×(−14)=8×116+14 =12+14 =34.19.如图:已知,∠HCO =∠∠BHC +∠BEF =180°. (1)求证:EF ∥BH ;(2)若BH 平分∠EBO ,EF ⊥AO 于F ,∠HCO =64°,求∠CHO 的度数.【分析】(1)要证明EF ∥BH ,可通过∠E 与∠EBH 互补求得,利用平行线的性质说明∠EBH =∠CHB 可得结论.(2)要求∠CHO 的度数,可通过平角和∠FHC 求得,利用(1)的结论及角平分线的性质求出∠FHB 及∠BHC 的度数即可.【解】证明:(1)∵∠HCO=∠EBC,∴EB∥HC.∴∠EBH=∠CHB.∵∠BHC+∠BEF=180°,∴∠EBH+∠BEF=180°.∴EF∥BH.(2)解:∵∠HCO=∠EBC,∴∠HCO=∠EBC=64°,∵BH平分∠EBO,∴∠EBH=∠CHB=12∠EBC=32°.∵EF⊥AO于F,EF∥BH,∴∠BHA=90°.∴∠FHC=∠BHA+∠CHB=122°.∵∠CHO=180°﹣∠FHC=180°﹣122°=58°.20.为落实“双减”要求,丰富学生校园生活,提升学生综合素养,某学校开展了学科月活动.学校随机抽取了部分学生对学科月最喜欢的活动进行调查:A.法律知识竞赛;B.国际象棋大赛;C.花样剪纸大赛;D.创意书签设计大赛.并将调查结果绘制成了两幅统计图,请根据图中提供的信息回答以下问题:(1)求共调查了多少名学生?并直接补全条形统计图;(2)求扇形统计图中“创意书签设计大赛”部分所对应的圆心角度数是多少度?(3)学校有500名学生参加本次活动,地点安排在两个多功能厅,每场报告时间为60分钟.由下面的活动日程表可知,A 和C 两场报告时间与场地已经确定.在确保听取报告的每名同学都有座位的情况下,请你合理安排B ,D 二场报告,补全此次活动日程表,并说明理由.【分析】(1)根据喜欢B 类型的人数及其百分比求得总人数,用总人数减去其它类型的人数求出喜欢D 类型的人数即可补全条形统计图;(2)用360°乘以喜欢“创意书签设计大赛”的百分比即可; (3)分别求出喜欢B ,D 二场的人数,补全此次活动日程表即可. 【解】:(1)共调查的学生人数为15÷30%=50(人),D 类型的人数为50﹣(5+15+20)=10(人),补全条形统计图如下:(2)360°×1050×100%=72°,答:扇形统计图中“创意书签设计大赛”部分所对应的圆心角度数是72度; (3)喜欢B 类型的人数为500×30%=150(人), 喜欢D 类型的人数为500×1050×100%=100(人), 补全此次活动日程表如下:21.如图,四边形BCED中,点A在CB的延长线上,点F在DE的延长线上,连接AF交BD于G,交CE 于H,且∠1=45°,∠2=135°.(1)求证:BD∥CE;(2)若∠C=∠D,求证:∠A=∠F.【分析】(1)由∠CHG+∠2=180°,∠2=135°可得出∠CHG=45°=∠1,利用“同位角相等,两直线平行”可证出BD∥CE;(2)由BD∥CE得出∠C=∠ABD,由∠C=∠D得出∠ABD=∠D,利用“内错角相等,两直线平行”得出AC∥DF,利用“两直线平行,内错角相等”得出∠A=∠F.【解】证明:(1)∵∠CHG+∠2=180°,∠2=135°,∴∠CHG=45°,∵∠1=45°,∴∠CHG=∠1,∴BD∥CE.(2)∵BD∥CE,∴∠C=∠ABD,∵∠C=∠D,∴∠ABD=∠D.∴AC∥DF,∴∠A=∠F.22.去年全国根食产量再创新高,为推进乡村振兴奠定了坚实基础,某粮食生产专业户原计划生产水稻和小麦共14吨,由于水稻超产8%,小麦超产5%,实际生产了15吨.(1)该专业户去年原计划生产水稻、小麦各多少吨?(2)据了解,该专业户去年水稻种植面积是小麦种植面积的2倍,且水稻亩产量比小麦多120千克,求水稻种植面积是多少亩?【分析】(1)设该专业户去年原计划生产水稻x吨,小麦y吨,根据某粮食生产专业户原计划生产水稻和小麦共14吨,由于水稻超产8%,小麦超产5%,实际生产了15吨.列出二元一次方程组,解方程组即可; (2)设水稻种植面积是m 亩,则小麦种植面积为12m 亩,根据水稻亩产量比小麦多120千克,列出分式方程,解方程即可.【解】:(1)设该专业户去年原计划生产水稻x 吨,小麦y 吨, 由题意得:{x +y =14(1+8%)x +(1+5%)y =15,解得:{x =10y =4,答:该专业户去年原计划生产水稻10吨,小麦4吨;(2)该专业户去年实际生产水稻:(1+8%)×10=10.8(吨),生产小麦:(1+5%)×4=4.2(吨), 设水稻种植面积是m 亩,则小麦种植面积为12m 亩,由题意得:10.8m −4.212m=1201000,解得:m =20,经检验,m =20是原方程的解,且符合题意, 答:水稻种植面积是20亩.23.如图为某社区的一块方形空地,由四块长为a ,宽为b 的长方形空地与一块小正方形水池拼接而成,为创建生态社区、小明为空地设计了甲、乙两种绿化方案,其中阴影部分都用于绿化,已知S 甲、S 乙分别表示图甲、乙中绿化的面积.(1)S 甲= ,S 乙= (用a ,b 的代数式表示); (2)当S 甲−S 乙=14a 2时,求S 甲S乙的值. 【分析】(1)S 甲为四个直角三角形的面积和;S乙为大正方形的面积减四个小直角三角形的面积减小正方形的面积;(2)根据已知以及(1)的结论求得b =a2,代入S 甲S乙计算即可求解.【解】:(1)S 甲=4×12ab =2ab ;S 乙=(a +b)2−2×12ab −2×12(a +b)b −(a −b)2=a 2+2ab +b 2﹣ab ﹣ab ﹣b 2﹣a 2+2ab ﹣b 2=2ab ﹣b 2, 故答案为:2ab ;2ab ﹣b 2; (2)解:∵S 甲−S 乙=14a 2,∴2ab −(2ab −b 2)=14a 2,解得b =a2(负值已舍),∴S 甲S 乙=2ab 2ab−b 2=2a⋅a 22a⋅a2−(a2)2=a 2a 2−a 24=a 23a 24=43. 24.已知:点A 在直线DE 上,点B 、C 都在直线PQ 上(点B 在点C 的左侧),连接AB ,AC ,AB 平分∠CAD ,且∠ABC =∠BAC .(1)如图1,求证:DE ∥PQ ;(2)如图2,点K 为线段AB CK ,且始终满足2∠EAC ﹣∠BCK =90°.①当CK ⊥AB 时,在直线DE 上取点F ,连接FK ,使得∠FKA =12∠AKC ,求此时∠AFK 的度数;②在点K 的运动过程中,∠AKC 与∠EAC 的度数之比是否为定值,若是,求出这个值;若不是,说明理由.【分析】(1)由角平分线的定义可得∠DAB =∠BAC ,再根据内错角相等,两直线平行可得结论; (2)①由垂直的定义可知∠AKC =90°,即可得∠FKA =45°,设∠EAC =x °,则可表示∠ABC 和∠BCK 的度数,然后利用三角形的内角和解题即可解题;②设∠EAC =x °,则可求出∠ABC 的值,然后表示∠AKC 的度数解题即可. 【解答】(1)证明:∵AB 平分∠CAD , ∴∠DAB =∠BAC , 又∵∠ABC =∠BAC , ∴∠DAB =∠ABC ,∴DE ∥PQ ; (2)解:①如图,∵CK ⊥AB , ∴∠AKC =90°, 又∵∠FKA =12∠AKC ,∴∠FKA =45°, 设∠EAC =x °,∵∠DAB =∠BAC =∠ABC , ∴∠ABC =180°−x°2=90°−12x°, 又∵2∠EAC ﹣∠BCK =90°, ∴∠BCK =2x °﹣90°, 在△BKC 中, ∠B +∠BCK =90°,即2x°−90°+90°−12x°=90°,解得:x =60,∴∠AFK =∠DAB −∠AKF =90°−12x°−45°=15°;同理,当F 点可以在A 点的左边,∠AFK =75°; ②∠AKC∠EAC =32,理由为: 如图,设∠EAC =x °, ∵∠DAB =∠BAC =∠ABC ,∴∠ABC=180°−x°2=90°−12x°,∵2∠EAC﹣∠BCK=90°,∴∠BCK=2x°﹣90°,在△BKC中,∴∠AKC=∠B+∠BCK=2x°−90°+90°−12x°=32x°,∴∠AKC∠EAC=32x°x°=32,。
【好题】七年级数学下期末模拟试题(含答案)(1)

【好题】七年级数学下期末模拟试题(含答案)(1)一、选择题1.下列各式中计算正确的是( ) A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=2.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩3.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A .喜欢乒乓球的人数(1)班比(2)班多B .喜欢足球的人数(1)班比(2)班多C .喜欢羽毛球的人数(1)班比(2)班多D .喜欢篮球的人数(2)班比(1)班多4.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩5.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-26.下列说法正确的是( ) A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线. 7.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .98.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度9.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,xx x x+-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-110.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行11.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,012.若x <y ,则下列不等式中不成立的是( ) A .x 1y 1-<-B .3x 3y <C .x y22< D .2x 2y -<-二、填空题13.已知二元一次方程2x-3y=6,用关于x 的代数式表示y ,则y=______.14.不等式组11{2320x x ≥--<的解集为________.15.三个同学对问题“若方程组的111222a x b y c a x b y c +=⎧⎨+=⎩ 解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_____.16.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是_________.17.已知21x y =⎧⎨=⎩是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________18.关于x的不等式1x <-的非负整数解为________.19.已知点(0,)A a 和点(5,0)B ,且直线AB 与坐标轴围成的三角形的面积为10,则a 的值为________.20.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打_____折.三、解答题21.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x 为整数,总分100分),绘制了如下尚不完整的统计图表.根据以上信息解答下列问题:(1)统计表中a = ,b = ,c = ;(2)扇形统计图中,m 的值为 ,“E ”所对应的圆心角的度数是 (度); (3)若参加本次大赛的同学共有4000人,请你估计成绩在80分及以上的学生大约有多少人?22.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C=∠EFG,∠CED=∠GHD (1)求证:CE∥GF;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由; (3)若∠EHF=100°,∠D=30°,求∠AEM 的度数.24.如图,已知AB CD ∥,B D ∠=∠,请用三种不同的方法说明AD BC ∥.25.解不等式组:5(1)21111(3)32x x x x +>-⎧⎪⎨-≥-⎪⎩,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案. 【详解】A 3=,此选项错误错误,不符合题意;B 3=,此选项错误错误,不符合题意;C 3=-,此选项错误错误,不符合题意;D 3=,此选项正确,符合题意; 故选:D . 【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.C解析:C 【解析】 【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案. 【详解】解:∵实数x ,y 满足254()0x y x y +-+-=,∴40x y +-=且2()0x y -=,即40x y x y +-=⎧⎨-=⎩,解得:22x y =⎧⎨=⎩, 故选C . 【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.3.C解析:C 【解析】【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出. 【详解】解:A 、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误; B 、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误; C 、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确; D 、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误. 故选C. 【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.4.A解析:A 【解析】 【分析】 【详解】该班男生有x 人,女生有y 人.根据题意得:303278x y x y +=⎧⎨+=⎩,故选D .考点:由实际问题抽象出二元一次方程组.5.A解析:A 【解析】 【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可. 【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Q x b ∴>综合上述可得32b -≤<- 故选A. 【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.6.D解析:D【解析】解:A .应为两点之间线段最短,故本选项错误;B .应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C .应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D .在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确. 故选D .7.B解析:B 【解析】 【分析】把两个方程相加可得3x+3y=15,进而可得答案. 【详解】两个方程相加,得3x+3y=15, ∴x+y=5, 故选B. 【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.8.B解析:B 【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P 到直线l 的距离是线段PB 的长度, 故选B.9.D解析:D 【解析】 【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可. 【详解】当x x <-,即0x <时,所求方程变形为21x x x+-=, 去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x+=,去分母得:2210x x --=,代入公式得:212x ±==解得:3411x x ==经检验1x =综上,所求方程的解为1+-1.故选D. 【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.10.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可. 详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确; 根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确. 故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.11.B解析:B 【解析】 【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论. 【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0. 故选: B. 【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.12.D解析:D 【解析】 【分析】利用不等式的基本性质判断即可. 【详解】若x <y ,则x ﹣1<y ﹣1,选项A 成立; 若x <y ,则3x <3y ,选项B 成立; 若x <y ,则x 2<y2,选项C 成立; 若x <y ,则﹣2x >﹣2y ,选项D 不成立, 故选D . 【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.二、填空题13.【解析】【分析】把x 看做已知数求出y 即可【详解】解:方程2x-3y=6解得:y=故答案为【点睛】此题考查了解二元一次方程解题的关键是将x 看做已知数求出y 解析:263x - 【解析】 【分析】把x 看做已知数求出y 即可. 【详解】解:方程2x-3y=6, 解得:y=263x -, 故答案为263x -. 【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .14.【解析】∵解不等式①得:x ⩾−2解不等式②得:x<∴不等式组的解集为−2⩽x<故答案为−2⩽x< 解析:223x -≤<【解析】112320x x ⎧≥-⎪⎨⎪-<⎩①②∵解不等式①得:x ⩾−2,解不等式②得:x<23, ∴不等式组的解集为−2⩽x<23, 故答案为−2⩽x<23. 15.【解析】【分析】把第二个方程组的两个方程的两边都除以5通过换元替代的方法来解决【详解】两边同时除以5得和方程组的形式一样所以解得故答案为【点睛】本题是一道材料分析题考查了同学们的逻辑推理能力需要通过解析:510x y =⎧⎨=⎩ 【解析】 【分析】把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决. 【详解】111222325325a x b y c a x b y c +=⎧⎨+=⎩两边同时除以5得, 11122232()()5532()()55a x b y c a x b y c ⎧+⎪⎪⎨⎪+⎪⎩==, 和方程组111222a x b y c a x b y c +⎧⎨+⎩==的形式一样,所以335245x y ⎧⎪⎪⎨⎪⎪⎩==,解得510x y ⎧⎨⎩==.故答案为510x y ⎧⎨⎩==.【点睛】本题是一道材料分析题,考查了同学们的逻辑推理能力,需要通过类比来解决,有一定的难度.16.a <﹣1【解析】不等式(a+1)x>a+1两边都除以a+1得其解集为x<1∴a+1<0解得:a<−1故答案为a<−1点睛:本题主要考查解一元一次不等式解答此题的关键是掌握不等式的性质再不等式两边同加解析:a <﹣1 【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1, ∴a+1<0, 解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.17.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=4解析:4;【解析】试题解析:把21xy=⎧⎨=⎩代入方程组得:25{21a bb a++=①=②,①×2-②得:3a=9,即a=3,把a=3代入②得:b=-1,则a-b=3+1=4,18.012【解析】【分析】先解不等式确定不等式的解集然后再确定其非负整数解即可得到答案【详解】解:解不等式得:∵∴∴的非负整数解为:012故答案为:012【点睛】本题主要考查了二次根式的应用及一元一次不解析:0,1,2【解析】【分析】先解不等式,确定不等式的解集,然后再确定其非负整数解即可得到答案.【详解】解:解不等式1x<-得:1x<,∵34=<<=,∴13x<<,∴13x<<的非负整数解为:0,1,2.故答案为:0,1,2.【点睛】本题主要考查了二次根式的应用及一元一次不等式的整数解的知识,确定其解集是解题的关键.19.±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可【详解】解:假设直角坐标系的原点为O则直线与坐标轴围成的三角形是以OAOB为直角边的直角三角形∵和点∴∴∴∴故答案为:±4【点睛解析:±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可.【详解】解:假设直角坐标系的原点为O ,则直线AB 与坐标轴围成的三角形是以OA 、OB 为直角边的直角三角形,∵(0,)A a 和点(5,0)B ,∴||OA a =,5OB =, ∴11||51022OAB S OA OB a ∆=⨯⨯=⨯⨯=, ∴||4=a ,∴4a =±,故答案为:±4. 【点睛】本题主要考查了三角形的面积和直角坐标系的相关知识,需注意坐标轴上到一个点的距离为定值的点有2个.20.【解析】【分析】本题可设打x 折根据保持利润率不低于5可列出不等式:解出x 的值即可得出打的折数【详解】设可打x 折则有解得即最多打7折故答案为7【点睛】考查一元一次不等式的应用读懂题目找出题目中的不等关 解析:【解析】【分析】本题可设打x 折,根据保持利润率不低于5%,可列出不等式:12008008005%10x ,⨯-≥⨯ 解出x 的值即可得出打的折数. 【详解】 设可打x 折,则有12008008005%10x ,⨯-≥⨯ 解得7.x ≥即最多打7折.故答案为7.【点睛】考查一元一次不等式的应用,读懂题目,找出题目中的不等关系,列出不等式是解题的关键. 三、解答题21.(1)70,200,500;(2)14,72;(3)成绩在80分及以上的学生大约有2400人.【解析】【分析】(1)根据统计图中的数据可以分别求得a 、b 、c 的值;(2)根据统计图中的数据可以求得m 和“E”所对应的圆心角的度数;(3)根据题意可以求得成绩在80分及以上的学生大约有多少人.【详解】解:(1)()()408%18%18%40%20%70a =÷⨯----=,()408%40%200b =÷⨯=,408%500c =÷=,故答案为70,200,500; (2)%18%18%40%20%14%m =----=,“E ”所对应的圆心角的度数是:36020%72︒⨯=︒,故答案为14,72;(3)()400040%20%2400⨯+= (人),答:成绩在80分及以上的学生大约有2400人.【点睛】本题考查了扇形统计图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.952m ≤≤ 【解析】【分析】根据已知条件,先求出两个方程组的解,再根据“模糊解”的定义列出不等式组,解得m 的取值范围便可.【详解】解:解方程组222104x y m x y m +=+⎧⎨-=+⎩得 :422x m y m +⎧⎨-⎩==, 解方程组10310x y x y +=⎧⎨+=-⎩得 :2010x y ⎧⎨-⎩==, ∵关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解, 因此有:42200.120m +-≤且2100.110m -+≤, 化简得:821091122m m ≤≤⎧⎪⎨≤≤⎪⎩,即4591122m m ≤≤⎧⎪⎨≤≤⎪⎩ 解得:952m ≤≤, 故答案为952m ≤≤. 【点睛】 本题主要考查了新定义,二元一次方程组的解,解绝对值不等式,考查了学生的阅读理解能力、知识的迁移能力以及计算能力,难度适中.正确理解“模糊解”的定义是解题的关键.23.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【解析】分析:(1)根据同位角相等两直线平行,可证CE ∥GF ;(2)根据平行线的性质可得∠C=∠FGD ,根据等量关系可得∠FGD=∠EFG ,根据内错角相等,两直线平行可得AB ∥CD ,再根据平行线的性质可得∠AED 与∠D 之间的数量关系;(3)根据对顶角相等可求∠DHG ,根据三角形外角的性质可求∠CGF ,根据平行线的性质可得∠C ,∠AEC ,再根据平角的定义可求∠AEM 的度数.本题解析:(1)证明:∵∠CED=∠GHD , ∴CE ∥GF(2)答:∠AED+∠D=180°理由:∵CE ∥GF ,∴∠C=∠FGD ,∵∠C=∠EFG ,∴∠FGD=∠EFG ,∴AB ∥CD , ∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE ∥GF ,∴∠C=180°﹣130°=50°∵AB ∥CD ,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°. 点睛:本题考查了平行线的判定与性质,解题关键是根据已知条件判断相关的内错角,同位角的相等关系.24.见解析【解析】【分析】有多种方法可证明:方法一:通过∠C 转化得到180D C ∠+∠=︒,从而证明;方法二:连接BD ,根据平行得ABD CDB ∠=∠,角度转化得到DBC BDA ∠=∠,从而证平行;方法三:延长BC 至E ,根据平行得B DCE ∠=∠,角度转化得DCE D ∠=∠,从而证平行.【详解】方法一:∵AB ∥CD ∴180B C ∠+∠=︒∵B D ∠=∠∴180D C ∠+∠=︒∴AD ∥BC方法二:连接BD∵AB ∥CD ∴ABD CDB ∠=∠又∵ABC CDA ∠=∠∴ABC ABD CDA CDB ∠-∠=∠-∠∴DBC BDA ∠=∠∴AD ∥BC方法三:延长BC 至E∵AB ∥CD ∴B DCE ∠=∠又∵B D ∠=∠∴DCE D ∠=∠∴AD ∥BC【点睛】本题考查平行线的性质和证明,注意,仅当两直线平行时才有:同位角相等、内错角相等、同旁内角互补.25.﹣2<x ≤3,表示在数轴上见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式的解集表示在数轴上即可.【详解】5(1)21111(3)32x x x x ①②+>-⎧⎪⎨-≥-⎪⎩, 解①得:x >﹣2,解②得:x ≤3,故不等式组的解集是:﹣2<x ≤3,表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
初中数学精品试题:2022-2023学年七年级(下)期末数学测试卷(一)及答案

2022-2023学年七年级(下)期末数学测试卷(一)班级姓名考生须知:1.本试卷分试题卷和答题卡两部分. 满分120分,考试时间100分钟.2.答题前,必须在答题卡填写校名、班级、姓名,正确涂写考试号.3.不允许使用计算器进行计算,凡题目中没有要求取精确值的,结果中应保留根号或π.一、选择题(共10小题,每小题3分,满分30分)1、要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各50名学生2、下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣253、如图所示,在图形B到图形A的变化过程中,下列描述正确的是()A.向上平移2个单位,向左平移4个单位B.向上平移1个单位,向左平移4个单位C.向上平移2个单位,向左平移5个单位D.向上平移1个单位,向左平移5个单位(第3题) (第4题)4、从图1到图2的变化过程可以发现的代数结论是()A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.a2+2ab+b2=(a+b)2A.∠1=∠2 B.∠1=∠5 C.∠1+∠3=180°D.∠3=∠5(第5题) (第8题)6、某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场中共有中、小型汽车50辆,这些车共缴纳停车费230元.四名同学都设未知数x,y,并根据题意,分别列出以下四个方程组,其中不正确的是()A.B.C.D.7、已知﹣=4,则的值等于()A.6 B.﹣6 C.D.﹣8、如图,将△ABC沿AC方向平移1cm得到△DEF,若△ABC的周长为10cm.则四边形ABEF的周长为()A.10cm B.11cm C.12cm D.14cm9、若方程组的解x与y的和为3,则a的值为()A.7 B.4 C.0 D.﹣410、某公司员工分别在A、B、C三个住宅区,A区有30人,B区有30人,C区有10人,三个区在同一条直线上,如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间二、填空题(共6小题,每小题4分,满分24分)11、在,﹣π,0,3.14,,0.3,,中,是无理数的有.422413、给出以下调查方式:(1)调查某批次汽车的搞撞击能力用全面调查;(2)了解某班学生的身高情况用全面调查;(3)调查春节联欢晚会的收视率用抽样调查;(4)调查市场上某种食品的色素含量是否合乎国家标准用抽样调查.你认为以上调查比较科学的是.(填序号)14、如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∥CD的有个.(第14题) (第16题)15、已知方程组有无数多解,则a=,m=.16、一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则大正方形的边长为,小正方形边长为,(用a、b的代数式表示),图②的大正方形中未被小正方形覆盖部分的面积是(用a,b的代数式表示).三、解答题(本题有7个小题,共66分)解答应写出证明过程或推演步骤.17、(6分)先化简,再求值:(+)÷,其中x=4.18、(8分)我们把选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫配方.例如x2﹣4x+2=x2﹣4x+4﹣2=(x﹣2)2﹣2,根据上述材料,解决下面问题:(1)写出x2﹣8x+4的配方过程;(2)求出x2+y2﹣4x+8y+25的最小值.19、(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=60°,求∠ACB的度数.20、(10分)为丰富学生的课余生活,陶冶学生的情趣和爱好,某校开展可学生社团活动,为了解学生各类活动的参加情况,该校对2014-2015学年七年级学生社团活动进行了抽样调查,制作出如下的统计图.根据上述统计图,完成以下问题:(1)这次共调查了名学生;子啊扇形统计图中,表示“书法类”部分子啊扇形的圆心角是度.(2)请把统计图1补充完整.(3)已知该校2014-2015学年七年级共有学生1000名参加社团活动,请根据样本估算该校2014-2015学年七年级学生参加文学类社团的人数.21、(10分)已知关于x、y的方程组,给出下列结论:①当a=1时,方程组的解也是方程x+y=2的解;②当x=y时,a=﹣;③不论a取什么实数,2x+y的值始终不变;④若z=﹣xy,则z的最小值为﹣1.请判断以上结论是否正确,并说明理由.22、(12分)某超市用300元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?解:小明找到可第二次购进干果数量是第一次的2倍好多300千克这个等量关系,设该种干果第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,根据题意(请你接着完成本题的解答).23、(12分)一张如图1的长方形铁皮,四个角都剪去边长为30厘米的正方形,再四周折起,做成一个有底无盖的铁盒如图2,铁盒底面长方形的长是4a(cm),宽是3a(cm),这个无盖铁盒各个面的面积之和称为铁盒的全面积.(1)请用a的代数式表示图1中原长方形铁皮的面积;(2)若要在铁盒的各个外表面漆上某种油漆,每元钱可漆的面积为(cm2),则油漆这个铁盒需要多少钱(用a的代数式表示)?(3)铁盒的底面积是全面积的几分之几(用a的代数式表示)?若铁盒的底面积是全面积的,求a的值;(4)是否存在一个正整数a,使得铁盒的全面积是底面积的正整数倍?若存在,请求出这个a,若不存在,请说明理由.参考答案一、选择题1.D;2.B3、如图所示,在图形B到图形A的变化过程中,下列描述正确的是()A.向上平移2个单位,向左平移4个单位B.向上平移1个单位,向左平移4个单位C.向上平移2个单位,向左平移5个单位D.向上平移1个单位,向左平移5个单位解:观察图形可得:将图形A向下平移1个单位,再向右平移4个单位或先向右平移4个单位,再向下平移1个单位得到图形B.只有B符合.故选B.4、从图1到图2的变化过程可以发现的代数结论是()A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.a2+2ab+b2=(a+b)2解:图1的面积为:(a+b)(a﹣b),图2的面积为:a2﹣(a﹣b+b)2=a2﹣b2,根据面积相等,可得:(a+b)(a﹣b)=a2﹣b2.故选:A.5、如图,下列条件中能判定直线l1∥l2的是()A.∠1=∠2 B.∠1=∠5 C.∠1+∠3=180°D.∠3=∠5解:A、根据∠1=∠2不能推出l1∥l2,故A选项错误;B、∵∠5=∠3,∠1=∠5,∴∠1=∠3,即根据∠1=∠5不能推出l1∥l2,故B选项错误;C、∵∠1+∠3=180°,∴l1∥l2,故C选项正确;D、根据∠3=∠5不能推出l1∥l2,故D选项错误;故选:C.6、某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场中共有中、小型汽车50辆,这些车共缴纳停车费230元.四名同学都设未知数x,y,并根据题意,分别列出以下四个方程组,其中不正确的是()A.B.C.D.解:设中型汽车缴纳停车费x元,小型汽车缴纳停车费y元,由题意得,;设有x辆中型汽车,y辆小型汽车,由题意得,;设有x辆小型汽车,y辆中型汽车,由题意得,.则错误的为B.7、已知﹣=4,则的值等于()A.6 B.﹣6 C.D.﹣解:∵﹣=4,∴a﹣b=﹣4ab,∴原式====6.故选A.8、如图,将△ABC沿AC方向平移1cm得到△DEF,若△ABC的周长为10cm.则四边形ABEF的周长为()A.10cm B.11cm C.12cm D.14cm解:根据题意,将周长为10cm的△ABC沿AC向右平移1cm得到△DEF,∴BE=1cm,AF=AC+CF=AC+1cm,EF=BC;又∵AB+AC+BC=10cm,∴四边形ABEF的周长=BE+AB+AF+EF=1+AB+AC+1+BC=12cm.故选C.9、若方程组的解x与y的和为3,则a的值为()A.7 B. 4 C.0 D.﹣4解:由题意得:x+y=3①,将方程2x+3y=a代入方程3x+5y=a+4得:x+2y=4②,将①,②联立方程组:,解得:,将,代入方程2x+3y=a得:a=4+3=7.故选:A.10、某公司员工分别在A、B、C三个住宅区,A区有30人,B区有30人,C区有10人,三个区在同一条直线上,如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间解:①设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+30(100﹣x)+10(100+200﹣x),=30x+3000﹣30x+3000﹣10x,=﹣10x+6000,∴当x最大为100时,即在B区时,路程之和最小,为5000米;②设在B区、C区之间时,设距离B区x米,则所有员工步行路程之和=30(100+x)+30x+10=3000+30x+30x+2000﹣10x=50x+5000,∴当x最大为0时,即在B区时,路程之和最小,为5000米;综上所述,停靠点的位置应设在B区.故选B.二、填空题(共6小题,每小题4分,满分24分)11、在,﹣π,0,3.14,,0.3,,中,是无理数的有﹣π,﹣.解:是分数,故是有理数;﹣π是无限不循环小数,故是无理数;0是整数,故是有理数;3.14是小数,故是有理数;是开方开不尽的数,故是无理数;0.3是小数,故是有理数;=﹣7,﹣7是整数,故是有理数;是分数,故是有理数.故答案为:﹣π,﹣.12、因式分解:16m4﹣8m2n2+n4=(2m﹣n)2(2m+n)2.解:16m4﹣8m2n2+n4=(4m2﹣n2)2=(2m﹣n)2(2m+n)2.故答案为:(2m﹣n)2(2m+n)2.13、给出以下调查方式:(1)调查某批次汽车的搞撞击能力用全面调查;(2)了解某班学生的身高情况用全面调查;(3)调查春节联欢晚会的收视率用抽样调查;(4)调查市场上某种食品的色素含量是否合乎国家标准用抽样调查.你认为以上调查比较科学的是(2)(3)(4).(填序号)解:(1)调查具有破坏性,只能进行抽样调查,故(1)错误;(2)了解某班学生的身高情况用全面调查,调查对象容量小,进行全面调查较科学,故(2)正确;(3)调查春节联欢晚会的收视率用抽样调查,调查对象容量大,进行抽样调查较科学,故(3)正确;(4)调查市场上某种食品的色素含量是否合乎国家标准用抽样调查,具有破坏性,调查对象容量大,进行抽样调查较科学,故(4)正确.故答案为:(2)(3)(4).14、如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∥CD的有3个.解:(1)如果∠3=∠4,那么AC∥BD,故(1)错误;(2)∠1=∠2,那么AB∥CD;内错角相等,两直线平行,故(2)正确;(3)∠A=∠DCE,那么AB∥CD;同位角相等,两直线平行,故(3)正确;(4)∠D+∠ABD=180°,那么AB∥CD;同旁内角互补,两直线平行,故(4)正确.即正确的有(2)(3)(4).故答案为:3.15、已知方程组有无数多解,则a=3,m=﹣4.解:根据题意得:a=3,=3,解得:a=3,m=﹣4.故答案为:3;﹣416、一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则大正方形的边长为,小正方形边长为,(用a、b的代数式表示),图②的大正方形中未被小正方形覆盖部分的面积是ab(用a,b的代数式表示).解:根据图示可得:大正方形的边长为,小正方形边长为,大正方形中未被小正方形覆盖部分的面积是=()2﹣4×()2=a b.故答案为:;;a b.四、解答题(本题有7个小题,共66分)解答应写出证明过程或推演步骤.17、(6分)先化简,再求值:(+)÷,其中x=4.解:原式=[+]•=•=,当x=4时,原式==.18、(8分)我们把选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫配方.例如x2﹣4x+2=x2﹣4x+4﹣2=(x﹣2)2﹣2,根据上述材料,解决下面问题:(1)写出x2﹣8x+4的配方过程;(2)求出x2+y2﹣4x+8y+25的最小值.解:(1)原式=x2﹣8x+16﹣12=(x﹣4)2﹣12;(2)原式=(x2﹣4x+4)+(y2+8y+16)+5=(x﹣2)2+(y+4)2+5,∵(x﹣2)2≥0,(y+4)2≥0,∴当x=2,y=﹣4时,原式最小值为5.19、(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=60°,求∠ACB的度数.解:(1)证明:∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴CD∥EF;(2)解:∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠3=∠ACB=60°.20、(10分)为丰富学生的课余生活,陶冶学生的情趣和爱好,某校开展可学生社团活动,为了解学生各类活动的参加情况,该校对2014-2015学年七年级学生社团活动进行了抽样调查,制作出如下的统计图.根据上述统计图,完成以下问题:(1)这次共调查了100名学生;子啊扇形统计图中,表示“书法类”部分子啊扇形的圆心角是72度.(2)请把统计图1补充完整.(3)已知该校2014-2015学年七年级共有学生1000名参加社团活动,请根据样本估算该校2014-2015学年七年级学生参加文学类社团的人数.解:(1)根据题意得:40÷40%=100(名);×360°=72°,故答案为:100;72;(2)艺术的人数为100﹣(40+20+30)=10(名),补全统计图,如图所示:(3)1000×=300(人),该校2014-2015学年七年级学生参加文学类社团的人数为300人.21、(10分)已知关于x、y的方程组,给出下列结论:①当a=1时,方程组的解也是方程x+y=2的解;②当x=y时,a=﹣;③不论a取什么实数,2x+y的值始终不变;④若z=﹣xy,则z的最小值为﹣1.请判断以上结论是否正确,并说明理由.解:关于x、y的方程组,解得:.①将a=1代入,得:,将x=4,y=﹣4代入方程左边得:x+y=0,右边=2,左边≠右边,本选项错误;②将x=y代入,得:,即当x=y时,a=﹣,本选项正确;③将原方程组中第一个方程×3,加第二个方程得:4x+2y=8,即2x+y=4,不论a取什么实数,2x+y的值始终不变,本选项正确;④z=﹣xy=﹣(a+3)(﹣2a﹣2)=a2+4a+3=(a+2)2﹣1≥﹣1,即若z=﹣xy,则z的最小值为﹣1,此选项正确.故正确的选项有:②、③、④.22、(12分)某超市用300元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?解:小明找到可第二次购进干果数量是第一次的2倍好多300千克这个等量关系,设该种干果第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,根据题意(请你接着完成本题的解答).解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.23、(12分)一张如图1的长方形铁皮,四个角都剪去边长为30厘米的正方形,再四周折起,做成一个有底无盖的铁盒如图2,铁盒底面长方形的长是4a(cm),宽是3a(cm),这个无盖铁盒各个面的面积之和称为铁盒的全面积.(1)请用a的代数式表示图1中原长方形铁皮的面积;(2)若要在铁盒的各个外表面漆上某种油漆,每元钱可漆的面积为(cm2),则油漆这个铁盒需要多少钱(用a的代数式表示)?(3)铁盒的底面积是全面积的几分之几(用a的代数式表示)?若铁盒的底面积是全面积的,求a的值;(4)是否存在一个正整数a,使得铁盒的全面积是底面积的正整数倍?若存在,请求出这个a,若不存在,请说明理由.解:(1)原铁皮的面积是(4a+60)(3a+60)=12a2+420a+3600;(2)油漆这个铁盒的表面积是:12a2+2×30×4a+2×30×3a=12a2+420a,则油漆这个铁盒需要的钱数是:(12a2+420a)÷=(12a2+420a)×=600a+21000(元);(3)铁盒的底面积是全面积的=;根据题意得:=,解得a=105;(4)铁盒的全面积是4a×3a+4a×30×2+3a×30×2=12a2+420a,底面积是12a2,假设存在正整数n,使12a2+420a=n(12a2)则(n﹣1)a=35,由题意可知a>>10,则a只能为35,n=2.所以存在铁盒的全面积是底面积的正整数倍,这时a=35.。
数学(完整版)人教版七年级数学下册期末模拟试卷及答案

数学(完整版)人教版七年级数学下册期末模拟试卷及答案一、选择题1.下列各式从左到右的变形中,是因式分解的是( ).A .x (a-b )=ax-bxB .x 2-1+y 2=(x-1)(x+1)+y 2C .y 2-1=(y+1)(y-1)D .ax+bx+c=x (a+b )+c 2.如果多项式x 2+mx +16是一个二项式的完全平方式,那么m 的值为( ) A .4B .8C .-8D .±8 3.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( ) A .4种 B .5种 C .6种D .7种 4.a 5可以等于( ) A .(﹣a )2•(﹣a )3 B .(﹣a )•(﹣a )4C .(﹣a 2)•a 3D .(﹣a 3)•(﹣a 2) 5.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .146.下列计算中,正确的是( )A .(a 2)3=a 5B .a 8÷ a 2=a 4C .(2a )3=6a 3D .a 2+ a 2=2 a 2 7.如果多项式x 2+2x+k 是完全平方式,则常数k 的值为( )A .1B .-1C .4D .-4 8.下面图案中可以看作由图案自身的一部分经过平移后而得到的是( )A .B .C .D .9.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )A .115°B .130°C .135°D .150° 10.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0二、填空题11.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .12.已知△ABC 中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.若直线CE 垂直于△ABC 的一边,则∠BEC =____°.13.如果9-mx +x 2是一个完全平方式,则m 的值为__________.14.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),当∠BAD =_____时,CD ∥AB .15.如图,根据长方形中的数据,计算阴影部分的面积为______ .16.水由氢原子和氧原子组成,其中氢原子的直径约为0.000 000 000 1 m,这个数据用科学记数法表示为____.17.若2a x =,5b x =,那么2a b x +的值是_______ ;18.如图,//PQ MN ,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是a ︒/秒,射线BQ 转动的速度是b ︒/秒,且a 、b 满足()2510a b -+-=.若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动_______秒时,射线AM 与射线BQ 互相平行.19.计算:x (x ﹣2)=_____20.若方程4x ﹣1=3x +1和2m +x =1的解相同,则m 的值为_____.三、解答题21.先化简,再计算:(2a +b )(b -2a )-(a -b )2,其中a =-1,b =-222.如图,大圆的半径为r ,直径AB 上方两个半圆的直径均为r ,下方两个半圆的直径分别为a ,b .(1)求直径AB 上方阴影部分的面积S 1;(2)用含a ,b 的代数式表示直径AB 下方阴影部分的面积S 2= ;(3)设a =r +c ,b =r ﹣c (c >0),那么( )(A )S 2=S 1;(B )S 2>S 1;(C )S 2<S 1;(D )S 2与S 1的大小关系不确定;(4)请对你在第(3)小题中所作的判断说明理由.23.(1)解二元一次方程组3423x y x y -=⎧⎨-=⎩; (2)解不等式组29421333x x x x <-⎧⎪⎨+≥-⎪⎩. 24.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y p q x y p q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.25.在如图所示的正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)画出△ABC 先向右平移5个单位长度,再向上平移2个单位长度所得的△A 1B 1C 1; (2)画出△ABC 的中线AD ;(3)画出△ABC 的高CE 所在直线,标出垂足E :(4)在(1)的条件下,线段AA 1和CC 1的关系是26.计算:(1)203211(5)(5)36-⎛⎫⎛⎫-++-÷- ⎪ ⎪⎝⎭⎝⎭(2)()3242(3)2a a a -⋅+-27.(1)已知2(1)()2x x x y ---=,求222x y xy +-的值. (2)已知等腰△ABC 的三边长为,,a b c ,其中,a b 满足:a 2+b 2=6a+12b-45,求△ABC 的周长.28.如果a c = b ,那么我们规定(a ,b )=c ,例如:因为23= 8 ,所以(2,8)=3. (1)根据上述规定,填空:(3,27)= ,(4,1)= ,(2,14)= ; (2)若记(3,5)=a ,(3,6)=b ,(3,30)=c ,求证: a + b = c .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积,故B 错误;C. 把一个多项式转化成几个整式积,故C 正确;D. 没把一个多项式转化成几个整式积,故D 错误;故选C.2.D解析:D【解析】试题分析:∵(x±4)2=x 2±8x+16,所以m=±2×4=±8.故选D .考点:完全平方式.3.B解析:B【分析】设1元和5元的纸币分别有x、y张,得到方程x+5y=20,然后根据x、y都是正整数即可确定x、y的值.【详解】解:设1元和5元的纸币分别有x、y张,则x+5y=20,∴x=20-5y,而x≥0,y≥0,且x、y是整数,∴y=0,x=20;y=1,x=15;y=2,x=10;y=3,x=5;y=4,x=0,共有5种换法.故选:B.【点睛】此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.4.D解析:D【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【详解】A、(﹣a)2(﹣a)3=(﹣a)5,故A错误;B、(﹣a)(﹣a)4=(﹣a)5,故B错误;C、(﹣a2)a3=﹣a5,故C错误;D、(﹣a3)(﹣a2)=a5,故D正确;故选:D.【点睛】本题考查了同底数幂的乘法,利用了同底数幂的乘法法则.5.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.6.D解析:D【分析】直接利用同底数幂的乘除运算法则,积的乘方运算法则以及合并同类项法则分别计算得出答案.【详解】解:A、(a2)3=a6,故此选项错误;B、a8÷a2=a6,故此选项错误;C、(2a)3=8a3,,故此选项错误;D、a2+ a2=2 a2,故此选项正确.故选:D【点睛】此题主要考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握运算法则是解题关键.7.A解析:A【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是1,平方即可.【详解】解:∵2x=2×1•x,∴k=12=1,故选A.【点睛】本题考查了对完全平方公式的应用,由乘积二倍项确定做完全平方运算的两个数是解题的关键.8.C解析:C【解析】【分析】根据平移不改变图形的形状和大小,结合图案,对选项一一分析,排除错误答案.【详解】解:A、图案自身的一部分围绕中心经旋转而得到,故错误;B、图案自身的一部分沿对称轴折叠而得到,故错误;C 、图案自身的一部分沿着直线运动而得到,是平移,故正确;D 、图案自身的一部分经旋转而得到,故错误.故选C .【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.9.A解析:A【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故选:A .【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.10.D解析:D【分析】先将2变形为()31-,再根据平方差公式求出结果,根据规律得出答案即可.【详解】解:2416(31)(31)(31)(31)(31)-+++⋯+22416(31)(31)(31)(31)=-++⋯+4416(31)(31)(31)=-+⋯+3231=-133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,⋯∴3n 的个位是以指数1到4为一个周期,幂的个位数字重复出现,3248÷=,故323与43的个位数字相同即为1,∴3231-的个位数字为0,∴248162(31)(31)(31)(31)(31)⨯+++++的个位数字是0.故选:D .【点睛】本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键.二、填空题11.22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长. 【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm解析:22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答. 12.10°或50°或130°【分析】分三种情况讨论:①当CE⊥BC时;②当CE⊥AB时;③当CE⊥AC时;根据垂直的定义和三角形内角和计算即可得到结论.【详解】解:①如图1,当CE⊥BC时,解析:10°或50°或130°【分析】分三种情况讨论:①当CE⊥BC时;②当CE⊥AB时;③当CE⊥AC时;根据垂直的定义和三角形内角和计算即可得到结论.【详解】解:①如图1,当CE⊥BC时,∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠CBE=12∠ABC=40°,∴∠BEC=90°-40°=50°;②如图2,当CE⊥AB时,∵∠ABE=12∠ABC=40°,∴∠BEC=90°+40°=130°;③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-90°-40°-40°=10°;综上所述:∠BEC的度数为10°,50°,130°,故答案为:10°,50°,130°.【点睛】本题考查了垂直的定义和三角形的内角和,考虑全情况是解题关键.13.±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx解析:±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx+x2=0对应的判别式△=0,因此得到:m2-36=0,解得:m=±6,故答案为:±6.【点睛】本题主要考查了完全平方式,正确理解一个二次三项式是完全平方式的条件是解题的关键.14.150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD的度数【详解】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=6解析:150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD的度数【详解】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.【点睛】本题主要考查了平行线的判定,平行线的判掌握平行线的判定定理和全面思考并分类讨论是解答本题的关键.15.104【解析】两个阴影图形可以平移组成一个长方形,长为,宽为8,故阴影部分的面积13×8 =104,故答案为104.解析:104【解析】-=,宽为8,故阴影部分的面积两个阴影图形可以平移组成一个长方形,长为1521313×8=104,故答案为104.16.1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学解析:1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学记数法,其形式为:a ×10n (1≤a <10,n 为整数).17.【分析】可从入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(x a)2×xb,接下来将已知条件代入求值即可.【详解】对逆用同底数幂的乘法法则,得(xa)2×xb,逆用幂的解析:【分析】可从2a b x +入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(x a )2×x b ,接下来将已知条件代入求值即可.【详解】对2a b x +逆用同底数幂的乘法法则,得(x a )2×x b ,逆用幂的乘方法则,得(x a )2×x b ,将2a x =、5b x =代入(x a )2× x b 中,得22×5=20,故答案为:20.【点睛】此题考查同底数幂的乘法,解题关键在于掌握运算法则.18.15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM 的位置,∠MAM=18°×5=90°,然后分情况讨论即可.【详解】∵,∴a=5,b=1解析:15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,然后分情况讨论即可.【详解】 ∵()2510a b -+-=,∴a=5,b=1,设射线AM 再转动t 秒时,射线AM 、射线BQ 互相平行,如图,射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,分两种情况:①当9<t<18时,如图,∠QBQ'=t°,∠M'AM"=5t°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°-t°,∠BAM"=5t-45°,当∠ABQ'=∠BAM"时,BQ'//AM",此时,45°-t°=5t-45°,解得t=15;②当18<t<27时,如图∠QBQ'=t°,∠NAM"=5t°-90°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°-t°,∠BAM"=45°-(5t°-90°)=135°-5t°,当∠ABQ'=∠BAM"时,BQ'//AM",此时,45°-t°=135°-5t,解得t=22.5;综上所述,射线AM再转动15秒或22.5秒时,射线AM射线BQ互相平行.故答案为:15或22.5【点睛】本题考查了非负数的性质,平行线的判定,完全平方公式,掌握知识点是解题关键.19.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.解析:x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x 2﹣2x故答案为:x 2﹣2x .【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.20.﹣【分析】先解方程4x ﹣1=3x+1,然后把x 的值代入2m+x =1,即可求出m 的值.【详解】解:4x ﹣1=3x+1解得x =2,把x =2代入2m+x =1,得2m+2=1,解得m =﹣.解析:﹣12 【分析】先解方程4x ﹣1=3x +1,然后把x 的值代入2m +x =1,即可求出m 的值.【详解】解:4x ﹣1=3x +1解得x =2,把x =2代入2m +x =1,得2m +2=1,解得m =﹣12. 故答案为:﹣12. 【点睛】 此题考查的是根据两个一元一次方程有相同的解,求方程中的参数,掌握一元一次方程的解法和方程解的定义是解决此题的关键.三、解答题21.-5a 2+2ab ,-1【分析】先利用平方差公式和完全平方公式进行计算,然和合并同类项,最后把a ,b 的值代入即可.【详解】()()()22222()=4222b a a a b b a ab b a b --++----2222=42b a a b ab ---+252a ab =-+,当a =-1,b =-2时,原式=-1.【点睛】本题考查了整式的化简求值,解题的关键是熟练掌握混合运算的顺序和整式的乘法公式.22.(1)214r π ;(2)14ab π ;(3)C ;(4)理由见解析【分析】(1)用半径为r 的半圆的面积减去直径为r 的圆的面积即可;(2)用直径为(a +b )的半圆的面积减去直径为a 的半圆的面积,再减去直径为b 的半圆的面积即可;(3)(4)将a =r +c ,b =r ﹣c ,代入S 2,然后与S 1比较即可.【详解】解:(1)S 1=222111244r r r πππ-=; (2)S 2=22211111()222424a b a b πππ+•-•-•, =18π(a +b )2﹣18πa 2﹣218b π =14ab π, 故答案为:14ab π;(3)选:C ;(4)将a =r +c ,b =r ﹣c ,代入S 2,得: S 2=14π(r +c )(r ﹣c )=14π(r 2﹣c 2), ∵c >0,∴r 2>r 2﹣c 2,即S 1>S 2.故选C .【点睛】 此题考查了列代数式表示图形的面积,解题的关键是:结合图形分清各个半圆的半径及熟记圆的面积公式.23.(1)11x y =⎧⎨=-⎩;(2)13x ≤< 【分析】(1)根据代入消元法解答即可;(2)先解不等式组中的每个不等式,再取其解集的公共部分即可.【详解】解:(1)3423x y x y -=⎧⎨-=⎩①②, 由①,得34y x =-③,把③代入②,得()2343x x --=,解得:x =1,把x =1代入③,得y =3-4=﹣1,所以方程组的解为11x y =⎧⎨=-⎩; (2)29421333x x x x <-⎧⎪⎨+≥-⎪⎩①②, 解不等式①,得3x <,解不等式②,得1x ≥,所以不等式组的解集为13x ≤<.【点睛】本题考查了二元一次方程组和一元一次不等式组的解法,属于基础题型,熟练掌握上述基本知识是解题关键.24.(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23- 【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可;(2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A 点为“爱心点”,理由如下:当A (5,3)时,m ﹣1=5,22n +=3, 解得:m =6,n =4,则2m =12,8+n =12,所以2m =8+n ,所以A (5,3)是“爱心点”;当B(4,8)时,m﹣1=4,22n+=8,解得:m=5,n=14,显然2m≠8+n,所以B点不是“爱心点”;(2)A、B两点的中点C在第四象限,理由如下:∵点A(a,﹣4)是“爱心点”,∴m﹣1=a,22n+=﹣4,解得:m=a+1,n=﹣10.代入2m=8+n,得2(a+1)=8﹣10,解得:a=﹣2,所以A点坐标为(﹣2,﹣4);∵点B(4,b)是“爱心点”,同理可得m=5,n=2b﹣2,代入2m=8+n,得:10=8+2b﹣2,解得:b=2.所以点B坐标为(4,2).∴A、B两点的中点C坐标为(2442,22-+-+),即(1,﹣1),在第四象限.(3)解关于x,y的方程组3x y qx y q⎧+=+⎪⎨-=-⎪⎩,得:2x qy q⎧=-⎪⎨=⎪⎩.∵点B(x,y)是“爱心点”,∴m﹣1﹣q,22n+=2q,解得:m﹣q+1,n=4q﹣2.代入2m=8+n,得:﹣2q+2=8+4q﹣2,整理得﹣6q=4.∵p,q为有理数,若使p﹣6q结果为有理数4,则P=0,所以﹣6q=4,解得:q=﹣23.所以P=0,q=﹣23.【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.25.(1)见解析;(2)见解析;(3)见解析;(4)平行且相等【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A1、B1、C1即可;(2)根据三角形中线的定义画出图形即可;(3)根据三角形高的定义画出图形即可;(4)根据平移的性质即可得出结论.【详解】解:(1)如图,△A 1B 1C 1即为所作图形;(2)如图,线段AD 即为所作图形;(3)如图,直线CE 即为所作图形;(4)∵△A 1B 1C 1是由△ABC 平移得到,∴A 和A 1,C 和C 1是对应点,∴AA 1和CC 1的关系是:平行且相等.【点睛】本题考查了平移作图,平移的性质,三角形的高和中线的画法,熟练掌握平移的性质是解题的关键.26.(1)5;(2)6a【分析】(1)先算负整数指数幂,乘法和同底数幂的除法,最后进行加法运算即可; (2)先算积的乘方和同底数幂的乘法,再合并同类项即可.【详解】解:(1)233211(5)(5)36-⎛⎫⎛⎫-++-÷- ⎪ ⎪⎝⎭⎝⎭232(3)1(5)-=-++-91(5)=++-105=-5=(2)()3242(3)2a a a-⋅+-()24698a a a =⋅+- 6698a a =- 6a =【点睛】此题主要考查了实数的运算和积的乘方运算,整式的加法等,正确掌握相关计算法则是解题关键.27.(1)2;(2)15.【分析】(1)先化简条件,再把求值的代数式变形,整体代入即可,(2)利用两个非负数之和为0的性质得到等腰三角形的两边长,后分类讨论即可得到答案.【详解】解:(1) 2(1)()2x x x y ---=,222,x x x y ∴--+=2,y x ∴-=2222222()2 2.2222x y x xy y y x xy +-+-∴-==== (2) a 2+b 2=6a+12b-45,226912360,a a b b ∴-++-+=22(3)(6)0,a b ∴-+-=3,6,a b ∴==当3a =为腰时,三角形不存在,当6b =为腰时,三角形三边分别为:6,6,3,∴ △ABC 的周长为:15.【点睛】本题考查的是代数式的求值,熟练整体代入的方法,同时考查非负数之和为零的性质,三角形三边的关系,等腰三角形的性质,掌握以上知识是解题的关键.28.(1)3;0; -2;(2)证明见解析.【分析】(1)根据已知和同底数的幂法则得出即可;(2)根据已知得出3a =5,3b =6,3c =30,求出3a ×3b =30,即可得出答案.【详解】(1)(3,27)=3,(4,1)=0,(2,14)=-2, 故答案为3;0;-2;(2)证明:由题意得:3a = 5,3b = 6,3c = 30,∵ 5⨯ 6=30,∴ 3a ⨯ 3b = 3c ,∴ 3a +b = 3c ,∴ a + b = c .【点睛】本题考查了同底数幂的乘法,有理数的混合运算等知识点,能灵活运用同底数幂的乘法法则进行变形是解此题的关键.。
【必考题】七年级数学下期末试题带答案(1)

【必考题】七年级数学下期末试题带答案(1)一、选择题1.如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON =20°,则∠AOM 的度数为( )A .40°B .50°C .60°D .70° 2.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩3.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x 人,买鸡的钱数为y ,依题意可列方程组为( )A .8374x y x y +=⎧⎨+=⎩B .8374x y x y-=⎧⎨-=⎩ C .8374x y x y +=⎧⎨-=⎩ D .8374x y x y -=⎧⎨+=⎩4.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2 B .3 C .4D .5 5.方程组23x y a x y +=⎧⎨-=⎩的解为5x y b =⎧⎨=⎩,则a 、b 分别为( ) A .a=8,b=﹣2 B .a=8,b=2 C .a=12,b=2 D .a=18,b=86.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个7.如图,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7B .∠2=∠6C .∠3+∠4+∠5+∠6=180°D .∠4=∠88.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个9.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-310.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( ) A .至少有一个内角是直角B .至少有两个内角是直角C .至多有一个内角是直角D .至多有两个内角是直角11.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限.A .一B .二C .三D .四12.已知a ,b 为两个连续整数,且a<191-<b,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和5 二、填空题13.已知不等式231x a -<<-的整数解有四个,则a 的范围是___________.14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.15.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.16.若a ,b 均为正整数,且a 7,b 32a +b 的最小值是_______________.17.已知a 、b 满足(a ﹣1)22b +,则a+b=_____.18.关于x 的不等式组352223x x x a-≤-⎧⎨+>⎩有且仅有4个整数解,则a 的整数值是______________. 19.现有2019条直线1232019a a a a ,,,,,⋯且有12233445a a a a a a a a ⊥⊥P P ,,,,…,则直线1a 与2019a 的位置关系是___________.20.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是________________________三、解答题21.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为;(2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?AB CD,点E在直线AB与CD之间,连接AE、CE,22.(1)(感知)如图①,//∠=∠+∠.下面给出了这道题的解题过程,请完成下面的解题过程试说明AEC A DCE(填恰当的理由).EF AB.证明:如图①过点E作//∴∠=∠(),A1Q(已知),EF//AB(辅助线作法),//AB CD∴(),EF CD//∴∠=∠(),2DCE12AEC ∠=∠+∠Q ,AEC A DCE ∴∠=∠+∠ ( ).(2)(探究)当点E 在如图②的位置时,其他条件不变,试说明360A AEC C ∠+∠+∠=︒.(3)(应用)如图③,延长线段AE 交直线CD 于点M ,已知130A ∠=︒,120DCE ∠=︒,则MEC ∠的度数为 .(请直接写出答案)23.问题情境在综合与实践课上,老师让同学们以“两条平行线AB ,CD 和一块含60°角的直角三角尺EFG(∠EFG =90°,∠EGF =60°)”为主题开展数学活动.操作发现(1)如图(1),小明把三角尺的60°角的顶点G 放在CD 上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E 、G 分别放在AB 和CD 上,请你探索并说明∠AEF 与∠FGC 之间的数量关系;结论应用(3)如图(3),小亮把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上.若∠AEG =α,则∠CFG 等于______(用含α的式子表示).24.一个工程队原定在10天内至少要挖土600m 3,在前两天一共完成了120m 3,由于整个工程调整工期,要求提前两天完成挖土任务.问以后几天内,平均每天至少要挖土多少m 3?25.已知关于,x y 的方程组354522x y ax by -=⎧⎨+=-⎩和2348x y ax by +=-⎧⎨-=⎩有相同解,求(a)b -值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先根据角的平分线的定义求得∠BON ,然后根据对顶角相等求得∠MOC ,然后根据∠AOM =90°﹣∠COM 即可求解.【详解】∵OE 平分∠BON ,∴∠BON =2∠EON =40°,∴∠COM =∠BON =40°,∵AO ⊥BC ,∴∠AOC =90°,∴∠AOM =90°﹣∠COM =90°﹣40°=50°.故选B .【点睛】本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠MOC 的度数是关键.2.C解析:C【解析】【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案.【详解】解:∵实数x ,y 满足254()0x y x y +-+-=, ∴40x y +-=且2()0x y -=,即400x y x y +-=⎧⎨-=⎩, 解得:22x y =⎧⎨=⎩,故选C.【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.3.D解析:D【解析】【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.4.D解析:D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.5.C解析:C【解析】试题解析:将x=5,y=b代入方程组得:10{53b ab+=-=,解得:a=12,b=2,故选C.考点:二元一次方程组的解.6.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.7.D解析:D【解析】【分析】【详解】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误,故选D.8.C解析:C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A10.B解析:B【解析】【分析】本题只需根据在反证法的步骤中,第一步是假设结论不成立,可据此进行分析,得出答案.【详解】根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.故选B.【点睛】本题考查的知识点是反证法,解此题关键要懂得反证法的意义及步骤,反证法的步骤是:1.假设结论不成立;2.从假设出发推出矛盾;3.假设不成立,则结论成立.11.B解析:B【解析】【分析】由点P在x轴上求出a的值,从而得出点Q的坐标,继而得出答案.【详解】∵点P(a,a-1)在x轴上,∴a-1=0,即a=1,则点Q坐标为(-1,2),∴点Q在第二象限,故选:B.【点睛】此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.12.C解析:C【解析】试题解析:∵45,∴3<4,∴这两个连续整数是3和4,故选C.二、填空题13.【解析】【分析】根据不等式2<x<3a-1的整数解有四个得出关于a的不等式组求解即可得出a的取值范围【详解】∵不等式2<x<3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点解析:78 33a <.【解析】【分析】根据不等式2<x<3a-1的整数解有四个,得出关于a的不等式组,求解即可得出a的取值范围.【详解】∵不等式2<x<3a-1的整数解有四个,∴整数解为3,4,5,6,∴6<3a-1≤7,∴78 33a≤<.故答案为:78 33a≤<.【点睛】本题考查了一元一次不等式组的整数解.关键是根据整数解的个数,确定含a的代数式的取值范围.14.(-2-2)【解析】【分析】先根据相和兵的坐标确定原点位置然后建立坐标系进而可得卒的坐标【详解】卒的坐标为(﹣2﹣2)故答案是:(﹣2﹣2)【点睛】考查了坐标确定位置关键是正确确定原点位置解析:(-2,-2)【解析】【分析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【点睛】考查了坐标确定位置,关键是正确确定原点位置.15.25【解析】【分析】【详解】设需安排x名工人加工大齿轮安排y名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能解析:25【解析】【分析】【详解】设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,由题意得:85316210x y x y +=⎧⎨⨯=⨯⎩,解得:2560x y =⎧⎨=⎩. 即安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.故答案为25.【点睛】本题考查理解题意能力,关键是能准确得知2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.16.4【解析】【分析】先估算的范围然后确定ab 的最小值即可计算a+b 的最小值【详解】∵<<∴2<<3∵a>a 为正整数∴a 的最小值为3∵<<∴1<<2∵b<b 为正整数∴b 的最小值为1∴a+b 的最小值为3+解析:4【解析】【分析】的范围,然后确定a 、b 的最小值,即可计算a+b 的最小值.【详解】∴2<3,∵a ,a 为正整数,∴a 的最小值为3,∴1<2,∵b ,b 为正整数,∴b 的最小值为1,∴a+b 的最小值为3+1=4.故答案为:4.【点睛】此题考查了估算无理数的大小,解题的关键是:确定a 、b 的最小值.17.﹣1【解析】【分析】利用非负数的性质可得a-1=0b+2=0解方程即可求得ab 的值进而得出答案【详解】∵(a ﹣1)2+=0∴a=1b=﹣2∴a+b=﹣1故答案为﹣1【点睛】本题考查了非负数的性质熟知解析:﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a ,b 的值,进而得出答案.【详解】∵(a ﹣1)2=0,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.18.12【解析】【分析】求出每个不等式的解集根据已知得出不等式组的解集根据不等式组的整数解即可得出关于a的不等式组求出即可【详解】解不等式3x -5≤2x-2得:x≤3解不能等式2x+3>a得:x>∵不等解析:1,2【解析】【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出关于a的不等式组,求出即可.【详解】解不等式3x-5≤2x-2,得:x≤3,解不能等式2x+3>a,得:x>32a-,∵不等式组有且仅有4个整数解,∴-1≤32a-<0,解得:1≤a<3,∴整数a的值为1和2,故答案为:1,2.【点睛】本题考查了一元一次不等式组的整数解,解答本题的关键应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.垂直【解析】【分析】根据两直线平行同位角相等得出相等的角再根据垂直的定义解答进而得出规律:a1与其它直线的位置关系为每4个一循环垂直垂直平行平行根据此规律即可判断【详解】先判断直线a1与a3的位置关解析:垂直.【解析】【分析】根据两直线平行,同位角相等得出相等的角,再根据垂直的定义解答,进而得出规律:a1与其它直线的位置关系为每4个一循环,垂直、垂直、平行、平行,根据此规律即可判断.【详解】先判断直线a1与a3的位置关系是:a1⊥a3.理由如下:如图1,∵a1⊥a2,∴∠1=90°,∵a2∥a3,∴∠2=∠1=90°,∴a1⊥a3;再判断直线a1与a4的位置关系是:a1∥a4,如图2;∵直线a1与a3的位置关系是:a1⊥a3,直线a1与a4的位置关系是:a1∥a4,∵2019÷4=504…3,∴直线a1与a2015的位置关系是:垂直.故答案为:垂直.【点睛】本题考查了平行公理的推导,作出图形更有利于规律的发现以及规律的推导,解题的关键是:结合图形先判断几组直线的关系,然后找出规律.20.【解析】【分析】设绳索长为x尺竿子长为y尺根据索比竿子长一托折回索子却量竿却比竿子短一托即可得出关于xy的二元一次方程组【详解】解:根据题意得:故答案为:【点睛】本题考查了二元一次方程组的应用找准等解析:5 15 2x yx y+⎧⎪⎨-⎪⎩==【解析】【分析】设绳索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】解:根据题意得:515 2x yx y+⎧⎪⎨-⎪⎩==.故答案为:515 2x yx y+⎧⎪⎨-⎪⎩==.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.三、解答题21.(1)120,30°;(2)答案见解析;(3)1375人.【解析】【分析】(1)根据“从来不管”的人数和百分比求出总份数,根据总份数和严加干涉的分数求出百分比,然后计算圆心角的度数;(2)根据总分数求出稍加询问的人数,然后补全统计图;(3)根据题意求出“从来不管”和“稍加询问”的百分比求出全校的人数.【详解】解:(1)30÷25%=120(人)10÷120×360°=30°故答案为:120,30°(2)如图所示:(3)1500×3080120=1375(人)则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.22.(1)见解析;(2)证明见解析;(3)70°.【解析】【分析】(1)根据平行线的性质、平行公理的推论和等量代换依次解答即可;(2)如图④,过点E作//EF AB,根据平行线的性质、平行公理的推论解答即可;(3)由(2)题的结论可求出∠AEC的度数,进而可得答案.【详解】解:(1)证明:如图①,过点E作//EF AB,1A ∴∠=∠(两直线平行,内错角相等), //AB CD Q (已知),EF //AB (辅助线作法),//EF CD ∴(平行于同一条直线的两直线互相平行),2DCE ∴∠=∠(两直线平行,内错角相等),12AEC ∠=∠+∠Q ,AEC A DCE ∴∠=∠+∠ (等量代换);(2)证明:如图④,过点E 作//EF AB ,180A AEF ∴∠+∠=︒(两直线平行,同旁内角互补),//AB CD Q (已知),//EF AB (辅助线作法),//EF CD ∴(平行于同一条直线的两直线互相平行),180C CEF ∴∠+∠=︒(两直线平行,同旁内角互补),180180360A AEC C A AEF CEF C ∴∠+∠+∠=∠+∠+∠+∠=︒+=︒;(3)解:由(2)题的结论知:360A AEC C ∠+∠+∠=︒,∴360360*********AEC A C ∠=︒-∠-∠=︒-︒-︒=︒,∴∠MEC =180AEC ︒-∠=70°. 故答案为:70°. 【点睛】本题主要考查了平行线的性质、平行公理的推论等知识,属于常考题型,熟练掌握平行线的性质是解题关键.23.(1)∠1=40°;(2)∠AEF+∠GFC =90°;(3)60°﹣α.【解析】【分析】(1)依据AB ∥CD ,可得∠1=∠EGD ,再根据∠2=2∠1,∠FGE =60°,即可得出∠EGD 13=(180°﹣60°)=40°,进而得到∠1=40°; (2)根据AB ∥CD ,可得∠AEG +∠CGE =180°,再根据∠FEG +∠EGF =90°,即可得到∠AEF +∠GFC =90°;(3)根据AB ∥CD ,可得∠AEF +∠CFE =180°,再根据∠GFE =90°,∠GEF =30°,∠AEG =α,即可得到∠GFC =180°﹣90°﹣30°﹣α=60°﹣α.【详解】(1)如图1.∵AB ∥CD ,∴∠1=∠EGD .又∵∠2=2∠1,∴∠2=2∠EGD.又∵∠FGE=60°,∴∠EGD13=(180°﹣60°)=40°,∴∠1=40°;(2)如图2.∵AB∥CD,∴∠AEG+∠CGE=180°,即∠AEF+∠FEG+∠EGF+∠FGC=180°.又∵∠FEG+∠EGF=90°,∴∠AEF+∠GFC=90°;(3)如图3.∵AB∥CD,∴∠AEF+∠CFE=180°,即∠AEG+∠FEG+∠EFG+∠GFC=180°.又∵∠GFE=90°,∠GEF=30°,∠AEG=α,∴∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.故答案为:60°﹣α.【点睛】本题考查了平行线的性质的运用,解决问题的关键是掌握:两直线平行,同旁内角互补.24.80m3【解析】试题分析:设以后几天内,平均每天要挖掘xm3土方,根据题意可知原定在10天,已经干了两天,还要求提前2天,即为要6天至少挖掘(600-120)m3的土方,根据题意可得不等式,解不等式即可.试题解析:设平均每天挖土x m3,由题意得:(10﹣2﹣2)x≥600﹣120,解得:x≥80.答:平均每天至少挖土80m3.点睛:本题考查了一元一次不等式的应用,关键是弄清题意,清楚600m3的土方到底要用几天干完.25.-8.【解析】试题分析:因为两个方程组有相同的解,故只要将两个方程组中不含有a,b的两个方程联立,组成新的方程组,求出x和y的值,再代入含有a,b的两个方程中,解关于a,b的方程组即可得出a,b的值.试题解析:因为两组方程组有相同的解,所以原方程组可化为方程组①35234x yx y-=⎧⎨+=-⎩和方程组②45228ax byax by+=-⎧⎨-=⎩,解方程组①,得12 xy=⎧⎨=-⎩,代入②得4102228a ba b-=-⎧⎨+=⎩,解得23ab=⎧⎨=⎩,所以(-a)b=(-2)3=-8.【点睛】本题考查了同解方程组,考查了学生对方程组有公共解定义的理解能力及应用能力,解题的关键是将所给的两个方程组进行重新组合.。
数学(完整版)人教版七年级数学下册期末模拟试卷及答案

数学(完整版)人教版七年级数学下册期末模拟试卷及答案一、选择题1.在下列各图的△ABC中,正确画出AC边上的高的图形是()A.B.C.D.2.下列等式由左边到右边的变形中,属于因式分解的是()A.(a﹣2)(a+2)=a2﹣4B.8x2y=8×x2yC.m2﹣1+n2=(m+1)(m﹣1)+n2D.x2+2x﹣3=(x﹣1)(x+3)3.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x张制作盒身,y张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是()A.181016x yx y+=⎧⎨=⎩B.1821016x yx y+=⎧⎨⨯=⎩C.1810216x yx y+=⎧⎨=⨯⎩D.181610x yx y+=⎧⎨=⎩4.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是()A.B.C.D.5.下列条件中,能判定△ABC为直角三角形的是().A.∠A=2∠B-3∠C B.∠A+∠B=2∠C C.∠A-∠B=30°D.∠A=12∠B=13∠C6.把一块直尺与一块含30°的直角三角板如图放置,若∠1=34°,则∠2的度数为()A.114°B.126°C.116°D.124°7.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150°8.下列四个等式从左到右的变形是因式分解的是 ( )A .22()()a b a b a b +-=-B .2()ab a a b a -=-C .25(1)5x x x x +-=+-D .21()x x x x x+=+ 9.下列图形中,∠1和∠2是同位角的是( )A .B .C .D .10.比较255、344、433的大小( )A .255<344<433B .433<344<255C .255<433<344D .344<433<255二、填空题11.新型冠状肺炎病毒(COVID ﹣19)的粒子,其直径在120~140纳米即0.00000012米~0.00000014米之间,数据0.00000012用科学记数法可以表示为_____.12.若x +3y -4=0,则2x •8y =_________.13.已知:12345633,39,327,381,3243,3729,======……,设A=2(3+1)(32+1)(34+1)(316+1)(332+1)+1,则A 的个位数字是__________.14.若24x mx ++是完全平方式,则m =______.15.若多项式x 2-kx +25是一个完全平方式,则k 的值是______.16.分解因式:x 2﹣4x=__.17.如图,根据长方形中的数据,计算阴影部分的面积为______ .18.如果a 2﹣b 2=﹣1,a+b=12,则a ﹣b=_______. 19.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____.20.若2m =3,2n =5,则2m+n =______.三、解答题21.如图1是一个长为 4a ,宽为 b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为 ; (2)观察图2请你写出 ()2a b +,()2a b -,ab 之间的等量关系是 ;(3)根据(2)中的结论,若 6x y +=,114x y ⋅=,则 x y -= ; (4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式()()2222252a b a b a ab b ++=++.在图形上把每一部分的面积标写清楚. 22.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1;(2)图中AC 与A 1C 1的关系是:_____.(3)画出△ABC 的AB 边上的高CD ;垂足是D ;(4)图中△ABC 的面积是_____.23.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.24.已知a ,b ,c 是△ABC 的三边,若a ,b ,c 满足a 2+c 2=2ab +2bc -2b 2,请你判断△ABC 的形状,并说明理由.25.先化简,再求值:(2a +b )2﹣(2a +3b )(2a ﹣3b ),其中a =12,b =﹣2.26.计算:(1)()20202011 3.142π-⎛⎫-+-+ ⎪⎝⎭ (2)()2462322x y x xy -- (3)()()22342a b a a b --- (4)()()2323m n m n -++- 27.计算:(1)21122⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭; (2)m 2•m 4+(﹣m 3)2;(3)(x +y )(2x ﹣3y );(4)(x +3)2﹣(x +1)(x ﹣1).28.南通某校为了了解家长和学生参与南通安全教育平台“5.12防灾减灾”专题教育活动的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下4类情形: A .仅学生自己参与;B .家长和学生一起参与;C .仅家长参与;D .家长和学生都未参与请根据上图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了多少名学生?(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校3600名学生中“家长和学生都未参与”的人数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的高的概念判断.【详解】解:AC边上的高就是过B作垂线垂直AC交AC的延长线于D点,因此只有C符合条件,故选:C.【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.2.D解析:D【分析】认真审题,根据因式分解的定义,即:将多项式写成几个因式的乘积的形式,进行分析,据此即可得到本题的答案.【详解】解:A.不是乘积的形式,错误;B.等号左边的式子不是多项式,不符合因式分解的定义,错误;C.不是乘积的形式,错误;D.x2+2x﹣3=(x﹣1)(x+3),是因式分解,正确;故选:D.【点睛】本题主要考查了因式分解的定义,即:将多项式写成几个因式的乘积的形式,牢记定义是解题的关键,要注意认真总结.3.B解析:B【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数2⨯=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数18=,再列出方程组即可.【详解】解:设用x张制作盒身,y张制作盒底,根据题意得:18 21016x yx y+=⎧⎨⨯=⎩.故选:B.【点睛】此题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.4.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D.【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.5.D解析:D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C,则∠A=108011°,所以A选项错误;B、∠A+∠B+∠C=180°,而∠A+∠B=2∠C,则∠C=60°,不能确定△ABC为直角三角形,所以B选项错误;C、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B选项错误;D、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C,则∠C=90°,所以D选项正确.故选:D.【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°.6.D解析:D【分析】利用平行线的性质求出∠3即可解决问题.【详解】如图,∵a∥b,∴∠2=∠3,∵∠3=∠1+90°,∠1=34°,∴∠3=124°,∴∠2=∠3=124°,故选:D .【点睛】此题考查平行线的性质,三角形的外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.7.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.8.B解析:B【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解.【详解】解:根据因式分解的概念,A 选项属于整式的乘法,错误;B 选项符合因式分解的概念,正确;C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误.故选B .【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.9.D解析:D【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】解:根据同位角定义观察图形可知A 、B 、C 选项中的均不符合同位角的定义,只有选项D 中的图形符合,故选D .【点睛】本题考查同位角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.10.C解析:C【分析】根据幂的乘方的知识,可得255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,再比较底数的大小,即可得结论.【详解】解:∵255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,又∵32<64<81,∴255<433<344.故选C.【点睛】本题考查了幂的乘方,解题的关键是根据幂的乘方的公式,转化为底数相同的幂.二、填空题11.2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00 000 012=1.2×10﹣7,故答案是:1.2×10﹣7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.13.1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1解析:1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1=(32-1)(32+1)(34+1)(316+1)(332+1)+1=(34-1)(34+1)(316+1)(332+1)+1=(316-1)(316+1)(332+1)+1=(332-1)(332+1)+1=364-1+1=364,观察已知等式,个位数字以3,9,7,1循环,64÷4=16,则A的个位数字是1,故答案为:1.【点睛】本题考查平方差公式,熟练掌握平方差公式是解本题的关键.14.【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去和2积的2倍,故,故答案为:.【点睛】本题是完全平方公解析:4±【分析】这里首末两项是x 和2这两个数的平方,那么中间一项为加上或减去x 和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去x 和2积的2倍,故4m =±,故答案为:4±.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.15.±10【解析】【分析】根据完全平方公式,可知-kx=±2×5•x,求解即可.【详解】解:∵x2-kx+25是一个完全平方式,∴-kx=±2×5•x,解得k=±10.故答案为±1解析:±10【解析】【分析】根据完全平方公式()2222a b a ab b ±=±+,可知-kx=±2×5•x ,求解即可.【详解】解:∵x 2-kx+25是一个完全平方式,∴-kx=±2×5•x ,解得k=±10.故答案为±10【点睛】本题考查了完全平方公式,熟练掌握相关公式是解题关键. 16.x (x ﹣4)【详解】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).解析:x(x﹣4)【详解】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).17.104【解析】两个阴影图形可以平移组成一个长方形,长为,宽为8,故阴影部分的面积13×8=104,故答案为104.解析:104【解析】-=,宽为8,故阴影部分的面积两个阴影图形可以平移组成一个长方形,长为1521313×8=104,故答案为104.18.-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=,∴a-b=-1÷=-2,故答案为-2.解析:-2【分析】根据平方差公式进行解题即可【详解】,∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=12∴a-b=-1÷1=-2,2故答案为-2.19.12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b ﹣1)(a+1﹣b+1)=(a+b解析:12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b =4,a ﹣b =1,∴(a+1)2﹣(b ﹣1)2=(a+1+b ﹣1)(a+1﹣b+1)=(a+b )(a ﹣b+2)=4×(1+2)=12.故答案是:12.【点睛】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答. 20.15【分析】根据同底数幂的乘法逆运算法则可得,进一步即可求出答案.【详解】解:.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关解析:15【分析】根据同底数幂的乘法逆运算法则可得222m n m n +=⋅,进一步即可求出答案.【详解】解:2223515m n m n +=⋅=⨯=.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关键.三、解答题21.(1)2()b a -;(2)22()()4a b a b ab +=-+;(3)±5;(4)详见解析 【分析】(1)表示出阴影部分正方形的边长,然后根据正方形的面积公式列式即可;(2)根据大正方形的面积减去小正方形的面积等于四个小长方形的面积列式即可; (3)将(x -y )2变形为(x +y )2—4xy ,再代入求值即可;(4)由已知的恒等式,画出相应的图形,如图所示.【详解】解:(1)阴影部分为一个正方形,其边长为b -a ,∴其面积为:2()b a -,故答案为:2()b a -;(2)大正方形面积为:()2a b +小正方形面积为:2()b a -=2()a b -, 四周四个长方形的面积为:4ab ,∴22()()4a b a b ab +=-+,故答案为:22()()4a b a b ab +=-+;(3)由(2)知,22()()4x y x y xy +=-+, ∴22()()4x y x y xy -=+-, ∴2()4x y x y xy -=±+-=2116454±-⨯=±, 故答案为:±5;(4)符合等式()()2222252a b a b a ab b ++=++的图形如图所示,【点睛】本题考查了完全平方公式的几何背景,此类题目关键在于同一个图形的面积用两种不同的方法表示.22.(1)画图见解析;(2)平行且相等;(3)画图见解析;(4)8【分析】(1)根据网格结构找出点A 、B 、C 向右平移4个单位后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据平移的性质解答;(3)延长AB ,作出AB 的高CD 即可;(4)利用△ABC 所在的矩形的面积减去四周三个三角形的面积,列式计算即可得解.【详解】解:(1)如图所示,(2)根据平移的性质得出,AC与A1C1的关系是:平行且相等;(3)如图所示,(4)△ABC的面积=5×7-12×7×5-12×7×2-12×5×1=8.23.∠DAC=40°,∠BOA=115°【解析】试题分析:在Rt△ACD中,根据两锐角互余得出∠DAC度数;△ABC中由内角和定理得出∠ABC度数,再根据AE,BF是角平分线可得∠BAO、∠ABO,最后在△ABO中根据内角和定理可得答案.解:∵AD是BC边上的高,∴∠ADC=90°,又∵∠C=50°,∴在△ACD中,∠DAC=90°-∠C=40°,∵∠BAC=60°,∠C=50°,∴在△ABC中,∠ABC=180°-∠BAC-∠C=70°,又∵AE、BF分别是∠BAC 和∠ABC的平分线,∴∠BAO=12∠BAC=30°,∠ABO=12∠ABC=35°,∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°.24.△ABC是等边三角形,理由见解析.【分析】运用完全平方公式将等式化简,可求a=b=c,则△ABC是等边三角形.【详解】解:△ABC是等边三角形,理由如下:∵a2+c2=2ab+2bc-2b2∴a2-2ab+ b2+ b2-2bc +c2=0∴(a-b)2+(b-c)2=0∴a-b=0,b-c=0,∴a=b,b=c,∴a=b=c∴△ABC是等边三角形.【点睛】本题考查了因式分解的应用,整式的混合运算,熟练运用完全平方公式解决问题是本题的关键.25.4ab+10b 2;36.【解析】【分析】先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可化简原式,继而将a ,b 的值代入计算可得.【详解】原式=4a 2+4ab +b 2﹣(4a 2﹣9b 2)=4a 2+4ab +b 2﹣4a 2+9b 2=4ab +10b 2当a 12=,b =﹣2时,原式=412⨯⨯(﹣2)+10×(﹣2)2=﹣4+10×4=﹣4+40=36. 【点睛】 本题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握运算法则是解答本题的关键.26.(1)4;(2)462x y -;(3)-4ab+9b 2;(4)m 2-4n 2+12n-9.【分析】(1)原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果;(2)原式利用积的乘方运算法则计算,合并即可得到结果;(3)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用平方差公式化简,再利用完全平方公式展开,计算即可得到结果.【详解】解:(1)原式=-1+1+4=4;(2)原式=464646242x y x y x y -=-;(3)原式=4a 2-12ab+9b 2-4a 2+8ab=-4ab+9b 2;(4)原式=m 2-(2n-3)2=m 2-4n 2+12n-9.【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.27.(1)18-;(2)2m 6;(3)2x 2﹣xy ﹣3y 2;(4)6x +10.【分析】(1)根据同底数幂的乘法法则进行计算;(2)先根据同底数幂的乘法法则和幂的乘方法则进行计算,再根据合并同类项法则进行计算;(3)根据多项式乘以多项式法则进行计算,再合并同类项;(4)先根据完全平方公式,平方差公式进行计算,再合并同类项.【详解】解:(1)2 1122⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭=312⎛⎫-⎪⎝⎭18=-;(2)m2•m4+(﹣m3)2=m6+m6=2m6;(3)(x+y)(2x﹣3y)=2x2﹣3xy+2xy﹣3y2=2x2﹣xy﹣3y2;(4)(x+3)2﹣(x+1)(x﹣1)=x2+6x+9﹣x2+1=6x+10.【点睛】此题考查的是幂的运算性质和整式的运算,掌握同底数幂的乘法法则、幂的乘方法则、多项式乘以多项式法则、完全平方公式和平方差公式是解决此题的关键.28.(1)400;(2)补全条形统计图见解析,54°;(3)180人【分析】(1)根据A类的人数和所占的百分比可以求得本次调查的学生数;(2)根据(1)中的结果和条形统计图中的数据可以求得B类的人数,从而可以将条形统计图补充完整,进而求得在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据统计图中的数据可以求得该校3600名学生中“家长和学生都未参与”的人数.【详解】解:(1)在这次抽样调查中,共调查了80÷20%=400名学生,故答案为:400;(2)B种情况下的人数为:400-80-60-20=240(人),补全的条形统计图如图所示,在扇形统计图中计算C类所对应扇形的圆心角的度数为:60360400︒⨯=54°,故答案为:54°;(3)203600400⨯=180(人),即该校3200名学生中“家长和学生都未参与”的有180人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答.。
人教版(七年级)初一下册数学期末模拟测试题及答案

人教版(七年级)初一下册数学期末模拟测试题及答案一、选择题1.如图,下列推理中正确的是( )A .∵∠1=∠4, ∴BC//ADB .∵∠2=∠3,∴AB//CDC .∵∠BCD+∠ADC=180°,∴AD//BCD .∵∠CBA+∠C=180°,∴BC//AD2.下列代数运算正确的是( ) A .x•x 6=x 6 B .(x 2)3=x 6 C .(x+2)2=x 2+4D .(2x )3=2x 3 3.已知∠1与∠2是同位角,则( ) A .∠1=∠2B .∠1>∠2C .∠1<∠2D .以上都有可能 4.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80° 5.下列各式中,计算结果为x 2﹣1的是( )A .()21x -B .()(1)1x x -+-C .()(1)1x x +-D .()()12x x -+ 6.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( ) A .0.38×106B .3.8×106C .3.8×105D .38×104 7.能把一个三角形的面积分成相等的两部分的线是这个三角形的( )A .一条高B .一条中线C .一条角平分线D .一边上的中垂线 8.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( )A .8312x y x y +=⎧⎨-=⎩B .8312x y x y -=⎧⎨-=⎩C .18312x y x y +=⎧⎨+=⎩D .8312x y x y -=⎧⎨+=⎩ 9.计算12x a a a a ⋅⋅=,则x 等于( )A .10B .9C .8D .4 10.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A .(46,4)B .(46,3)C .(45,4)D .(45,5)二、填空题11.若分解因式221(3)()x mx x x n +-=++,则m =__________. 12.已知关于x 的不等式组521{0x x a -≥-->无解,则a 的取值范围是________.13.若24x mx ++是完全平方式,则m =______.14.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________.15.计算:23()a =____________.16.若a m =2,a n =3,则a m +n 的值是_____.17.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为( )A .6B .7C .8D .918.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.19.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____.20.比较大小:π0_____2﹣1.(填“>”“<”或“=”)三、解答题21.解二元一次方程组:(1)523150x yx y=+⎧⎨+-=⎩(2)3()4()427x y x yx y+--=⎧⎨+=⎩22.因式分解:(1)a3﹣a;(2)4ab2﹣4a2b﹣b3;(3)a2(x﹣y)﹣9b2(x﹣y);(4)(y2﹣1)2+6 (1﹣y2)+9.23.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入W元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品.(1)若24W=万元,求领带及丝巾的制作成本是多少?(2)若用W元钱全部用于制作领带,总共可以制作几条?(3)若用W元钱恰好能制作300份其他的礼品,可以选择a条领带和b条丝巾作为一份礼品(两种都要有),请求出所有可能的a、b的值.24.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(探究1):如图1,在ΔABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90º+12∠A,(请补齐空白处......)理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=12∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=12(∠ABC+∠ACB)=12(180º-∠A)=90º-12∠A,∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+12∠A . (探究2):如图2,已知O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?请说明理由.(应用):如图3,在RtΔAOB 中,∠AOB=90º,已知AB 不平行与CD ,AC 、BD 分别是∠BAO 和∠ABO 的角平分线,又CE 、DE 分别是∠ACD 和∠BDC 的角平分线,则∠E=_______;(拓展):如图4,直线MN 与直线PQ 相交于O ,∠MOQ=60º,点A 在射线OP 上运动,点B 在射线OM 上运动,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及其延长线交于E 、F ,在ΔAEF 中,如果有一个角是另一个角的4倍,则∠ABO=______.25.阅读下列材料,学习完“代入消元法”和“加减消元法“解二元一次方程组后,善于思考的小铭在解方程组2534115x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法: 解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③.把方程①代入③得:2×3+y =5,∴y =﹣1①得x =4,所以,方程组的解为41x y =⎧⎨=-⎩. 请你解决以下问题:(1)模仿小铭的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩. (2)已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩,求x 2+4y 2﹣xy 的值. 26.已知m 2,3na a ==,求①m n a +的值; ②3m-2n a 的值27.已知a ,b ,c 是△ABC 的三边,若a ,b ,c 满足a 2+c 2=2ab +2bc -2b 2,请你判断△ABC 的形状,并说明理由.28.因式分解:(1)m 2﹣16;(2)x 2(2a ﹣b )﹣y 2(2a ﹣b );(3)y 2﹣6y +9;(4)x 4﹣8x 2y 2+16y 4.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线的判定方法一一判断即可.【详解】A 、错误.由∠1=∠4应该推出AB ∥CD .B 、错误.由∠2=∠3,应该推出BC//AD .C 、正确.D 、错误.由∠CBA+∠C=180°,应该推出AB ∥CD ,故选:C .【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考基础题.2.B解析:B【分析】根据同底数幂的乘法,幂的乘方,完全平方公式,积的乘方运算判断即可.【详解】A .67=x x x ,故A 选项错误;B .()32236x x x ⨯==,故B 选项正确;C .22(2)44x x x +=++,故C 选项错误;D .3333(2)28x x x =⋅=,故D 选项错误.故选B .【点睛】本题考查整式的乘法公式,熟练掌握同底数幂的乘法,幂的乘方,完全平方公式和积的乘方是解题的关键.3.D解析:D【分析】根据同位角的定义和平行线的性质判断即可.【详解】解:∵只有两直线平行时,同位角才可能相等,∴当没有限定“两直线平行”时,已知∠1与∠2是同位角可以得出∠1=∠2或∠1>∠2或∠1<∠2,三种情况都有可能.故选:D .【点睛】本题考查了同位角的定义和平行线的性质,正确理解同位角的定义是解此题的关键,“两直线平行”这个前提条件易遗漏.4.B解析:B【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA,CD交于点E.∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC为等腰直角三角形∴∠E=45°∴在△EAD中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD互为对顶角∴∠2=∠EAD =70°故选:B.【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.5.C解析:C【分析】运用多项式乘法法则对各个算式进行计算,再确定答案.【详解】解:A.原式=x2﹣2x+1,B.原式=﹣(x﹣1)2=﹣x2+2x﹣1;C.(x+1)(x﹣1)=x2﹣1;D.原式=x2+2x﹣x﹣2=x2+x﹣2;∴计算结果为x2﹣1的是C.故选:C.【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.6.C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:380000=3.8×105.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.B解析:B【分析】根据三角形中线的性质作答即可.【详解】解:能把一个三角形的面积分成相等的两部分的线是这个三角形的一条中线.故选:B.【点睛】本题考查了三角形中线的性质,属于应知应会题型,熟知三角形的一条中线将三角形分成面积相等的两部分是解题的关键.8.A解析:A【分析】设这个队胜x场,负y场,根据在8场比赛中得到12分,列方程组即可.【详解】解:设这个队胜x场,负y场,根据题意,得8 312 x yx y+=⎧⎨-=⎩.故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.9.A解析:A【解析】【分析】利用同底数幂的乘法即可求出答案,解:由题意可知:a2+x=a12,∴2+x=12,∴x=10,故选:A.【点睛】本题考查同底数幂的乘法,要注意是指数相加,底数不变.10.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴∵452=2025∴第2025个点在x轴上坐标为(45,0)则第2020个点在(45,5)故选:D.【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.二、填空题11.【分析】将分解因式的结果式子展开,与原式各项对应,再计算字母的值即可.【详解】解:,∴,解得:,故答案为:.【点睛】此题考查因式分解,正确利用多项式乘多项式法则进行计算是解此题的关解析:4将分解因式的结果式子展开,与原式各项对应,再计算字母的值即可.【详解】解:2(3)()(3)3x x n x n x n ++=+++, ∴3321n m n +=⎧⎨=-⎩, 解得:74n m =-⎧⎨=-⎩, 故答案为:4-.【点睛】此题考查因式分解,正确利用多项式乘多项式法则进行计算是解此题的关键.12.a≥3【详解】解:解5-2x≥-1,得x≤3;解x -a >0,得x >a ,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.解析:a≥3【详解】解:解5-2x≥-1,得x≤3;解x -a >0,得x >a ,因为不等式组无解,所以a≥3.故答案为:a ≥3.【点睛】本题考查不等式组的解集.13.【分析】这里首末两项是x 和2这两个数的平方,那么中间一项为加上或减去x 和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去和2积的2倍,故,故答案为:.【点睛】本题是完全平方公【分析】这里首末两项是x 和2这两个数的平方,那么中间一项为加上或减去x 和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去x 和2积的2倍,故4m =±,故答案为:4±.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.14.【分析】由是完全平方式,得到从而可得答案.【详解】解:方法一、方法二、由是完全平方式,则有两个相等的实数根,,故答案为:【点睛】本题考查的是完全平方式解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案.【详解】解:方法一、 ()2222281991881,x kx x kx x x x ++=++=±=±+18,kx x ∴=±18.k ∴=±方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,k ∴-⨯⨯=2481k ∴=⨯,18.k ∴=±故答案为:18.±【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.15..【分析】直接根据积的乘方运算法则进行计算即可.【详解】.故答案为:.【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.解析:6a -.【分析】直接根据积的乘方运算法则进行计算即可.【详解】233236()=(1)()a a a .故答案为:6a -.【点睛】 此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.16.6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:am+n =am•an=2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,解析:6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:a m+n=a m•a n=2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,掌握a m+n=a m•a n是解题的关键;17.B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,解析:B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=6,S四边形BFOE=7,S四边形CGOF=8,∴6+8=7+S四边形DHOG,解得S四边形DHOG=7.故答案为7.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.18.5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:,由图乙得:,化简得,∴,∵a+b>0,∴a+b解析:5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:2()1a b -=,由图乙得:22()()12+--=a b a b ,化简得6ab =,∴22()()412425+=-+=+=a b a b ab ,∵a +b >0,∴a +b =5,故答案为:5.【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型. 19.12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a ﹣b =1,∴(a+1)2﹣(b ﹣1)2=(a+1+b ﹣1)(a+1﹣b+1)=(a+b解析:12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b =4,a ﹣b =1,∴(a+1)2﹣(b ﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点睛】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答.20.>【分析】先求出π0=1,2-1=,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=,1>,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较解析:>【分析】先求出π0=1,2-1=12,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=12,1>12,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较.理解任意非零数的零次方等于1和熟记负指数幂的计算公式是解题关键.三、解答题21.(1)61xy=⎧⎨=⎩;(2)31xy=⎧⎨=⎩【分析】(1)用代入法解得即可;(2)将方程组去括号整理后,用加减法解答即可;【详解】解:(1) 523150x y x y =+⎧⎨+-=⎩①② 把方程①代入方程()253150y y ++-=解得1y =把1y =代入到①,得156x =+=所以方程组的解为:61x y =⎧⎨=⎩(2) 原方程组化简,得7427x y x y -+=⎧⎨+=⎩①②①×2+②,得1515y =解得y=1把y=1代入到②,得217x +=解得x=3所以方程组的解为:31x y =⎧⎨=⎩【点睛】本题考查了解二元一次方程组,解题的关键是熟记代入法和加减法解方程组的步骤,并根据方程选择合适方法解题.22.(1)a (a+1)(a ﹣1);(2)﹣b (2a ﹣b )2;(3)(x ﹣y )(a+3b )(a ﹣3b );(4)(y+2)2(y ﹣2)2【分析】(1)直接提取公因式a ,进而利用平方差公式分解因式得出答案;(2)直接提取公因式﹣b ,进而利用完全平方公式分解因式即可;(3)直接提取公因式(x ﹣y ),进而利用平方差公式分解因式得出答案;(4)直接利用完全平方公式分解因式,再利用平方差公式分解因式即可.【详解】解:(1)a 3﹣a=a (a 2﹣1)=a (a+1)(a ﹣1);(2)4ab 2﹣4a 2b ﹣b 3=﹣b (﹣4ab+4a 2+b 2)=﹣b (2a ﹣b )2;(3)a 2(x ﹣y )﹣9b 2(x ﹣y )=(x ﹣y )(a 2﹣9b 2)=(x ﹣y )(a+3b )(a ﹣3b );(4)(y 2﹣1)2+6(1﹣y 2)+9=(y 2﹣1)2﹣6 (y 2﹣1)+9=(y 2﹣1﹣3)2=(y+2)2(y ﹣2)2.【点睛】此题主要考查因式分解的几种方法:提公因式法,公式法等,能熟练运用是解题关键.23.(1)领带的制作成本是120元,丝巾的制作成本是160元;(2)可以制作2000条领带;(3)42a b =⎧⎨=⎩ 【分析】(1)设领带及丝巾的制作成本是x 元和y 元,根据题意列出方程组求解即可; (2)由600(2)W x y =+与400(3)W x y =+可得到43y x =,代入可得2000W x =,即可求得答案;(3)根据44600(2)300()33x x ax bx +=+即可表达出a 、b 的关系式即可解答. 【详解】解:(1)设领带及丝巾的制作成本是x 元和y 元, 则600(2)240000400(3)240000x y x y +=⎧⎨+=⎩解得:120160x y =⎧⎨=⎩答:领带的制作成本是120元,丝巾的制作成本是160元.(2)由题意可得:600(2)W x y =+,且400(3)W x y =+,∴600(2)400(3)x y x y +=+, 整理得:43y x =,代入 600(2)W x y =+ 可得:4600(2)20003W x x x =+=, ∴可以制作2000条领带.(3)由(2)可得:43y x =,∴44600(2)300()33x x ax bx +=+ 整理可得:3420a b +=∵a 、b 都为正整数, ∴42a b =⎧⎨=⎩【点睛】本题考查了二元一次方程组的综合应用,解题的关键是根据题意列出方程,并对已知条件进行适当的变形.24.【探究1】∠2=12∠ACB ,90º-12∠A ;【探究2】∠BOC =90°﹣12∠A ,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=12∠ABC ,∠2=12∠ACB ,根据三角形的内角和定理可得∠1+∠2=90º-12∠A ,再根据三角形的内角和定理即可得出结论; 【探究2】如图2,由三角形的外角性质和角平分线的定义可得∠OBC =12(∠A +∠ACB ),∠OCB =12(∠A +∠ABC ),然后再根据三角形的内角和定理即可得出结论; 【应用】延长AC 与BD ,设交点为G ,如图5,由【探究1】的结论可得∠G 的度数,于是可得∠GCD+∠GDC 的度数,然后根据角平分线的定义和角的和差可得∠1+∠2的度数,再根据三角形的内角和定理即可求出结果;【拓展】根据角平分线的定义和平角的定义可得∠EAF=90°,然后分三种情况讨论:若∠EAF=4∠E ,则∠E=22.5°,根据角平分线的定义和三角形的外角性质可得∠ABO=2∠E ,于是可得结果;若∠EAF=4∠F ,则∠F=22.5°,由【探究2】的结论可求出∠ABO=135°,然后由三角形的外角性质即可判断此种情况不存在;若∠F=4∠E ,则∠E=18°,然后再由第一种情况的结论∠ABO=2∠E 即可求出结果,进而可得答案.【详解】解:【探究1】理由如下:∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线,∴∠1=12∠ABC ,∠2=12∠ACB , 在ΔABC 中,∠A+∠ABC+∠ACB=180º. ∴∠1+∠2=12(∠ABC+∠ACB )=12(180º-∠A )=90º-12∠A , ∴∠BOC=180º-(∠1+∠2)=180º-(90º-12∠A )=90º+12∠A ;故答案为:∠2=12∠ACB ,90º-12∠A ;【探究2】∠BOC =90°﹣12∠A ;理由如下: 如图2,由三角形的外角性质和角平分线的定义,∠OBC =12(∠A +∠ACB ),∠OCB =12(∠A +∠ABC ), 在△BOC 中,∠BOC =180°﹣∠OBC ﹣∠OCB=180°﹣12(∠A +∠ACB )﹣12(∠A +∠ABC ), =180°﹣12(∠A +∠ACB +∠A +∠ABC ), =180°﹣12(180°+∠A ), =90°﹣12∠A ;【应用】延长AC 与BD ,设交点为G ,如图5,由【探究1】的结论可得:∠G=1901352O ︒+∠=︒, ∴∠GCD+∠GDC=45°, ∵CE 、DE 分别是∠ACD 和∠BDC 的角平分线,∴∠1=12∠ACD=()11802GCD ︒-∠,∠2=12∠BDC=()11802GDC ︒-∠, ∴∠1+∠2=()11802GCD ︒-∠+()11802GDC ︒-∠=()136045157.52︒-︒=︒, ∴()1801222.5E ∠=︒-∠+∠=︒;故答案为:22.5°;【拓展】如图4,∵AE 、AF 是∠BAO 和∠OAG 的角平分线,∴∠EAQ+∠FAQ=()111809022BAO GAO ∠+∠=⨯︒=︒, 即∠EAF=90°,在Rt △AEF 中,若∠EAF=4∠E ,则∠E=22.5°,∵∠EOQ=∠E+∠EAQ ,∠BOQ=2∠EOQ ,∠BAO=2∠EAQ ,∴∠BOQ=2∠E+∠BAO ,又∠BOQ=∠BAO+∠ABO ,∴∠ABO=2∠E=45°;若∠EAF=4∠F ,则∠F=22.5°,则由【探究2】知:19022.52F ABO ∠=︒-∠=︒,∴ ∠ABO=135°, ∵∠ABO <∠BOQ=60°,∴此种情况不存在;若∠F=4∠E ,则∠E=18°,由第一种情况可知:∠ABO=2∠E ,∴∠ABO=36°;综上,∠ABO=45°或36°;故答案为:45°或36°.【点睛】 本题主要考查了角平分线的定义、三角形的内角和定理、平角的定义和三角形的外角性质等知识,具有一定的综合性,熟练掌握上述知识、灵活应用整体思想是解题的关键.25.(1)32x y =⎧⎨=⎩;(2)15 【分析】(1)把9x ﹣4y =19变形为3x +2(3x ﹣2y )=19,再用整体代换的方法解题;(2)将原方程组变形为22223(4)2472(4)36x y xyx y xy⎧+-=⎨++=⎩①②这样的形式,再利用整体代换的方法解决.【详解】解:(1)解方程组325 9419 x yx y-=⎧⎨-=⎩①②把②变形为3x+2(3x﹣2y)=19,∵3x﹣2y=5,∴3x+10=19,∴x=3,把x=3代入3x﹣2y=5得y=2,即方程组的解为32 xy=⎧⎨=⎩;(2)原方程组变形为22223(4)247 2(4)36x y xyx y xy⎧+-=⎨++=⎩①②①+②×2得,7(x2+4y2)=119,∴x2+4y2=17,把x2+4y2=17代入②得xy=2∴x2+4y2﹣xy=17﹣2=15答:x2+4y2﹣xy的值是15.【点睛】本题考查了二元一次方程组的解法,属延伸拓展题,正确掌握整体代换的求解方法是解题的关键.26.①6;②8 9【解析】解:①②27.△ABC是等边三角形,理由见解析.【分析】运用完全平方公式将等式化简,可求a=b=c,则△ABC是等边三角形.【详解】解:△ABC是等边三角形,理由如下:∵a2+c2=2ab+2bc-2b2∴a2-2ab+ b2+ b2-2bc +c2=0∴(a-b)2+(b-c)2=0∴a-b=0,b-c=0,∴a=b,b=c,∴a=b=c∴△ABC是等边三角形.【点睛】本题考查了因式分解的应用,整式的混合运算,熟练运用完全平方公式解决问题是本题的关键.28.(1)(m+4)(m﹣4);(2)(2a﹣b)(x+y)(x﹣y);(3)(y﹣3)2;(4)(x+2y)2(x﹣2y)2【分析】(1)原式利用平方差公式因式分解即可;(2)原式提取公因式,再利用平方差公式因式分解即可;(3)原式利用完全平方公式因式分解即可;(4)原式利用完全平方公式,以及平方差公式因式分解即可.【详解】解:(1)原式=(m+4)(m﹣4);(2)原式=(2a﹣b)(x2﹣y2)=(2a﹣b)(x+y)(x﹣y);(3)原式=(y﹣3)2;(4)原式=(x2﹣4y2)2=(x+2y)2(x﹣2y)2.【点睛】此题考查的是因式分解,掌握利用提公因式法和公式法因式分解是解决此题的关键.。
最新人教版七年级数学下册期末测试题及答案详解(共五套)

最新人教版七年级数学下册期末测试题及答案详解(共五套)人教版七年级数学下学期末模拟试题(一)一、选择题:(本大题共10个小题,每小题3分,共30分)1.若m>-1,则下列各式中错误的是()A。
6m>-6.B。
-5m<-5.C。
m+1>0.D。
1-m<22.下列各式中,正确的是()A。
16=±4.B。
±16=4.C。
3-27=-3.D。
(-4)²=163.已知a>b>0,那么下列不等式组中无解的是()A。
{x<a。
x>-a。
x>a。
x>-a}。
B。
{x>-b。
x<-b。
x <-b。
x<b}C。
{x<a。
x>-a。
x>a。
x<-a}。
D。
{x<-b。
x>-b。
x <-b。
x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。
先右转50°,后右转40°。
B。
先右转50°,后左转40°C。
先右转50°,后左转130°。
D。
先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。
{x-y=1.x-y=-1.x-y=3.3x+y=5}。
B。
{x-y=1.x-y=-1.x-y=3.3x+y=-5}C。
{x-y=1.x-y=-1.3x-y=5.3x+y=5}。
D。
{x-y=1.x-y=-1.3x-y=5.3x+y=-5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。
100°。
B。
110°。
C。
115°。
D。
120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。
4.B。
3.C。
2.D。
18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?
C.喜欢羽毛球的人数(1)班比(2)班多D.喜欢篮球的人数(2)班比(1)班多
7.已知关于x,y的二元一次方程组 的解为 ,则a﹣2b的值是( )
A.﹣2B.2C.3D.﹣3
8.不等式4-2x>0的解集在数轴上表示为()
A. B. C. D.
9.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )
20.如图,在数轴上点A表示的实数是_____________.
三、解答题
21.某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买A,B两种笔记本作为奖品,已知A,B两种每本分别为12元和20元,设购入A种x本,B种y本.
(1)求y关于x的函数表达式.
(2)若购进A种的数量不少于B种的数量.
12.D
解析:D
【解析】
【分析】
两式相加得,即可利用 表示出 的值,从而得到一个关于 的方程,解方程从而求得 的值.
【详解】
两式相加得: ;
即 得
即
故选:D.
【点睛】
此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.
二、填空题
13.m>-3【解析】【分析】首先解方程利用m表示出x的值然后根据x是正数即可得到一个关于m的不等式即可求得m的范围【详解】2x=3+m根据题意得:3+m>0解得:m>-3故答案是:m>-3【点睛】本题考
故选A.
【点睛】
本题考查平方根的性质,一个正数的平方根有两个,它们互为相反数,0的平方根还是0,熟练掌握相关知识是解题关键.
2.B
解析:B
【解析】
∵−2<0,3>0,
∴(−2,3)在第二象限,
故选B.
3.D
解析:D
【解析】
【分析】
根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.
(3)点P是射线BD上的一个动点(不与B,D重合),连接PC,PA,求∠CPA与∠DCP、∠BAP之间的关系.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
根据平方根的性质:一个正数的平方根有两个,它们互为相反数计算即可.
【详解】
∵ = , 的平方根是 ,
∴ 的平方根是 ,
【典型题】七年级数学下期末模拟试题及答案(1)
一、选择题
1. 的平方根是( )
A.± B.± C. D.
2.在平面直角坐标中,点M(-2,3)在()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.下面不等式一定成立的是()
A. B.
C.若 , ,则 D.若 ,则
4.下列方程中,是二元一次方程的是( )
【分析】
根据解一元一次不等式基本步骤:移项、系数化为1可得.
【详解】
移项,得:-2x>-4,
系数化为1,得:x<2,
故选D.
【点睛】
考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
9.A
解析:A
【解析】
【分析】
点在第四象限的条件是:横坐标是正数,纵坐标是负数.
解析:55
【解析】
【分析】
利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.
【详解】
设长为8x,高为11x,
由题意,得:19x+20≤115,
解得:x≤5,
故行李箱的高的最大值为:11x=55,
答:行李箱的高的最大值为55厘米.
【点睛】
此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.
A.③④②①B.③④①②C.①②③④D.④③①②
12.关于 , 的方程组 的解满足 ,则 的值为()
A.8B.6C.4D.2
二、填空题
13.若方程 的解是正数,则m的取值范围是______.
14.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.
【详解】
解:∵点P(2x-6,x-5)在第四象限,
∴ ,
解得:3<x<5.
故选:A.
【点睛】
主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.
10.B
解析:B
【解析】
【分析】
由点P在x轴上求出a的值,从而得出点Q的坐标,继而得出答案.
【详解】
∵点P(a,a-1)在x轴上,
∴a-1=0,即a=1,
解析:m>-3
【解,然后根据x是正数即可得到一个关于m的不等式,即可求得m的范围.
【详解】
2x=3+m,
根据题意得:3+m>0,
解得:m>-3.
故答案是:m>-3.
【点睛】
本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.
4.B
解析:B
【解析】
【分析】
根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.
【详解】
解:A.x-y2=1不是二元一次方程;
B.2x-y=1是二元一次方程;
C. +y=1不是二元一次方程;
D.xy-1=0不是二元一次方程;
解不等式要依据不等式的基本性质:
(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;
(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;
(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.
14.55【解析】【分析】利用长与高的比为8:11进而利用携带行李箱的长宽高三者之和不超过115cm得出不等式求出即可【详解】设长为8x高为11x由题意得:19x+20≤115解得:x≤5故行李箱的高的最
应该为:(1)假设∠B≥90°,
(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,
(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,
(4)因此假设不成立.∴∠B<90°,
原题正确顺序为:③④①②,
故选B.
【点睛】
本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.
故选B.
【点睛】
本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.
5.A
解析:A
【解析】
【分析】
观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.
【详解】
解:
②-①得36x-36y=-72
则点Q坐标为(-1,2),
∴点Q在第二象限,
故选:B.
【点睛】
此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.
11.B
解析:B
【解析】
【分析】
根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.
【详解】
题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:
A.x﹣y2=1B.2x﹣y=1C. D.xy﹣1=0
5.已知方程组 的解满足 则m的值为( )
A.-1B.-2C.1D.2
6.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )
A.喜欢乒乓球的人数(1)班比(2)班多B.喜欢足球的人数(1)班比(2)班多
故选C.
【点睛】
本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.
7.B
解析:B
【解析】
【详解】
把 代入方程组 得: ,
解得: ,
所以a−2b= −2×( )=2.
故选B.
8.D
解析:D
【解析】
15.不等式 的正整数解为:______________.
16.不等式组 的解集为________.
17.如果一个数的平方根为a+1和2a-7,这个数为________
18.如图,已知AB、CD相交于点O,OE⊥AB于O,∠EOC=28°,则∠AOD=_____度;
19.为了了解某商品促销广告中所称中奖率的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是______.
则x-y=-2
所以m-1=-2
所以m=-1.
故选:A.
【点睛】
考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.
6.C
解析:C
【解析】