沸石吸附材料的研究进展

合集下载

《SBA-16及沸石改性的HKUST-1用于CO2吸附性能研究》范文

《SBA-16及沸石改性的HKUST-1用于CO2吸附性能研究》范文

《SBA-16及沸石改性的HKUST-1用于CO2吸附性能研究》篇一SBA-16及沸石改性HKUST-1在CO2吸附性能研究中的应用一、引言随着全球气候变化和环境污染问题日益严重,减少温室气体排放、特别是减少二氧化碳(CO2)的排放,已成为当今社会的重要议题。

为了应对这一挑战,研究者们正在积极寻找高效的CO2吸附材料。

其中,SBA-16及沸石改性的HKUST-1因其独特的结构和良好的吸附性能,在CO2吸附领域展现出巨大的潜力。

本文旨在探讨SBA-16及沸石改性的HKUST-1在CO2吸附性能方面的研究与应用。

二、SBA-16材料及其CO2吸附性能SBA-16是一种具有高比表面积和有序介孔结构的材料,其独特的结构使其在CO2吸附领域具有显著优势。

研究表明,SBA-16的孔径和表面化学性质对其CO2吸附性能具有重要影响。

首先,SBA-16的介孔结构提供了大量的吸附位点,有利于CO2分子的快速扩散和吸附。

此外,其高比表面积使得SBA-16具有更高的吸附容量。

通过引入亲CO2的化学基团,可以进一步增强SBA-16对CO2的吸附能力。

三、沸石改性的HKUST-1材料及其CO2吸附性能HKUST-1是一种常见的金属有机骨架(MOF)材料,具有良好的CO2吸附性能。

然而,其稳定性及循环使用性能有待提高。

通过沸石改性,可以优化HKUST-1的结构和性能,提高其CO2吸附能力及循环稳定性。

沸石改性HKUST-1的方法主要是通过将沸石的骨架结构与HKUST-1的金属离子相结合,从而增强HKUST-1的稳定性。

同时,引入沸石表面的亲CO2基团,可以提高HKUST-1对CO2的吸附能力。

此外,沸石改性还可以改善HKUST-1的孔结构和表面性质,有利于提高其循环使用性能。

四、SBA-16及沸石改性的HKUST-1在CO2吸附性能方面的比较研究通过对SBA-16及沸石改性的HKUST-1进行CO2吸附性能的比较研究,我们发现:1. SBA-16具有较高的CO2吸附容量和快速扩散性能;2. 沸石改性的HKUST-1在提高稳定性和循环使用性能方面具有优势;3. 通过结合两种材料的优点,可以进一步优化CO2吸附性能。

ZSM-5_沸石的合成、再生及其对废水中有机物的吸附研究 

ZSM-5_沸石的合成、再生及其对废水中有机物的吸附研究 

第42卷第12期2023年12月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.12December,2023ZSM-5沸石的合成㊁再生及其对废水中有机物的吸附研究杨露婷,刘㊀勇(天津大学环境与科学工程学院,天津㊀300350)摘要:针对高盐废水中的有机物去除问题,本文采用水热法合成了不同硅铝摩尔比(Si /Al)的ZSM-5沸石,并进行XRD㊁SEM㊁XRF 和BET 分析,考察了不同Si /Al 沸石对高盐废水有机物的去除效果,研究了沸石的煅烧再生温度,评价了沸石在高盐废水有机物吸附过程中的重复利用性能㊂结果表明,随着原料Si /Al 的增加,ZSM-5沸石粒径逐步减小,比表面积逐步增加,沸石对废水中有机物的吸附效率逐步增大㊂当原料Si /Al 为500时,合成的ZSM-5沸石对废水中有机物的吸附效果较佳,在15次再生重复利用过程中,废水总有机碳(TOC)的去除率均大于92.5%㊂ZSM-5沸石的最佳煅烧再生温度为650ħ㊂关键词:ZSM-5沸石;高盐废水;总有机碳;吸附;再生中图分类号:X703.1㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)12-4552-07Synthesis and Regeneration of ZSM-5Zeolite and Its Adsorption on Organic Matter in WastewaterYANG Luting ,LIU Yong(School of Environmental Science and Engineering,Tianjin University,Tianjin 300350,China)Abstract :For the removal of organic matter in high salinity wastewater,ZSM-5zeolites with different silicon aluminum molar ratios(Si /Al)were synthesized by hydrothermal method,and were analyzed using XRD,SEM,XRF and BET.The removal effects of zeolites with different silicon aluminum ratios on organic matters in high salinity wastewater were investigated.The temperature of the regeneration of zeolites through calcination were studied also,and the reuse performance of zeolites in the adsorption process of organic matter in high salinity wastewater was evaluated.The results show that with the increase of silicon aluminum ratio of raw material,the particle size of ZSM-5zeolite gradually decreases,the specific surface area gradually increases,and the adsorption efficiency of zeolite for organic matter in wastewater gradually increases.When silicon aluminum ratio of raw material Si /Al is 500,the synthesized ZSM-5zeolite has a better adsorption effect on organic matter in wastewater.During 15times of regeneration and reuse,the removal rate of total organic carbon (TOC)in wastewater is greater than 92.5%.The optimal calcination regeneration temperature of ZSM-5zeolite is 650ħ.Key words :ZSM-5zeolite;high salinity wastewater;total organic carbon;adsorption;regeneration 收稿日期:2023-06-26;修订日期:2023-07-31作者简介:杨露婷(1999 ),男,硕士研究生㊂主要从事废水资源化的研究㊂E-mail:156****2106@通信作者:刘㊀勇,博士,副教授㊂E-mail:lytju@0㊀引㊀言随着工业化的快速发展,煤化工㊁印染㊁钢铁及制药等行业产生了大量的高盐废水㊂高盐废水中的水资源以及无机盐资源的回收与循环利用是我国工业生产面临的重大难题㊂目前高盐废水的净化方式主要有生物法和物化法两大类[1-2]㊂生物法净化高盐废水的主要问题是微生物容易失活,导致系统不稳定和有机物去除率低[3-5]㊂物化法主要包括高级氧化法㊁电解法以及吸附法等㊂高级氧化法和电解法主要存在成本较高等问题[6-8]㊂吸附法因设备简单㊁条件温和及成本低廉而被广泛使用[9-11]㊂第12期杨露婷等:ZSM-5沸石的合成㊁再生及其对废水中有机物的吸附研究4553㊀活性炭是一种被广泛应用的吸附剂,其使用后需要进行更换或再生[12]㊂活性炭的再生方法通常有高温热解再生法㊁氧化还原化学再生法以及水溶液加热再生法,这些再生过程往往存在活性炭质量损耗㊁性能下降以及产生新的废水等问题[13-14]㊂ZSM-5(zeolit socony mobil number5)沸石为人工合成的硅铝酸盐材料,具有较高的比表面积㊁良好的热稳定性㊁耐酸碱㊁抗积碳以及较好的疏水性等特点,在吸附净化废水有机物和煅烧再生方面均具有良好优势[15]㊂本课题组前期[16-17]利用ZSM-5沸石吸附净化废水中的苯酚㊁喹啉和吲哚有机污染物,发现以ZSM-5沸石为载体的催化剂对废水中的苯酚㊁喹啉和吲哚有良好的净化效果㊂目前的研究大多围绕ZSM-5作为催化剂载体时对废水有机物的净化效果,关于ZSM-5沸石对废水有机物吸附净化效果的研究报道较少㊂本研究拟通过水热合成法制备不同硅铝摩尔比(Si/Al)的ZSM-5沸石,考察其对高盐废水中有机物的吸附去除性能,以及沸石煅烧再生条件和重复利用效果,以期为我国高盐废水中有机物的去除提供参考㊂1㊀实㊀验1.1㊀材料与表征实验所用废水为国内某一煤化工企业所产生的高盐废水,其理化特征如表1所示㊂废水的总溶解性固体含量(total dissolved solid,TDS)采用烘干称重法进行测定㊂废水的总有机碳含量(total organic carbon, TOC)采用总有机碳仪(TOC-VCPH,岛津,日本)测定㊂废水的化学需氧量(chemical oxygen demand,COD)采用重铬酸钾法测定㊂硫酸根离子(SO2-4)和氯离子(Cl-)采用离子色谱仪(ICS-1100离子色谱仪,Thermo,美国)测定㊂该高盐废水中所含盐分主要为NaCl和Na2SO4㊂硫酸(H2SO4,天津希恩思奥普德科技)㊁硅酸钠(Na2SiO3,天津光复精细化工研究所)㊁铝酸钠(NaAlO2,上海阿拉丁生化科技)㊁四丙基溴化铵(TPABr,天津希恩思奥普德科技)均为分析纯㊂水为市售蒸馏水㊂表1㊀煤化工高盐废水的理化性质Table1㊀Physicochemical properties of high salinity wastewater from coal chemical industrypH value SO2-4content/(mg㊃L-1)Cl-content/(mg㊃L-1)TDS content/(mg㊃L-1)TOC content/(mg㊃L-1)COD content/(mg㊃L-1)1.7013100795001680009905500通过扫描电子显微镜(SEM:4800,日立,日本)测定沸石形貌特征,电压为15kV,放大倍数为20倍;通过X射线衍射分析仪(XRD:D8FOCUS,布鲁克,德国)测定物相结构,扫描范围为5ʎ~50ʎ,扫描速度为5(ʎ)/min;通过X射线荧光光谱分析仪(XRF:S8TIGERⅡ,布鲁克,德国)测定元素含量;通过比表面积分析仪(BET:ASAP2460,麦克,美国)测定比表面积,吸脱附气体为氮气,温度为77.3K㊂1.2㊀ZSM-5沸石合成本研究中ZSM-5沸石采用水热法合成,流程如图1所示㊂Na2SiO3为硅源,NaAlO2为铝源,模版剂为TPABr㊂物料摩尔比为n(Si)ʒn(Al)ʒn(TPABr)ʒn(H2O)=xʒ1ʒ10ʒ5000㊂称取一定量的Na2SiO3㊁NaAlO2于烧杯中,加入蒸馏水溶解,搅拌混匀后加入相应质量的TPABr,室温下磁力搅拌至物料完全溶解后,缓慢加入2mol/L的硫酸溶液调节混合溶液pH值至11.2㊂混合体系在室温下陈化24h后转入水热反应釜,置于烘箱内120ħ下反应10h㊂反应结束后,过滤㊁洗涤固体至滤液呈中性,随后放入烘箱105ħ干燥4h,获得的产物在马弗炉中550ħ煅烧2h(升温速率为10ħ/min),自然冷却至室温,得到最终产品㊂其中x分别为50㊁100㊁150㊁200㊁250㊁300㊁350㊁400㊁450和500,对应产品编号为F1-F10㊂4554㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图1㊀ZSM-5的合成途径示意图Fig.1㊀Diagram of synthesis pathway of ZSM-51.3㊀ZSM-5沸石吸附废水有机物ZSM-5沸石对高盐废水的净化效果受到硅铝摩尔比㊁煅烧温度和循环利用次数等因素的影响,本研究采用废水总有机碳(TOC)的去除率作为评价指标㊂沸石吸附试验操作如下:在500mL 锥形瓶中加入200mL 高盐废水,并按照5%(质量分数)的比例加入相应质量的ZSM-5沸石,在25ħ恒温水浴环境中振荡150min,随后静置3h,取2mL 上清液测定废水TOC 含量㊂TOC 含量通过总有机碳分析仪(TOC-VCPH,岛津,日本)测定㊂TOC 去除率用式(1)计算㊂η=1-C t C 0()ˑ100%(1)式中:η为TOC 去除率,%;C t 和C 0分别为TOC 采样浓度和初始浓度,mg㊃L -1㊂1.4㊀ZSM-5沸石煅烧再生在目标沸石吸附高盐废水中有机物后,对其进行过滤㊁干燥,随后将沸石产品在马弗炉中不同温度下煅烧2h㊂本研究主要考察煅烧温度对沸石再生效果的影响㊂煅烧温度分别为550㊁600㊁650和700ħ㊂煅烧过程中的升温速度均为10ħ/min,随后自然冷却至室温㊂煅烧后的沸石用于高盐废水中总有机碳的吸附净化,重复测定3次,并通过吸附效率确定最佳的煅烧温度㊂在最佳煅烧温度下对ZSM-5重复进行15次煅烧再生-再利用,每次再生后将其作为吸附剂进行吸附试验㊂通过15次TOC 去除率评价ZSM-5再生效果及其吸附净化效率的稳定性㊂2㊀结果与讨论2.1㊀ZSM-5沸石表征图2㊀不同Si /Al 原料合成ZSM-5的XRD 谱Fig.2㊀XRD patterns of ZSM-5obtained from raw materials with different Si /Al图2显示了不同Si /Al 原料制备的样品F1~F10的XRD 谱㊂所有合成产物在2θ为7.5ʎ~10ʎ和22.5ʎ~24.5ʎ均可观察到5个不同强度的MFI(mobi five)特征峰㊂Jade 6.0软件分析结果证实,所有合成产品的XRD 数据均与ZSM-5(PDF#44-0003)沸石的XRD 谱相匹配,也与文献[18]报道的ZSM-5沸石的XRD 数据相似㊂这些信息确证合成产品均为ZSM-5沸石㊂图3为样品的SEM 照片㊂不同Si /Al 原料合成的ZSM-5沸石的形貌均为明显的六棱柱,且随着Si /Al 的增加ZSM-5沸石粒径有减小趋势㊂当Si /Al 增加时,颗粒的形态从较为 短㊁粗㊁厚 逐渐转变为㊀第12期杨露婷等:ZSM-5沸石的合成㊁再生及其对废水中有机物的吸附研究4555 长㊁细㊁薄 ㊂合成ZSM-5沸石的形态变化与其晶胞中的硅铝原子比例有关㊂图3㊀不同Si/Al原料合成ZSM-5的SEM照片Fig.3㊀SEM images of ZSM-5obtained from raw materials with different Si/Al随着原料Si/Al的增加,ZSM-5沸石产品中的Si/Al增加(见表2)㊂同时,随着原料Si/Al的增加,合成ZSM-5沸石产品中的比表面积也呈增加趋势(见表2),但当Si/Al大于400后沸石的比表面积变化不明显㊂2.2㊀ZSM-5吸附性能图4为F1~F10对高盐废水中有机物的吸附净化效果㊂TOC去除率随着Si/Al的增加而提高,Si/Al由50提高至500时,TOC去除率由F1的20.04%提高至F10的92.55%㊂在F8之前,这种趋势更为明显,当Si/Al为400时,其TOC去除率就已经达到91.84%㊂随着Si/Al的继续提高,其TOC去除率增加缓慢㊂当Si/Al由400提高至500时,TOC去除率由91.84%升高至92.55%㊂当原料Si/Al大于等于400后废水TOC4556㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷吸附去除效率增加缓慢与沸石产品中的Si/Al对比表面积的影响有一定内在联系㊂即当原料Si/Al大于等于400后,沸石产品的比表面积变化不大,约在340m2㊃g-1(表2)㊂表2㊀合成样品的Si/Al和比表面积Table2㊀Si/Al and specific surface area of synthesized samplesSample No.Si/Al of raw material Si/Al of sample Specific surface area/(m2㊃g-1)F15047.6108.7F210067.4160.5F3150105.1185.6F4200122.2204.8F5250153.4220.9F6300184.6263.9F7350284.4287.6F8400358.5338.9F9450395.7336.7F10500422.3340.5提高ZSM-5样品的Si/Al可以显著增加其比表面积㊂比表面积的增加为ZSM-5沸石提供了更多的吸附位点,进而增强其对废水有机物的吸附性能[19-20]㊂依据沸石对高盐废水中总有机碳的吸附净化效果,本研究认为Si/Al为500时合成的ZSM-5沸石较佳㊂下面均围绕原料Si/Al为500时合成的ZSM-5沸石开展研究㊂2.3㊀ZSM-5沸石煅烧再生及稳定性图5为不同温度下煅烧再生后沸石的XRD谱,在550㊁600㊁650和750ħ下样品均表现出了ZSM-5所具有的特征峰,与图2中的XRD数据相似(ZSM-5,PDF#44-0003),这一结果表明煅烧再生后其物相组成未发生改变㊂图6为不同温度下煅烧再生后样品的SEM照片,4个温度下ZSM-5的形貌特征均保持稳定,未出现晶体熔融或坍塌现象㊂图4㊀样品F1~F10的TOC去除率Fig.4㊀TOC removal rate of sample F1~F10图5㊀不同煅烧温度下再生后样品的XRD谱Fig.5㊀XRD patterns of samples after regeneration atdifferent calcination temperatures㊀㊀不同温度下煅烧再生后的沸石进行3次新鲜废水吸附后,高盐废水中有机物的去除率如图7所示㊂4个煅烧再生温度下,TOC去除率都在650ħ时最佳,分别为92.72%㊁79.98%和63.71%㊂煅烧温度过低或过高时ZSM-5沸石对废水TOC的去除率均有所降低,这与煅烧温度对有机物的去除效果以及煅烧后的残余碳含量有关㊂总体上,ZSM-5沸石的最佳煅烧温度为650ħ㊂ZSM-5在650ħ下煅烧后进行再生-再利用吸附试验,废水的TOC去除效率随沸石重复利用次数的变化趋势如图8所示㊂结果表明,煅烧再生沸石在15次循环使用过程中,废水的TOC去除率均大于92.5%,有机物的净化效率比较稳定㊂这一结果表明所合成的高Si/Al的ZSM-5沸石在煅烧再生后对废水有机物的吸附净化效果依然非常稳定,证明本文合成的ZSM-5沸石可以重复煅烧再生并循环用于废水有机物的吸附净化㊂第12期杨露婷等:ZSM-5沸石的合成㊁再生及其对废水中有机物的吸附研究4557㊀图6㊀不同煅烧温度下样品的SEM 照片Fig.6㊀SEM images of samples at different calcinationtemperatures 图7㊀不同煅烧温度下再生后ZSM-5的TOC 去除率Fig.7㊀TOC removal rate of ZSM-5after regeneration at different calcinationtemperatures 图8㊀TOC 去除率随再生次数的变化曲线Fig.8㊀Curve of TOC removal rate changing with regeneration number3㊀结㊀论1)通过水热合成法合成了Si /Al 不同的ZSM-5沸石,随着Si /Al 增加,ZSM-5的粒径减小,比表面积增大,形貌由 短㊁粗㊁厚 转变为 长㊁细㊁薄 ㊂2)TOC 去除率随着ZSM-5的Si /Al 增加而提高,原料Si /Al 为500时合成的ZSM-5沸石对高盐废水有机物具有良好去除率,废水TOC 的去除率大于92.5%㊂3)550~700ħ下煅烧再生后的ZSM-5均保持了良好的物相构成和形貌特征,650ħ为最佳煅烧再生温度㊂4)再生ZSM-5沸石对高盐废水TOC 的去除率均保持在92.5%以上㊂ZSM-5表现出良好的再生性能和优异的废水有机物去除率㊂4558㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷参考文献[1]㊀LEFEBVRE O,MOLETTA R.Treatment of organic pollution in industrial saline wastewater:a literature review[J].Water Research,2006,40(20):3671-3682.[2]㊀SHI J X,HUANG W P,HAN H J,et al.Review on treatment technology of salt wastewater in coal chemical industry of China[J].Desalination,2020,493:114640.[3]㊀LI J,SHI W S,JIANG C W,et al.Evaluation of potassium as promoter on anaerobic digestion of saline organic wastewater[J].BioresourceTechnology,2018,266:68-74.[4]㊀CAO T N,BUI X T,LE L T,et al.An overview of deploying membrane bioreactors in saline wastewater treatment from perspectives of microbialand treatment performance[J].Bioresource Technology,2022,363:127831.[5]㊀MARATHE D,SINGH A,RAGHUNATHAN K,et al.Current available treatment technologies for saline wastewater and land-based treatment asan emerging environment-friendly technology:a review[J].Water Environment Research,2021,93(11):2461-2504.[6]㊀LI W S,LI Y M,GU G W.Application of advanced oxidation processes in the treatment of persistent organic pollutants[J].Industrial WaterTreatment,2004,24(11):9-12.[7]㊀LIU X Y,LI H M,JIA Y,et al.Progress in the application of advanced oxidation process in the treatment of drilling wastewater[J].AppliedChemical Industry,2021,50(8):2275-2279.[8]㊀王㊀韬,李鑫钢,杜启云.含酚废水治理技术研究进展[J].化工进展,2008,27(2):231-235.WANG T,LI X G,DU Q Y.Research progress of phenol-containing waste water disposal technique[J].Chemical Industry and Engineering Progress,2008,27(2):231-235(in Chinese).[9]㊀单㊀宇.电解处理腌制工业有机废水的实验研究[D].沈阳:东北大学,2009.SHAN Y.Experimental study on electrolytic treatment of organic wastewater from pickling industry[D].Shenyang:Northeastern University, 2009(in Chinese).[10]㊀李蕊宁,杨㊀磊,杨㊀帅,等.煤基活性炭对高盐废水中有机物的去除探究[J].山东化工,2021,50(12):230-231+234.LI R N,YANG L,YANG S,et al.Study on removal of organic matter from high salinity wastewater by coal-based activated carbon[J].Shandong Chemical Industry,2021,50(12):230-231+234(in Chinese).[11]㊀刘晓晶,李㊀俊,朱海晨,等.活性炭吸附高盐废水COD的影响因素及应用[J].应用化工,2020,49(6):1519-1522.LIU X J,LI J,ZHU H C,et al.The influence factors and application of activated carbon adsorbing COD in high salt wastewater[J].Applied Chemical Industry,2020,49(6):1519-1522(in Chinese).[12]㊀王倩雯,张㊀丽,刘东方,等.改性活性炭吸附湿法冶金高盐废水中有机物的研究[J].工业水处理,2020,40(6):64-67.WANG Q W,ZHANG L,LIU D F,et al.Study on adsorption of organic matter in hydrometallurgical high-salt wastewater by modified activated carbon[J].Industrial Water Treatment,2020,40(6):64-67(in Chinese).[13]㊀YUEN F K,HAMEED B H.Recent developments in the preparation and regeneration of activated carbons by microwaves[J].Advances inColloid and Interface Science,2009,149(1/2):19-27.[14]㊀GAZIGIL L,ER E R,YONAR T.Determination of the optimum conditions for electrochemical regeneration of exhausted activated carbon[J].Diamond and Related Materials,2023,133:109741.[15]㊀NGUYEN D K,DINH V P,NGUYEN H Q,et al.Zeolite ZSM-5synthesized from natural silica sources and its applications:a critical review[J].Journal of Chemical Technology&Biotechnology,2023,98(6):1339-1355.[16]㊀LIU Y,LU H.Synthesis of ZSM-5zeolite from fly ash and its adsorption of phenol,quinoline and indole in aqueous solution[J].MaterialsResearch Express,2020,7(5):055506.[17]㊀LIU Y,LU H,WANG G D.Preparation of CuO/HZSM-5catalyst based on fly ash and its catalytic wet air oxidation of phenol,quinoline andindole[J].Materials Research Express,2021,8(1):015503.[18]㊀XING M J,ZHANG L,CAO J,et al.Impact of the aluminum species state on Al pairs formation in the ZSM-5framework[J].Microporous andMesoporous Materials,2022,334:111769.[19]㊀WU J,WANG C,MENG X,et al.Enhancement of catalytic and anti-carbon deposition performance of SAPO-34/ZSM-5/quartz films in MTAreaction by Si/Al ratio regulation[J].Chinese Journal of Chemical Engineering,2023,56:314-324.[20]㊀WANG Y L,ZHANG X C,ZHAN G G,et paring the effects of hollow structure and mesoporous structure of ZSM-5zeolites on catalyticperformances in methanol aromatization[J].Molecular Catalysis,2023,540:113044.。

烧结沸石复合吸附剂的传热性能实验研究

烧结沸石复合吸附剂的传热性能实验研究
中图分 类号 : T 0 1 Q 2 文献标识码 : A
E p rm e t lS u y o a a s e r o ma c fS n e e o i m p st s r e t x e i n a t d n He tTr n f r Pe f r n e o i t r d Ze l e Co o i Ad o b n t e
1 前 言
提高吸附式制冷性能的重要途径 。目前对传热性 能 的研究主要集 中在提高 吸附剂 的导热系数 , 减
吸附式 制 冷 可 利 用 低 品 位 余 热 和 可 再 生 能 小 接触热 阻 和增大 吸 附床 的换 热 面积 等方 面 。一
te a cn ut i a .6 W/ m ・ hr l od cv yw st 0 54 ( m it o K)w i ces y6~8t e o prdwhn ad i scm ae i odnr eleg ue m h t a
壮 韦小 雄 ,
22 0 ) 6 60
20 3 2 0 27;.山东大学 , 山东济南
要 : 研制 了一种新型的烧结沸石吸附剂单元管。对 4种含水 的烧结沸 石吸附剂 的有 效导热系数 A 进行 了实验研
究 。发现含水量 及脱附速率O/ t A x O 对 影响很 大 ; 且烧结沸石 复合吸附剂 的有效导热 系数 明显高 于烧 结纯 沸石颗粒 和烧结 纯沸 石原 粉 ; 添加石墨后 , 其有效 导热 系数最高达 到 0 54 ( ・ ) 与散装 沸石颗 粒相比 , .6 W/ m K , 提高 6—8 。 倍 关键词 : 吸附式制冷 ; 烧结沸石 ; 传热强化 ; 有效导热系数
h g e .Th n g a h t sa d d i h i tr d c mp st a s r e t x e i n a e u t i d c t d t a t ma i m f c ie ih r e p i wa d e n t e s e e o o i d o b n ,e p r r e n e me tlr s l n ia e h ti x mu e e t s s v

沸石对亚硝胺吸附及降解的研究进展

沸石对亚硝胺吸附及降解的研究进展
大 学分 析 测 试 基金 .
Pr g e so h o r s n t eAds pto nd De r da i n o ir s m i sb o ie or i n a g a to f t o a ne y Ze lt s N
W AN i , HU in u M minier gN mi nvri, oj g 10 3Jagu C ia ol efC e ir d e i gnei , a n U i syN n n 09 .i s. h e o ta C aE n g e t t 2 n n
ce y o e lt t tlc m p u s o i c to Si to c d A lo.her s a c r rs n t e o lo to a i si u ' inc fz o i wi mea o o nd m df ai n i nr du e . s t e e h p og e so herm va fni s m ne Ss ml e h i r r na rz d. n l t veo m e fne f cina aeil l iaet ep lu in o ni osm i si o p ce . i e Fial hede l p nt y o w un to l trast ei n t h o lto f t a ne Spr s e td m o m r K e o d : e lt; tosm i ; e e t ds r to c tl tcde rd to e io y w r s z o i ni a ne s lci a o in; aayi g a ai n; nvr nme tl oe t n e r ve p n a tci pr o
文 章编号 : 2 39 3 (0 20 .0 0 1 0 5 .8 7 2 1) 10 6 .0

LiX沸石分子筛的改性及其氮氧吸附性能研究

LiX沸石分子筛的改性及其氮氧吸附性能研究

LiX沸石分子筛的改性及其氮氧吸附性能研究沸石分子筛的非骨架阳离子以相对固定的形式分布于骨架结构中,具有一定的流动性,可进行离子交换反应。

沸石分子筛是一种优良的吸附剂,对极性小分子有很强的吸附能力,对于临界直径、极性、形状、不饱和度等不同的分子具有选择吸附性。

所以,沸石分子筛被广泛地应用于诸多领域,尤其是气体分离行业。

LiX沸石分子筛就是其中的代表,具有较好的氮氧吸附分离性能。

通过稀土金属Ce<sup>3+</sup>对LiX沸石分子筛进行阳离子交换改性,分析其对氮氧吸附性能的变化,有利于得到氧气吸附性能更好的沸石分子筛。

通过阳离子交换法在不同条件下对LiX沸石分子筛进行Ce<sup>3+</sup>改性,制备出Ce LiX沸石分子筛,并通过TG-DSC、FT-IR、XRD、SEM、XRF等表征方法分析了改性前后分子筛的组成及结构变化;通过BET、气体吸附分析了不同反应条件下得到的CeLiX 沸石分子筛的比表面积、孔径变化以及氮气和氧气的吸附性能;通过吸附模型拟合CeLiX分子筛对氮气和氧气的吸附,分析了CeLiX型沸石分子筛离子交换反应的动力学规律。

交换次数和交换剂浓度是CeLiX沸石分子筛结构特征的主要影响因素。

在一定的范围内,随着交换剂浓度的提高、交换次数的增加,CeLiX红外吸收峰和XRD 衍射峰的强度均会减弱,粉体表面变得粗糙,但CeLiX能够保持稳定的骨架和晶体结构。

当交换剂浓度和交换次数达到一定值时,继续增大交换剂浓度、增加交换次数,Ce LiX骨架和晶体结构容易遭到损坏、粉体表面变得光滑。

反应时间和反应温度对Ce LiX沸石分子筛的结构影响较小,随着反应时间的增加、反应温度的提高,CeLiX沸石分子筛红外吸收峰的强度均会减弱,但是都不会影响其骨架结构。

交换次数、交换剂浓度、反应时间和反应温度对CeLiX沸石分子筛比表面积、氮气吸附量和氧气吸附量均有一定影响,主要影响因素是交换次数和交换剂浓度。

NaX沸石复合吸附剂的性能与应用

NaX沸石复合吸附剂的性能与应用

图 1 3 种形状吸附剂的吸附性能比较 F ig. 1 A dso rp tivity com p a rison of the th ree sam p les
第 5 期
卢允庄, 等: N aX 沸石复合吸附剂的性能与应用
731
于沸石颗粒, 对单位体积的吸附剂, 复合吸附剂最大 脱附量比粉状的高 12% , 比颗粒状的高 55%. 2. 2 导热性能
2 复合吸附剂的性能
2. 1 吸附性能 为比较复合吸附剂块与沸石原粉、沸石颗粒的
吸附性能, 分别对这 3 种材料进行了试验. 因沸石粉 和沸石颗粒是不定型的, 其表面积对其吸附性能具 有一定的影响, 为此, 先将 3 种样品做成相同的形 状: 沸石粉在制块模具中直接加压成型, 所加压力与 制复合吸附块时的相同; 沸石颗粒则装填在一个用 钢丝网围成的相同形状的架子中. 再各取 100 g 暴 露于空气中、常温常压下吸附达到平衡的样品放置 在 100°C 的恒温炉内加热, 待充分脱附后再取到环 境中让其吸附, 在此过程中测定吸附块的质量m z 的 变化. 所得的结果如图 1 (a) 所示. 实验在常压下进 行, 脱附时间为 8 h. 由图可见, 复合吸附块与沸石 原粉的脱附速度、最大脱附量都十分接近, 且均比沸 石颗粒的高. 对于吸附速度, 开始时三者都很接近, 而到约 3 h 后, 复合吸附块的吸附速度相对沸石粉 的逐渐慢了下来. 在实际应用中比较单位体积吸附 剂的性能也很重要. 在相同体积 (100 mL ) 下, 3 种材 料脱附出的吸附质的质量m w 随时间的变化关系示 于图 1 (b). 从图 1 可看出, 复合吸附剂的吸附性能明显优
吸附剂的导热系数包括真实导热系数 Κr 和有 效导热系数 Κe, 前者即一般所说的导热系数, 是指吸 附剂在无传质, 即其吸附量不变时的导热系数, 后者 则考虑了传质对传热的影响. Κr 主要取决于吸附剂 的材料和吸附量, 并随着温度的升高而略增大. 图 2 的曲线 A 给出了在测试温度为 26°C 时, 上述复合 吸附剂的 Κr 随吸附量 x 的变化关系, 在该温度下达 到吸附平衡时, 此 Κr 的值为 0. 23 W (m ·K) , 是沸 石颗粒堆积床真实导热系数的 2 倍多. 图中的曲线 B 、C 和 D 为采用其他添加剂 (如 CaC l2) 或在不同制 备过程下得到的复合吸附剂的导热系数, 导热系数 的测量采用瞬态热丝法[5], 测量过程中吸附剂块在 密闭容器中达到热质平衡. 由图中可看出, 吸附量 x 对 Κr 的影响很大.

吸附分离技术研究进展

吸附分离技术研究进展

吸附分离技术研究进展吸附分离技术是指将流动相(气体或液体)与具有较大表面积的多孔固体颗粒相接触,流动相的一种或多种组分选择地吸附或持留于顺粒微孔内,从而达到分离目的的方法。

为了回收该组分和吸附剂的净制,作为吸附剂的固体颗粒需要再生,吸附和再生构成吸附分离的循环操作。

常用的吸附剂包括硅胶、氧化铝、活性炭、碳分子筛、沸石分子筛等[1]。

吸附是一表面现象,在流体(气或液)与固体表面(吸附剂)相接触时,流固之间的分子作用引起流体分子(吸附质)浓缩在表面。

对一流体混合物,其中某些组分因流固作用力不同而优先得到浓缩,产生选择吸附,实现分离。

吸附分离过程依据流体中待分离组分浓度的高低可分为净化和组分分离,一般以质量浓度10%界限[2],小于此值的称为吸附净化。

吸附是自发过程,发生吸附时放出热量,它的逆过程(脱附)是吸热的,需要提供热量才能脱除吸附在表面的吸附分子。

吸附时放出热量的大小与吸附的类型有关:发生物理吸附时,吸附质吸附剂之间的相互作用较弱,吸附选择性不好,吸附热通常是在吸附质蒸发潜热的2~3倍范围内,吸附量随温度升高而降低;而发生化学吸附时,吸附质吸附剂之间的相互作用强,吸附选择性好且发生在活性位上,吸附热常大于吸附质蒸发潜热的2~3倍。

在吸附分离技术的实际应用中,吸附剂要重复使用,吸附与脱附是吸附分离过程的必要步骤。

吸附剂脱附再生的实现方式主要有两种:提高吸附剂温度和用低吸附质浓度的流体。

吸附剂的性能决定着吸附分离技术的应用,因此吸附剂的开发一直是吸附分离技术的研发重点。

从含CO和N2的气体混合物中分离出CO,或从烯烃和烷烃气体混合物中分离出烯烃,用一般的吸附剂无法实现,因这些待分的物质性质相近,在吸附剂上有着相近的吸附容量,选择性差。

如果利用CO和烯烃分子都有л键和络合吸附具有化学吸附的专一性的特性,就可能开发出具有选择性吸附CO 和烯烃的专用吸附剂,多年来在这方面的研究开发取得了不少的结果[3-6]。

13X沸石颗粒吸附剂制备及钙吸附的性能研究

13X沸石颗粒吸附剂制备及钙吸附的性能研究
a i d r t e ma s r t fmae il1 s b n e ,h s ai o tra 3X e lt ca a d fn o lp wde s 1 4:1- n acnain tm p rt r s o zoi e, ly, n e c a o i r wa 5: a d c l i to e e au e wa
无 机 盐 工 业
2 0
第4 2卷 第 1 期 1
21 0 0年 1 1月
I NORGANI C CHEMI CAL NDUS SI TRY
1 沸 石 颗 粒 吸 附 剂 制 备 及 钙 吸 附 的 性 能研 究 木 3 X
赵 启文 , 张兴儒 , 兰英 , 屠 崔小 琴
6 0 ℃ . roe , acu a srt nc p ct su o2 . 1mg g,n h s aew so l . 8 . ce sda sr 5 Moev r clim b opi a a i wa pt 5 3 / a dtel srt a ny1 9 % Derae d o o y o
( 海 大 学 化工 学 院 , 海 西 宁 80 1 ) 青 青 10 6

要: 向粉 末 状 1X 沸石 中添 加 黏 结 剂 、 孑 剂 、 等辅 助 物 料 , 经 干 燥 、 温煅 烧 成 型 、 碎 、 分 制 得 颗 3 增 L 水 再 高 破 筛
粒状吸附剂 , 并用于吸附溶液中的钙离子。对黏结剂进行筛选 , 研究 了原料配 比、 煅烧温度 、 径 、 粒 吸附时问等因素
Z a ie ,h n igu T ayn , u Xaqn hoQw n Z a gXn r ,uL n ig C i ioi
( colfC e i l n i en 。 iga nvrt。ii 10 6 C i ) Sho o hm c gn r g Qnh i i syXnn 80 1 ,hn aE ei U ei g a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沸石吸附的研究进展
摘要:本文主要通过沸石分子筛吸附剂对碘吸附的原理及传质影响的研究,目的是加强认识脱碘的机理,为进一步开发沸石吸附剂的应用提供一定的理论依据。

同时针对目前国内外的研发及应用情况进行了概述,提出了存在的问题和解决的思路。

关键字:沸石脱碘吸附传质
前言
沸石是含碱土金属或碱金属的具有三维空间结构的硅铝酸盐晶体,分为天然沸石和人工沸石。

天然沸石空隙中充满大量的水分,加热时会沸腾而得其名。

人工合成沸石是以硅和含铝的盐为原料,经过水热合成大小与分子大小相当的材料,也称分子筛。

沸石的化学通式为M x/n[(AlO2)x(SiO2)y]·mH2O,其中M通常为Na、K、Ca等金属离子。

沸石比表面积适中,一般为500~800m2/g;其孔结构以微孔为主,孔径较小,一般主孔径最大不超过2.5nm,且分布均一。

沸石分子筛是通过氧硅四面体和氧铝四面体单元在过氧架桥作用下形成的,其中氧铝四面体带负电性,且孔道内分布有金属阳离子,容易与外界的阳离子发生交换,表现出离子交换性。

常用的分子筛全交换工作容量在2.0~2.5mg/g。

沸石是一种强极性吸附剂,极易水分子等极性分子,且由于自身铝硅比和孔径大小不同,对不同极性分子具有选择性,孔道内有可被交换的金属阳离子,对某些特定分子有特殊的吸附作用。

在废气处理方面,沸石可以吸附废气中的SO2和NO x,但是其吸附量低。

利用
改性方法可改变沸石的电性、孔径等,可以用来对不同分子特性和直径的气体进行吸附。

在水处理方面,利用沸石的离子交换能力,可以吸附去除废水中的氨氮,也可以利用利用改性沸石处理高氟污水或地下水,有价格低的优势,但吸附容量往往不高。

沸石吸附剂脱碘的特性就是一种选择性吸附,通过选择适合碘分子大小孔径的沸石制成吸附剂,达到吸附碘的目的。

二、沸石吸附剂的脱碘原理
1. 吸附原理
(1)物理吸附
沸石吸附剂吸附碘包括物理吸附和化学吸附。

物理吸附主要是由于溶液中的碘与沸石分子筛固体表面之间存在范德华力(Van der waals),而产生了范德华吸附,它是可逆的。

当沸石分子筛表面分子与液体中碘之间的引力大于液体内部分子运动时,液体中的碘就被吸附在沸石分子筛表面上。

它们之间的吸引机理,与气体的液化和冷凝时的机理类似,其吸附热比较低。

从分子运动观点看,这些吸附在沸石吸附剂表面的分子由于分子运动,也会从固体表面脱离而进入液体中去,但其本身不发生化学变化。

所以物理吸附的特征就是吸附物质不发生任何化学反应,吸附的进程极快,参与吸附的各相间的平衡瞬时即可达到。

而且这种吸附通常在固体表面几个分子直径的厚度区域,单位体积固体表面所吸附的量非常小。

(2)化学吸附
化学吸附是由于沸石通过所存在的孔道和空腔中的阳离子交换,使其吸附性能发生较大变化,即沸石通过与含Ag的可溶性盐类溶液进行离子交换成银离子型沸石。

其脱碘的原理是这种载在沸石上的可交换的银离子从沸石上解离出来,与
碘相互作用,生成难溶的AgI而达到除去碘的目的,AgI存在有两种可能,一是
在微孔中,另一种是残留在流体中,具体因吸附过程中的吸附方式而已,化学通式为:
Ag-ZSM-5 + I-Ag I -ZSM-5
在化学吸附过程中,被吸附的碘离子和沸石吸附剂中的银发生化学作用,类似于化学反应。

因而,化学吸附的吸附热接近于化学反应的反应热,比物理吸附大得多。

因为在吸附过程中需化学键力作用,所以它选择性比较强,一般不可逆的。

而化学吸附容量的大小,随沸石吸附剂与碘形成的化学键力大小的不同而有差异。

并且需要一定的活化能,随着吸附温度的提高吸附量增加。

在相同的条件下,化学吸附(或解吸)速度都比物理吸附慢。

所以工业上一般是采用沸石吸附剂的化学吸附特性。

相关文档
最新文档