第六章 大定律与中心极限定理习题

合集下载

大数定律及中心极限定理应用题

大数定律及中心极限定理应用题

大数定律与中心极限定理 应用题1. 设各零件质量都是随机变量,且独立同分布,其数学期望为0.5kg ,标准差为 0.1kg, 问( 1)5000 只零件的总质量超过 2510kg 的概率是多少? (2)如果用一辆载重汽车运输这 5000 只零件,至少载重量是多少才能使不超重的概率大于 0.975?解 设第 i 只零件重为 X i , i1,2,...,500 ,则 EX i 0.5 , DX i 0.125 0 0设XX i ,则 X 是这些零件的总重量i1EX0.5 50002500 , DX0.125000 50a由中心极限定理X 2500~ N (0, 1)50(1) P(X2510) = P( X 2500 2510 2500 )50501 0 (1 0.9213=0.0787 2 ) =(2) 设 汽车载重量为 a 吨P( Xa) = P(X2500 a 2500 )0 (a 2500) 0.95505050查表得a2500 1.6450计算得 a 2511.59因此汽车载重量不能低于 2512 公斤 2. 有一批建筑房屋用的木柱,其中 80%的长度不小于 3m ,先从这批木柱中随机的取 100 根,求其中至少有 30 根短于 3m 的概率? 解设 X 是长度小于 3m 的木柱根数,则 X ~ b(100, 0.2)a由中心极限定理X ~ N (20, 16)P( X30) =P(X20 30 20)161610 (2.5) =1 0.9938 =0.00623. 一个食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一种蛋糕的价格是随机变量,它取 1 元, 1.2 元, 1.5 元的概率分别为 0.3, 0.2,0.5.若售出 300 只蛋糕,(1)求收入至少 400 元的概率 (2)售价为 1.2 元蛋糕售出多于 60 只的概率。

解 设第 i 只蛋糕的价格为 X i , i 1,2,...,300 ,则 X i 有分布律:X i1 1.2 1.5P0.30.20.5由此得E( X i ) 1.29E( X i 2 ) 1.713故 D( X i )EX i 2( EX i )20.0489300( 1) 设 X 是这一天的总收入,则 XX ii 1300EXEX i300 1.29i 1300DXDX i300 0.0489i 1a由中心极限定理X ~ N(300 1.29, 300 0.0489)P( X400) = P(X300 1.29 400 300 1.29)300 0.0489300 0.04891 0 (3.39) =1 0.9997 =0.0003( 2) 以 Y 记 300 只蛋糕中售价为 1.2 元的蛋糕只数,于是 Y ~ b(300,0.2)Y 300 0.2 a~ N ( 0,1)300 0.2 0.8P(Y 60) = PY 300 0.2 60 6010 (0) 0.53000.2 0.8484.设某种商品第 n 天的价格为 Yn ,令 Xn=Yn+1-Yn ,Xn 独立同分布, 且 Xn 期望是 0,方差是 2,若该商品第一天价格是 100,则第 19 天价格在 96 到 104 之间的概率是多少?解:X 1 Y 2 Y 1, X 2 Y 3 Y 2,X 3 Y 4 Y 3,X n Y n 1 Yn18所以X n Y19Y1Y19100n1181818E X n0 , D X n DX n36n 1n 1n 1由中心极限定理,P 96Y19104P Y19100418181818X n E X n4= P X n E X n4P n1n 166n 1n 1221=0.497235.( 10)一枚均匀硬币至少要抛多少次,才能使正面出现的频率与概率之间的差的绝对值不小于 0.05 的概率不超过 0.01?请分别用(1)切比雪夫不等式,与(2)中心极限定理给出估计。

第六大数定律与中心极限定理演示文稿

第六大数定律与中心极限定理演示文稿

100
(2)在100次抽取中, 数码“0”出现次数为 Xk k 1 由中心极限定理,
100
100
Xk E(Xk )
k 1
k 1
100
D( Xk )
k 1
近似地
~
其中E(Xk)=0.1, D(Xk)=0.09
100
X k 10 近似地
即 k1 3
n
Xk n
的分布函数FnY(xn )对k于1 任n意 x满足
1 x
t2
lim
n
Fn
(
x
)
e 2 dt ( x)
2
第14页,共33页。
n
Xk n
k 1
~ N (0,1)
n 近似
n
X
k
~
近似
N
(n
,
n
2
)
k 1
1
n
n
Xk
k 1
/ n
~ N (0,1)
近似
X
1 n
n k 1
Xk
~ N(, 2
例1 设电站供电网有10000盏灯,夜晚每一盏灯开灯的概
率是0.7,假定开、关时间彼此独立,估计夜晚同时开着
的灯数在6800与7200之间的概率
解 设X表示在夜晚同时开着的灯的数目,它服从参数 为n=10000,p=0.7的二项分布,则有
7199
P(6800 X 7200)
Ck 10000
0.7k
lim
n
P{|
Yn
a
|
}
1
则称随机变量序列Y1,Y2 ,, Yn, , 依概率收敛于a.
定义2 设X1,X2,,Xn, 是一随机变量序列

大数定律和中心极限定理例题与解析

大数定律和中心极限定理例题与解析
身高测量
在大量随机选取的人群中测量身高, 这些身高的平均值将接近正 态分布, 这也是中心极限定理的一个应用实例。
中心极限定理的应用
概率论与统计学
中心极限定理是概率论和统计学中的基本原理 之一, 用于研究随机变量的分布和统计推断。
金融领域
中心极限定理在金融领域中也有广泛应用, 例如在资 产定价、风险管理和投资组合优化等方面。
例题一解析
要点一
题目
一个班级有30名学生, 每个学生随机选择一个1-100之间的整 数。求这30个随机数的平均数大于50的概率。
要点二
解析
首先, 根据大数定律, 当试验次数足够多时, 随机数的算术平 均值趋近于期望值。在本题中, 每个随机数的期望值是50, 因 此30个随机数的平均数期望值是50。其次, 根据中心极限定 理, 当试验次数足够多时, 随机变量的算术平均值的分布趋近 于正态分布。因此, 这30个随机数的平均数大于50的概率可 以通过正态分布的概率密度函数计算得出。
大数定律的实例
抛硬币实验
如果我们抛硬币1000次,虽然单次抛 硬币的结果是随机的,但当我们计算 正面朝上的频率时,会发现这个频Βιβλιοθήκη 会逐渐趋近于50%。生日悖论
在一个有30人的房间里,存在一定概 率两个人生日相同,这个概率随着人 数的增加而趋近于100%。
大数定律的应用
概率论与统计学
大数定律是概率论和统计学中的 基本原理, 用于估计概率和预测未 来的随机事件。
例题三解析
题目
一个彩票公司发行了100万张彩票, 每张彩票都有一个独立 的随机数生成器生成的一个随机数。求至少有1张彩票的随 机数小于1的概率。
解析
首先, 根据大数定律, 当试验次数足够多时, 随机数的频率趋 近于概率。在本题中, 每张彩票的随机数小于1的概率是 1/100(即每张彩票生成的随机数小于1的概率是固定的)。 其次, 根据中心极限定理, 当试验次数足够多时, 随机变量的 独立同分布的随机变量和的分布趋近于正态分布。因此, 这 100万张彩票中至少有1张彩票的随机数小于1的概率可以 通过正态分布的概率密度函数计算得出。

概率论-大数定律和中心极限定理习题和例题

概率论-大数定律和中心极限定理习题和例题
本题参考答案有误二项分布的正态近似二项分布的正态近似定理522棣莫弗拉普拉斯中心极限定理的随机变量则当n充分大时有二项分布是离散分布而正态分布是连续分布所以用正态分布作为二项分布的近似时可作如下修正
有关大数定律习题选讲
5.5 设{ X n }是独立同分布的随机变量序列,且假设E[ X n ] 2, Var[ X n ] 6, 证明:
解: 依题意,显然有, {X n }是一个独立同分布的随机变量序列,只要存在 有限的公共数学期望,则{X n }的算术平均值依概率收敛于其公共数学期 望,由于X i 服从[5,53]上的均匀分布,所以E[ X i ] (53 5) / 2 29, i 1, 2, , n
1 n 所以,当n 时,n 次服务时间的算术平均值 X i以概率1收敛于29 (分钟). n i 1
P k1 n k2 P k1 0.5 n k2 0.5
k2 0.5 np k1 0.5 np np(1 p) np(1 p)
我们这门课对修正不做要求
中心极限定理的应用例题补充
二、给定 n 和概率,求 x
补充例4
有200台独立工作(工作的概率为0.7)的机床, 每台机床工作时需15kw电力. 问共需多少电力, 才可 有95%的可能性保证供电充足?
又记Y=X1+X2+…+X200,则 E[Y]=140,Var[Y]=42. 设供电量为x, 供电充足即为15Y≤x,则从
解:用 Xi=1表示第i台机床正常工作, 反之记为Xi=0.
2 2 2 Y X X X X X X X k 1 2 3 4 5 6 3 n 2 X 3 n 1 X 3 n k 1 n

中心极限定理例题

中心极限定理例题

中心极限定理例题引言中心极限定理是概率论中的一个重要定理,它描述了在一定条件下,大量独立同分布随机变量的和的分布会趋近于高斯分布,即正态分布。

这个定理在统计学中有着广泛的应用。

本文将通过几个例题来说明中心极限定理的应用和推导过程。

例题1假设有一个质量为1 kg的物体,在连续3次抛掷中,每次都以同样的力量抛出,求这3次抛掷的总共落地位置与平均落地位置之间的差距。

解:设第一次、第二次和第三次抛掷的落地位置分别为X1, X2和X3,平均落地位置为X。

由题意可知,X1, X2和X3是独立同分布的随机变量,且服从均值为0,方差为1的标准正态分布。

根据中心极限定理,当独立随机变量的数量足够大时,他们的和呈现出正态分布的特点。

因此,3次抛掷的总共落地位置可以表示为:Sum = X1 + X2 + X3根据中心极限定理,我们可以得到:Sum ~ N(0, 3)所以,总共落地位置与平均落地位置之间的差距可以表示为:Difference = Sum - 3 * X根据正态分布的性质,我们知道均值为0的正态分布减去均值为μ的正态分布的期望值为0,即:E[Difference] = E[Sum - 3 * X] = E[Sum] - E[3 * X] = 0 - 0 = 0所以,总共落地位置与平均落地位置之间的差距的期望值为0。

这意味着平均而言,总共落地位置与平均落地位置没有偏移。

例题2某超市每天出售的可乐数量服从均值为1000,标准差为10的正态分布。

今天超市售出的可乐数量为2000瓶,求今天超市售出的可乐数量与平均值之间的差距。

解:设今天超市售出的可乐数量为X,平均值为X。

由题意可知,X服从均值为1000,标准差为10的正态分布。

根据中心极限定理,当独立随机变量的数量足够大时,他们的和呈现出正态分布的特点。

我们知道,每天超市售出的可乐数量与平均值之间的差距可以表示为:Difference = X - X根据正态分布的性质,我们知道均值为μ的正态分布减去均值为μ的正态分布的期望值为0,即:E[Difference] = E[X - X] = 0所以,今天超市售出的可乐数量与平均值之间的差距的期望值为0。

大数定律与中心极限定理习题

大数定律与中心极限定理习题

第六章 大数定律与中心极限定理习题一、 填空题1.设n ξ是n 次独立试验中事件A 出现的次数,P 为A 在每次试验中出现的概率,则对任意的0>ε,有=≥-)(εξp n P n。

2.设随机变量ξ,E ξ=μ,D ξ=2σ,则≥<-)2(σμξP 。

3.设随机变量ξ的方差为2,则根据切比雪夫不等式有估计≤≥-)2(ξξE P 。

4.在概率论里,把研究在什么条件下,大量独立随机变量和的分布以 为极限这一类定理称为中心极限定理.5.将一枚硬币连掷100次,则出现正面的次数大于60的概率约为 。

6.在天平上重复称量一重为a 的物体,假设各次称重结果相互独立且同服从正态分布)2.0,(2a N ,若以n X 表示n 次称重结果的算术平均值,则为使95.0)1.0(≥<-a X P n ,n 的最小值应不小于自然数 。

二、选择题1.设随机变量ξ服从参数为n ,p 的二项分布,则当∞→n 时,≈<<)(b a P ξ( )。

(A ))()(a b Φ+Φ (B ))()(00a b Φ+Φ (C))()(a b Φ-Φ (D )1)(20-Φb2.设ξ为服从参数为n ,p 的二项分布的随机变量,则当∞→n 时,npq np-ξ一定服从( )。

(A)正态分布。

( B)标准正态分布。

(C )普哇松分布。

( D )二项分布。

三、计算题1.对敌人的防御地段进行100次射击,每次射击中,炮弹命中数的数学期望为2,而命中数的均方差为1。

5,求当射击100次时,有180颗到220颗炮弹命中目标的概率。

2.计算机在进行加法时,对每个加数取整(取为最接近于它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5,0。

5)上服从均匀分布。

(1)若将1500个数相加,问误差总和的绝对值超过15的概率是多少?(2)多少个数加在一起时的误差总和的绝对值小于10的概率为0.90?3。

已知某工厂生产一大批无线电元件,合格品占61,某商店从该厂任意选购6000个这种元件,问在这6000个元件中合格品的比例与61之差小于1%的概率是多少? 4.一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50千克,标准差为5千克,若用最大载重量为5吨的汽车承运,试用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0。

中心极限定理考试题及答案

中心极限定理考试题及答案

中心极限定理考试题及答案# 中心极限定理考试题及答案## 一、选择题1. 中心极限定理描述的是:- A. 样本均值的分布- B. 样本方差的分布- C. 总体均值的分布- D. 总体方差的分布答案:A2. 在中心极限定理中,随着样本容量的增加,样本均值的分布将趋近于:- A. 正态分布- B. 均匀分布- C. 指数分布- D. 二项分布答案:A3. 中心极限定理适用于:- A. 任何总体分布- B. 正态分布的总体- C. 均匀分布的总体- D. 仅指数分布的总体答案:A## 二、简答题1. 简述中心极限定理的主要内容。

答案:中心极限定理是统计学中的一个重要定理,它指出,如果从总体中抽取足够大的随机样本,无论总体分布如何,样本均值的分布都将趋近于正态分布。

这一定理在实际应用中非常重要,因为它允许我们使用正态分布的性质来估计样本均值的分布,即使我们对总体的分布知之甚少。

2. 中心极限定理为什么在实际应用中非常有用?答案:中心极限定理在实际应用中非常有用,因为它允许我们对样本统计量进行推断,即使我们对总体的分布一无所知。

这在很多情况下是非常有用的,比如在质量控制、经济数据分析等领域,我们往往只能获得有限的样本数据,而无法获得总体数据。

通过中心极限定理,我们可以对样本均值进行估计,并计算其置信区间。

## 三、计算题1. 假设一个总体的均值为μ,标准差为σ,从这个总体中随机抽取了容量为n的样本。

如果样本均值的样本量足够大,样本均值的分布将趋近于什么分布?请给出其均值和标准差。

答案:如果样本容量足够大,样本均值的分布将趋近于正态分布。

其均值等于总体均值μ,标准差等于总体标准差σ除以样本容量n的平方根,即σ/√n。

2. 给定一个总体,其均值为100,标准差为15。

从这个总体中随机抽取了100个样本,计算样本均值的标准误差。

答案:样本均值的标准误差是总体标准差除以样本容量的平方根。

在这个例子中,样本均值的标准误差为15/√100 = 1.5。

大数定律与中心极限定理 定义与例题

大数定律与中心极限定理 定义与例题

三、典型例题
一加法器同时收到 例1 20 个噪声电压 Vk ( k 1 , 2 , 20 ), 设它们是相互独立的随 且都在区间 ( 0 ,10 ) 上服从均匀分布 机变量 , ,记 V

k 1
20
Vk ,
求 P { V 105 } 的近似值 .
解 E (V k ) 5 ,
解:对每台车床的观察作为一次试验,
每次试验观察该台车床在某时刻是否工作, 工作的概率为0.6,共进行200次试验. 用X表示在某时刻工作着的车床数, 依题意, X~B(200,0.6), 设应供应N千瓦电力,现在的问题是:求满足 P(X≤N)≥0.999 的最小的N.
由德莫佛-拉普拉斯极限定理
X np np(1 p)

i1
n
Xi
n
1
n
EX i
i1
0.
切比雪夫不等式
如 果 随 机 变 量 X的 数 学 期 望 EX 和 方 差 DX 存 在 , 则 对于任一正数, 都有 P

X EX

DX

2
证 明 : 对 于 任 给 正 数 , 由 切 比 雪 夫 不 等 式 ,有 1 D n

i1
n
Xi
n
1
n
EX i
i1
0.
辛钦大数定律
设 随 机 变 量 X 1 , X 2 , , X n , 独 立 同 分 布 , 且 数 学 期 望 存 在 ,则 对 于 任 意 0, 有 1 li m P n n

i1
n
X i 0.
例1 判 断 下 列 说 法 的 对 错 , 并 简 述 理 由 : (1 ) 设 随 机 变 量 X 1 , X 2 , , X n , 独 立 同 具 有 密 度 f ( x ), 则 序 列 X 1 , X 2 , , X n , 满 足 辛 钦 大 数 定 律 . ( 2 ) 设 随 机 变 量 X 1 , X 2 , , X n , 独 立 同 服 从 参 数 为 的 泊 松 分 布 , 则 X 1 , 2 X 2 , , n X n , 满 足 切 比 雪 夫 大 数 定 律 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 大数定律与中心极限定理习题
一、 填空题
1.设n ξ是n 次独立试验中事件A 出现的次数,P 为A 在每次试验中出现的概率,则对任意的0>ε,有=≥-)(εξp n P n。

2.设随机变量ξ,E ξ=μ,D ξ=2σ,则≥<-)2(σμξP 。

3.设随机变量ξ的方差为2,则根据切比雪夫不等式有估计≤≥-)2(ξξE P 。

4.在概率论里,把研究在什么条件下,大量独立随机变量和的分布以 为极限这一类定理称为中心极限定理。

5.将一枚硬币连掷100次,则出现正面的次数大于60的概率约为 。

6.在天平上重复称量一重为a 的物体,假设各次称重结果相互独立且同服从正态分布)2.0,(2a N ,若以n X 表示n 次称重结果的算术平均值,则为使95.0)1.0(≥<-a X P n ,n 的最小值应不小于自然数 。

二、选择题
1.设随机变量ξ服从参数为n ,p 的二项分布,则当∞→n 时,≈<<)(b a P ξ( )。

(A))()(a b Φ+Φ (B))()(00a b Φ+Φ (C))()(a b Φ-Φ (D)1)(20-Φb
2.设ξ为服从参数为n ,p 的二项分布的随机变量,则当∞→n 时,npq np
-ξ一定服从
( )。

(A)正态分布。

( B)标准正态分布。

(C)普哇松分布。

( D)二项分布。

三、计算题
1.对敌人的防御地段进行100次射击,每次射击中,炮弹命中数的数学期望为2,而命中数的均方差为1.5,求当射击100次时,有180颗到220颗炮弹命中目标的概率。

2.计算机在进行加法时,对每个加数取整(取为最接近于它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布。

(1)若将1500个数相加,问误
差总和的绝对值超过15的概率是多少?(2)多少个数加在一起时的误差总和的绝对值小于10的概率为0.90?
3.已知某工厂生产一大批无线电元件,合格品占
61,某商店从该厂任意选购6000个这种元件,问在这6000个元件中合格品的比例与6
1之差小于1%的概率是多少? 4.一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50千克,标准差为5千克,若用最大载重量为5吨的汽车承运,试用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.9770?
5.某工厂有400台同类机器,各台机器发生故障的概率都是0.02。

假设各台机器工作是相互独立的,试求机器出故障的台数不少于2的概率。

6.某保险公司多年的统计资料表明,在索赔户中被盗索赔占20%,以ξ表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数。

求被盗索赔户不少于14户切不多于30户的概率的近似值。

7.一个复杂的系统,由n 个相互独立的部件所组成每个部件的可靠性位0.90,且在整个运行期间,至少需要80%部件工作,才能使整个系统正常工作。

问n 至少为多大时才能使系统的可靠度(即系统正常工作的概率)为0.95。

8.设k ξ(k =1,2,…,50)是相互独立的随机变量,且都服从参数为λ=0.03的普哇松分布,记∑==501k k ξ
η,试利用中心极限定理计算)3(≥ηP 。

9.设电路供电网中有10000盏灯,夜晚每一盏灯开着的概率都是0.7,假定各灯开、关事件彼此无关,计算同时开着的灯数在6800与7200之间的概率。

10.若某产品的不合格率为0.005,任取10000件,问不合格品不多于70件的概率等于多少?
11.某商店负责供应某地区10000人商品,某种商品在一段时间内每人需用一间的概率为0.6,假定在这一段时间内各人购买与否彼此无关,问商店应预备多少件这种商品,才能以99.7%的概率保证不会脱销(假定该商品在某一段时间内每人最多可以买一件)。

相关文档
最新文档