高中数学椭圆中的常见最值问题

合集下载

高中数学椭圆中的最值问题与定点、定值问题

高中数学椭圆中的最值问题与定点、定值问题

椭圆中的最值问题与定点、定值问题解决与椭圆有关的最值问题的常用方法 (1)利用定义转化为几何问题处理;(2)利用数形结合,挖掘数学表达式的几何特征进而求解; (3)利用函数最值得探求方法,将其转化为区间上的二次 函数的最值来处理,此时应注意椭圆中x 、y 的取值范围;(4)利用三角替代(换元法)转化为 三角函数的最值问题处理。

一 、椭圆上一动点与焦点的距离的最值问题 椭圆上一动点与焦点的距离称为焦半径,椭圆上一动点与长轴的两端点重合时,动点与焦点取得最大值a+c (远日点)、最小值a -c (近日点)。

推导:设点),(00y x P 为椭圆)0( 12222>>=+b a by a x 上的任意一点,左焦点为)0,(1c F -,2201)(||y c x PF ++=,由 1220220=+b y a x 得)1(22020ax b y -=,将其代入 20201)(||y c x PF ++=并化简得a x acPF +=01||。

所以,当点),(00y x P 为长轴的右端点)0,(2a A 重合时,a c a a acPF +=+⋅=max 1||;当点),(00y x P 为长轴的左端点)0,(1a A -重合时。

c a a a acPF -=+-⋅=)(||min 1。

当焦点为右焦点)0,(2c F 时,可类似推出。

1. (2015浙江卷)如图,已知椭圆 1222=+y x 上两个 不同的点A 、B 关于直线21+=mx y 对称。

(1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点)。

解:(1)由题意知0≠m ,可设直线AB 的方程为b x my +-=1。

联立⎪⎩⎪⎨⎧+-==+bx m y y x 11222,消y 去,得012)121(222=-+-+b x m b x m 。

因为直线b x my +-=1与椭圆 1222=+y x 有两个不同的交点, 所以042222>++-=∆m b 。

与椭圆有关的最值问题

与椭圆有关的最值问题

角度类问题典型例题
例题2
已知椭圆C的中心在原点,焦点在x轴上,离心率为$frac{sqrt{3}}{2}$,它的一个顶点恰好是抛物线$x^2 = 8sqrt{2}y$的焦点,过点P(4,0)且不垂直于x轴的直线l与C相交于A、B两点,若直线PA与直线PB的斜率 之积为$- frac{5}{16}$,则直线l的方程为____。
距离类问题典型例题
例题1
已知椭圆$frac{x^2}{4} + frac{y^2}{3} = 1$,点P是椭圆上一点,F₁、F₂是椭圆的 两个焦点,则|PF₁|·|PF₂|的最大值为____。
例题2
过椭圆$frac{x^2}{5} + y^2 = 1$的右焦点作一条斜率为2的直线与椭圆交于A、 B两点,O为坐标原点,则弦AB的长为____。
通过解析几个与椭圆有关的最值问题的典型例题,我们掌握了这类问情况
通过本次课程的学习,我深刻理解了椭圆的标准方程和性质,掌握了在约束条件下求解最值问题的方法,对于典型例 题的解析也有了更深入的认识。
学习方法与效率
在学习过程中,我采用了课前预习、课后复习的方法,同时结合了大量的练习来巩固所学知识。这种学习方法使我能 够高效地吸收和掌握知识。
利用平面几何知识,如相似、勾股定 理等,求出最值;
03
与椭圆相关的最值问题类 型
面积类问题
1 2
椭圆内接矩形面积的最大值
给定椭圆,求其内接矩形面积的最大值。
椭圆内接三角形面积的最大值
给定椭圆,求其内接三角形面积的最大值。
3
椭圆与直线围成的图形面积
给定椭圆和直线,求它们围成的图形面积。
距离类问题
需要注意定义域的限 制。
利用一元二次函数的 性质,如顶点、对称 轴等,求出最值;

椭圆的几种最值问题

椭圆的几种最值问题

椭圆中的几种最值问题一:求离心率的最值问题1:若B A ,为椭圆)0(12222>>=+b a by a x 的长轴两端点,Q 为椭圆上一点,使0120=∠AQB ,求此椭圆离心率的最小值。

2:已知椭圆C :22221(0)x y a b a b+=>>两个焦点为12,F F ,如果曲线C 上存在一点Q ,使12FQ F Q ⊥,求椭圆离心率的最小值。

二:求点点(点线)的最值问题3:(05年上海)点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦 点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥。

(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于||MB ,求椭圆上的点到点M 的距离d 的最小值。

4:定长为d d b a ≥⎛⎝⎫⎭⎪22的线段AB 的两个端点分别在椭圆x a y b a b 222210+=>>()上移动,求AB 的中点M 到椭圆右准线l 的最短距离。

三:求角的最值问题 5:(05年浙江)如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的 长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1。

(Ⅰ)求椭圆的方程; (Ⅱ)若直线l 1:x =m (|m |>1),P 为l 上的动点,使∠F PF 最大的点 P 记为Q ,求点Q 的坐标 (并用m 表示) 。

四:求面积的最值问题例6:(05年全国II )P 、Q 、M 、N 四点都在椭圆2212y x +=上,F 为椭圆在y 轴正半轴上的焦点.已知PF 与FQ共线,MF 与FN 共线,且0PF MF ⋅=.求四边形PMQN 的面积的最小值和最大值.五:求线段之和(或积)的最值问题 7:若椭圆13422=+y x 内有一点()1,1P ,F 为右焦点,椭圆上的点M 使得||2||MF MP +的值最小,则点M 的坐标为 ( )A.(3± B.(3C .3(1,)2± D .3(1,)28:如图,在直线09:=+-y x l 上任意取一点M ,经过M 点且以椭圆131222=+y x 的焦点作椭圆,问当M 在何处时,所作椭圆的长轴最短,并求出最短长轴为多少?9已知点F 是椭圆192522=+y x 的右焦点,M求|MA|+|MF|的最小值。

怎样利用定义求解与椭圆有关的最值问题

怎样利用定义求解与椭圆有关的最值问题

椭圆是一种重要的圆锥曲线,与椭圆有关的最值问题在高中数学试卷中比较常见,定义法是解答此类问题的重要方法.椭圆的定义除了第一定义,还有第二定义、第三定义.下面,我们重点谈一谈如何运用椭圆的这三个定义来解答与椭圆有关的最值问题.一、利用椭圆的第一定义求解椭圆的第一定义:平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹.在运用椭圆的第一定义解题时,要先确定两个定点的位置,然后建立关于动点M的关系式:MF1+MF2=2a.这样便可根据该关系式来寻找取得最小值的点M的位置,进而求得最值.例1.已知P()-2,3,F2为椭圆x225+y216=1的右焦点,点M在椭圆上移动.求MP+MF2的最大值和最小值.分析:所求的最值与MF2有关,可利用椭圆的第一定义建立关系式MF1+MF2=2a,将求MP+MF2的最值转化为求MP-MF1的最值,根据三角形三边之间的关系和性质便可求得问题的答案.解:如图1所示,连接PF1,延长PF1交椭圆于点M1,延长F1P交椭圆于点M2.由椭圆的第一定义知MF1+MF2=2a,所以MP+MF2=MP+2a-MF1,由三角形三边之间的关系知-PF1≤MP-MF1≤PF1,当且仅当M与图中M1合时取右边的等号,M与图中M2重合时取左边的等号.因为2a=10,PF1=2,所以MP+MF2的最大值为12,所以MP+MF2的最小值为8.图1一般地,若椭圆的方程为x2a2+y2b2=1(a>b>0),F1,F2分别是椭圆的左右焦点,P()x0,y0为平面内的一个定点,M为椭圆上的任意一点,当定点在椭圆的内部时,2a-PF1≤MF2+MP≤2a+PF1;当定点在椭圆的外部时,PF2≤MF2+MP≤2a+PF1.二、利用椭圆的第二定义求解圆锥曲线的第二定义:到定点的距离与到定直线的距离的比是e的点的轨迹.在运用椭圆的第二定义解题时,我们先要明确定点(即焦点F)和定直线(准线x=a2c)的位置,然后建立关于动点P(x0,y0)的关系式MP=e||||||x0-a2c,利用其关系或关系式来解题.例2.已知F1是椭圆5x2+9y2=45的左焦点,P是椭圆上动点,点A(1,1)是一个定点,求PA+32PF1的最小值.分析:明确题目中的数量关系后可以发现,所求目标中的32是椭圆离心率的倒数,联系第二定义:椭圆上的点到左焦点和到左准线的距离d之比为离心率e,可得PF1d=23,即d=32PF1,不难得到PA+32PF1=PA+d,所以PA+32PF1的最小值为椭圆上的P点到A点和到左准线的距离和的最小值,只需过点A,D作左准线的垂线即可.解:由题意可知,椭圆5x2+9y2=45的长半轴a=3,短半轴b=5,半焦距c=2,离心率e=23,右焦点F2()2,0,左准线x=-92.如图2所示,过点A,D作左准线的垂线,垂足为D1、D2.设P点到左准线的距离为d.由椭圆的第二定义可知PF1=ed,所以PA+32PF1=PA+32ed=PA+d,则PA+d的最小值就是点A到左准线x=-92的距离AD1=1+92=112,当且仅当点P在P1处PA+d取最小值,故PA+d的最小值为112.图2探索与研究颜琴55当与椭圆有关的最值问题涉及定点、定直线时,就要利用椭圆的第二定义,把与动点有关的最值问题转化为与定点、定直线之间的距离来求解.三、利用椭圆的第三定义求解椭圆的第三定义是指平面内动点到两定点A (a ,0)和B (-a ,0)的斜率的乘积等于常数e 2-1的点的轨迹.这也就是说,A ,B 是椭圆C :x 2a 2+y 2b2=1()a >b >0上的两个顶点,P 是椭圆上异于A ,B 的一个动点,若k PA ,k PB 的斜率都存在,则k PA ∙k PB =e 2-1=-b 2a2.运用椭圆的第三定义,可以快速找到过椭圆上两个顶点的直线的斜率之间的关系.例3.已知椭圆C :x 2a 2+y2b2=1()a >b >0的长轴长,短轴长和焦距成等差数列,若A ,B 是椭圆长轴的两个端点,M ,N 是关于x 轴对称的两点,直线AM ,BN 的斜率分别是k 1,k 2(k 1∙k 2≠0),则||k 1+||k 2的最小值为_______.分析:由长轴长、短轴长和焦距成之间的关系得到椭圆的离心率,由A ,B ,M ,N 的位置可联想到椭圆的第三定义,求得k 1∙k 2的值,再利用基本不等式就可以使问题得解.解:由椭圆的长轴长,短轴长和焦距成等差数列,得2a +2c =4b ,又b 2=a 2-c 2,可得e =c a =35,由椭圆的第三定义可得k 1∙k 2=e 2-1=-1625,而M ,N 是关于x 轴对称的两点,则k 1=-k 2,可得k 1∙k 2=1625,所以||k 1+||k 2≥2k 1k 2=85,当且仅当k 1=k 2时取等号.由以上几个题目可以看出,与椭圆有关的最值问题一般都会涉及椭圆上的定点、定直线.如果问题中的定点为焦点,就要考虑利用椭圆的第一定义来解题;如果问题中涉及的定点、定直线分别为焦点、准线,就要考虑用椭圆的第二定义来解题;如果问题中涉及了椭圆的顶点以及过顶点的直线的斜率,就要考虑采用椭圆的第三定义解题.(作者单位:江西省余干第一中学)探索与研究在学习中,我们经常会遇到抽象函数问题,此类问题一般侧重于考查同学们的直观想象能力和抽象思维能力.抽象函数一般没有具体的函数解析式,与x a 、sin x ()cos x 、ln x 、e x 的乘积构成的函数解析式也不明确,我们很难快速解出.而运用构造法,借助构造的新函数的性质、图象,则能快速破解此类问题.例1.已知定义在R 上的函数f ()x 为奇函数,当x ≤0时,恒有xf ′(x )≥3f ()-x ,则不等式8xf ()2x >()1-3x 3x 2f ()1-3x 的解集为_____.解:∵f ()x 是定义在R 上的奇函数,∴f ()-x =-f ()x ,当x ≤0时,由xf ′()x ≥3f ()-x 可得x 3f ′()x +f ()x ≥0,令g ()x =x 3f ()x ,∴当x ≤0时,g '()x =2x 2f ()x +x 3f ′()x =3x 2éëùûf ()x +x 3f '()x ≥0,∴g ()x 在(]-∞,0上单调递增,∵g ()-x =-x 3f ()-x =x 3f ()x =g ()x ,g ()x 是偶函数,∴g ()x 在[)0,+∞上单调递减,不等式8xf ()2x >()1-3x 3x2f ()1-3x 等价于8x 3f ()2x >()1-3x 3f ()1-3x ,即g ()2x >g ()1-3x ,等价于||2x <||1-3x ,解得x <15或x >1,∴不等式的解集为æèöø-∞,15⋃()1,+∞.56。

椭圆中的最值问题

椭圆中的最值问题

椭圆中的最值问题
规律总结:
圆锥曲线最值问题具有综合性强、涉及知识面广而且常含有变量的一类难题,也是教学中的一个难点。

要解决这类问题往往利用函数与方程思想、数形结合思想、转化与化归等数学思想方法,将它转化为解不等式或求函数值域,以及利用函数单调性、各种平面几何中最值的思想来解决。

知识梳理
(1) 设椭圆122
22=+b
y a x 的左右焦点分别为F 1、F 2, P(x 0,y 0)为椭圆内一点,M(x,y)为椭圆上任意一点,则︱MP ︱+︱MF 2︱的最大值为2a+︱PF 1︱,
最小值为2a –︱PF 1︱。

(2) 设椭圆122
22=+b
y a x 的左右焦点分别为F 1、F 2, P(x 0,y 0)为椭圆外一点,M(x,y)为椭圆上任意一点,则︱MP ︱+︱MF 2︱的最大值为2a+︱PF 1︱,
最小值为PF 2。

(3) 椭圆122
22=+b
y a x 上的点M(x,y)到定点A(m,0)或B(0,n)距离的最值问题,可以用两点间距离公式表示︱MA ︱或︱MB ︱,通过动点在椭圆
上消去y 或x,转化为二次函数求最值,注意自变量的取值范围。

(4) 若椭圆122
22=+b
y a x 上的点到非坐标轴上的定点的距离求最值时,可通过椭圆的参数方程,统一变量转化为三角函数求最值。

(5) 椭圆上的点到定直线l 距离的最值问题,可转化为与l 平行的直线m 与
椭圆相切的问题,利用判别式求出直线m 方程,再利用平行线间的距
离公式求出最值。

椭圆中的常见最值问题

椭圆中的常见最值问题

椭圆中的常见最值问题1、椭圆上的点P到二焦点的距离之积取得最大值的点是椭圆短轴的端点,取得最小值的点在椭圆长轴的端点。

例1、椭圆上一点到它的二焦点的距离之积为,则取得的最大值时,P点的坐标是。

P(0,3)或(0,-3)例2、已知椭圆方程()p为椭圆上一点,是椭圆的二焦点,求的取值范围。

分析:,当时,=,当时,即2、椭圆上到的椭圆内一个定点的距离与它到焦点距离之差取得最大值或最小值的点是这个定点与焦点连线xx或反向xx与椭圆的交点,最大值、最小值分别是定点到该焦点的距离和其相反数。

例3、已知,、是椭圆的左右焦点,P为椭圆上一动点,则的最大值是,此时P点坐标为。

的最小值是,此时P点坐标为。

3、椭圆上到椭圆内定点的距离与它到椭圆的一个焦点的距离之和取得最小值或最大值的点是另一焦点与定点连线的xx或反向xx与椭圆的交点。

例4、已知,是椭圆的左焦点,P为椭圆上一动点,则的最小值是,此时P点坐标为。

的最大值是,此时P点坐标为。

分析:,当P是的xx与椭圆的交点时取等号。

,当P是的反向xx与椭圆的交点时取等号。

4、椭圆上的点P到定点A的距离与它到椭圆的一个焦点F的距离的倍的和的最小值(为椭圆的离心率),可通过转化为(为P到相应准线的距离)最小值,取得最小值的点是A到准线的垂线与椭圆的交点。

例5、已知定点,点F为椭圆的右焦点,点M在该椭圆上移动,求的最小值,并求此时M点的坐标。

例6、已知点椭圆及点,为椭圆上一个动点,则的最小值是。

5、以过椭圆中心的弦的端点及椭圆的某一焦点构成面积最大的三角形是短轴的端点与该焦点构成的三角形。

例7、过椭圆()的中心的直线交椭圆于两点,右焦点,则的最大面积是。

例8、已知F是椭圆的一个焦点,PQ是过原点的一条弦,求面积的最大值。

6、椭圆上的点与椭圆二焦点为顶点的面积最大的三角形是椭圆的短轴的一个端点与椭圆二焦点为顶点的三角形。

例9、P为椭圆()一点,左、右焦点为,则的最大面积是。

7、椭圆上的点与椭圆长轴的端点为顶点的面积最大的三角形是短轴的一个端点和长轴两个端点为顶点的三角形。

例析处理椭圆中的最值问题的方法与策略

例析处理椭圆中的最值问题的方法与策略

2010.No35椭圆中的有关最值问题是一类综合性强、变量多、涉及知识面广的题目,是解析几何中具有代表性的、高考常考的题型。

它的求解常常涉及到函数、不等式、方程、三角、以及平面几何等方面的知识,综合性较强,是高考的一个难点问题。

椭圆中的这些最值问题,往往可通过回归定义,结合几何知识,建立目标函数,利用函数的性质或不等式知识,以及观形、设参、转化、代换等途径来解决。

一、椭圆中的常用最值结论设F 1,F 2为椭圆 =1(a>b>0)的左右焦点,P为椭圆上任意一点,B为短轴的顶点,则有下面的结论成立:1、椭圆中过中心的最长弦为长轴长2a,最短弦为短轴长2b;2、椭圆中最长的焦点弦为长轴长2a,最短的焦点弦为通径 ;3、椭圆中最长的焦半径为a+c,最短的焦半径为a-c;4、椭圆中焦点三角形的顶角∠F 1PF 2的最大值为∠F 1BF 2,且S △F1PF2的最大值为bc二、几何法若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形的性质来解决。

例1 已知点P(1,2),F为椭圆 =1的右焦点,点Q 在椭圆上移动,则 的最小值为分析:注意到式中的数值“2”恰为 ,则由椭圆第二定义,即 =e得d= 转化为椭圆上的点Q到右准线的距离,结合平面几何的性质问题就迎刃而解了。

解析:由椭圆方程可知a=4,b=2 ,c= =2,e= 椭圆右准线l:x=8如图:过点Q作QQ′垂直于直线l于点Q′ 由椭圆第二定义知, =e ∴ 于是由几何性质易知,当P、Q、Q′在同一条直线上时, 才取得最小值,此时,最小值为8-1=7例2:已知椭圆 =1 内有一点A(2,1),F为椭圆的左焦点,P是椭圆上一动点,求 的最大值与最小值。

解析:设椭圆的右焦点为F′且F′(3,0)由椭圆的第一定义得: =10可知,当P为AF′的延长线与椭圆的交点时, 最大,最大值为 ,当P为AF′的延长线与椭圆的交点时,最小,最小值为 。

故 的最大值为10+ ,最小值为10- 。

专题26--椭圆中定值和最值问题

专题26--椭圆中定值和最值问题

专题26--椭圆中定值和最值问题一、椭圆中的定值问题由于椭圆只研究中心在原点,对称轴为坐标轴的椭圆问题,故动态椭圆过定点问题一般不会出现,故椭圆中的定值问题主要包括以下几个方面:1.与椭圆有关的直线过定点(1)y -y 0=k (x -x 0)表示过定点(x 0,y 0)的直线的方程;(2)(A 1x +B 1y +C 1)+λ(A 2x +B 2y +C 2)=0表示过直线A 1x +B 1y +C 1=0和A 2x +B 2y +C 2=0交点的直线的方程.2.与椭圆有关的圆过定点x 2+y 2+Dx +Ey +F +λ(A 1x +B 1y +C 1)=0表示的是过直线A 1x +B 1y +C 1=0和圆x 2+y 2+Dx +Ey +F =0交点的圆的方程.3.与椭圆有关的参数的定值问题 二、椭圆中的最值问题 1.参数的取值范围由直线和椭圆的位置关系或几何特征引起的参数如k ,a ,b ,c ,(x ,y )的值变化.此类问题主要是根据几何特征建立关于参数的不等式或函数进行求解.2.长度和面积的最值由于直线或椭圆上的点运动,引起的长度或面积的值变化.此类问题主要是建立关于参数(如k 或(x ,y ))的函数,运用函数或基本不等式求最值. 要点热点探究► 探究点一 与椭圆有关的定值问题在椭圆中出现的定值问题中,椭圆本身一般为固定的椭圆,主要是椭圆上的动点构成的直线或与准线有关的动直线过定点的问题.例1 已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM 、AN 交椭圆于M 、N 两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一个定点?若过定点,请给出证明,并求出该定点,若不过定点,请说明理由.【解答】 (1)当直线AM 的斜率为1时, 直线AM 的方程为y =x +2,代入椭圆方程并化简得:5x 2+16x +12=0,解得x 1=-2,x 2=-65,所以M ⎝⎛⎭⎫-65,45. (2)设直线AM 的斜率为k ,则AM :y =k (x +2),则⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1,化简得:(1+4k 2)x 2+16k 2x +16k 2-4=0. 因为此方程有一根为-2,所以x M =2-8k 21+4k 2,同理可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝⎛⎭⎫-65,0. 因为k MP =y M x M +65=k ⎝⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2,同理可计算得k PN =5k4-4k 2. 所以k MP =k PN ,M 、P 、N 三点共线, 所以直线MN 过x 轴上的一个定点P ⎝⎛⎭⎫-65,0. 例2 椭圆的两焦点坐标分别为F 1(-3,0)和F 2(3,0),且椭圆过点⎝⎛⎭⎫1,-32. (1)求椭圆方程;(2)过点⎝⎛⎭⎫-65,0作不与y 轴垂直的直线l 交该椭圆于M 、N 两点,A 为椭圆的左顶点,试判断∠MAN 的大小是否为定值,并说明理由.【解答】 (1)由题意,即可得到椭圆方程为x 24+y 2=1.(2)设直线MN 的方程为:x =ky -65,联立直线MN 和椭圆的方程⎩⎨⎧x =ky -65,x24+y 2=1,得(k 2+4)y 2-125ky -6425=0,设M (x 1,y 1),N (x 2,y 2),则y 1+y 2=12k 5(k 2+4),y 1y 2=-6425(k 2+4),又A (-2,0), 则AM →·AN →=(x 1+2,y 1)·(x 2+2,y 2)=(k 2+1)y 1y 2+45k (y 1+y 2)+1625=-64(k 2+1)25(k 2+4)+4k 5·12k 5(k 2+4)+1625=0, 即可得∠MAN =π2.► 探究点二 与椭圆有关的最值问题与椭圆有关的最值问题,一般建立两类函数:一是关于k 的函数;二是关于点(x ,y )的函数.例3 如图26-1,在平面直角坐标系xOy 中,椭圆的中心在原点O ,右焦点F 在x 轴上,椭圆与y 轴交于A ,B 两点,其右准线l 与x 轴交于T 点,直线BF 交椭圆于C 点,P 为椭圆上弧AC 上的一点.(1)求证:A ,C ,T 三点共线;(2)如果BF →=3FC →,四边形APCB 面积的最大值为6+23,求此时椭圆的方程和点P 的坐标.【解答】 (1)证明:设椭圆方程为x 2a 2+y 2b2=1(a >b >0),①AT :x a 2c+y b =1,② BF :x c +y-b =1,③解得AT 与BF 的交点⎝⎛⎭⎫2a 2c a 2+c 2,b 3a 2+c 2,代入①得: ⎝⎛⎭⎫2a 2c a 2+c 22a 2+⎝⎛⎭⎫b 3a 2+c 22b 2=4a 2c 2+(a 2-c 2)2(a 2+c 2)2=1, 满足①式,则AT 与BF 的交点在椭圆上,即为点C ,则A ,C ,T 三点共线. (2)过C 作CE ⊥x 轴,垂足为E ,则△OBF ∽△ECF .∵BF →=3FC →,∴CE =13b ,EF =13c ,则C ⎝⎛⎭⎫4c 3,b 3,代入①得: ⎝⎛⎭⎫43c 2a 2+⎝⎛⎭⎫b 32b2=1,∴a 2=2c 2,b 2=c 2. 设P (x 0,y 0),则x 20+2y 20=2c 2,此时C ⎝⎛⎭⎫4c 3,c 3,AC =235c ,S △ABC =12·2c ·4c 3=43c 2, 直线AC 的方程为:x +2y -2c =0,P 到直线AC 的距离为d =|x 0+2y 0-2c |5=x 0+2y 0-2c5,S △APC =12d ·AC =12·x 0+2y 0-2c 5·235c=x 0+2y 0-2c 3·c .所以只需求x 0+2y 0的最大值即可.法一:∵(x 0+2y 0)2=x 20+4y 20+2·2x 0y 0≤x 20+4y 20+2(x 20+y 20)=3(x 20+2y 20)=6c 2, ∴x 0+2y 0≤6c ,当且仅当x 0=y 0=63c 时,(x 0+2y 0)max =6c . 法二:令x 0+2y 0=t ,代入x 20+2y 20=2c 2得:(t -2y 0)2+2y 20-2c 2=0,即6y 20-4ty 0+t 2-2c 2=0. Δ=(-4t )2-24(t 2-2c 2)≥0, 得-6c ≤t ≤6c ,当t =6c 时,代入原方程解得x 0=y 0=63c .由法一、法二知四边形APCB 的面积最大值为6-23c 2+43c 2=6+23c 2=6+23, ∴c 2=1,a 2=2,b 2=1.此时椭圆方程为x 22+y 2=1,P 点坐标为⎝⎛⎭⎫63,63.【点评】 本题所建立的函数与点P 坐标(x 0,y 0)有关.在计算最值时,方法一用的是基本不等式;方法二用的是代入消元和方程有解来计算最值.本题还可以用三角换元的方法或者构造z =x 0+2y 0的几何意义用线性规划的思想来解决问题. ► 探究点三 椭圆和圆的综合问题椭圆和圆的综合问题中,题目中存在多种曲线混合的现象,椭圆以考查标准方程和离心率为主,而圆中会涉及定值或最值的问题.例4 如图26-2,已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,其右准线l与x 轴的交点为T ,过椭圆的上顶点A 作椭圆的右准线l 的垂线,垂足为D ,四边形AF 1F 2D 为平行四边形.(1)求椭圆的离心率;(2)设线段F 2D 与椭圆交于点M ,是否存在实数λ,使TA →=λTM →?若存在,求出实数λ的值;若不存在,请说明理由;(3)若B 是直线l【解答】 (1)依题意:AD =F 1F 2,即a 2c =2c ,所以离心率e =22.(2)由(1)知:a =2c ,b =c ,故A (0,c ),D (2c ,c ),F 2(c,0),T (2c,0),TA →=(-2c ,c ),所以椭圆方程是x 22c 2+y 2c2=1,即x 2+2y 2=2c 2,直线F 2D 的方程是x -y -c =0,由⎩⎪⎨⎪⎧ x 2+2y 2=2c 2,x -y -c =0解得⎩⎪⎨⎪⎧x =0,y =-c (舍去)或⎩⎨⎧x =43c ,y =13c ,即M ⎝⎛⎭⎫43c ,13c ,TM →=⎝⎛⎭⎫-23c ,13c ,所以TA →=3TM →, 即存在λ=3使TA →=3TM →成立.(3)解法一:由题可知圆心N 在直线y =x 上,设圆心N 的坐标为(n ,n ), 因圆过准线上一点B ,则圆与准线有公共点, 设圆心N 到准线的距离为d ,则NF 2≥d ,即(n -c )2+n 2≥|n -2c |,解得n ≤-3c 或n ≥c ,又r 2=(n -c )2+n 2=2⎝⎛⎭⎫n -c 22+c22∈[c 2,+∞), 由题可知,(πr 2)min =c 2π=4π,则c 2=4, 故椭圆的方程为x 28+y 24=1.解法三:设B (2c ,t ),△AF 2B 外接圆的方程是x 2+y 2+Dx +Ey +F =0, 又A (0,c ),F 2(c,0), 则⎩⎪⎨⎪⎧c 2+cD +F =0,c 2+cE +F =0,4c 2+t 2+2cD +tE +F =0,D =E =-c -F c ,r 2=14(D 2+E 2-4F )=12c 2+F 22c2.由4c 2+t 2+2cD +tE +F =0,得4c 2+t 2+(2c +t )⎝⎛⎭⎫-c -Fc +F =0, 4c 2+t 2-2c 2-ct -2F -tFc +F =0,2c 2-ct +t 2-(t +c )F c=0,F =c ⎣⎡⎦⎤(t +c )+4c 2t +c -3c ,所以F ≥c 2或F ≤-7c 2,所以r 2=12⎝⎛⎭⎫c 2+F 2c 2≥c 2,所以(πr 2)min =c 2π=4π,所以c 2=4.所求椭圆方程是x 28+y 24=1.【点评】 本题的第三小问从多种角度建立了半径与圆心的坐标之间的关系,无论哪一种方法,本题关键是求出r 2的取值范围,方法一用的是几何法;方法二和方法三用的是代数法.例 [2011·江苏卷] 如图26-3,在平面直角坐标系xOy 中,M ,N 分别是椭圆x 24+y 22=1的顶点,过坐标原点的直线交椭圆于P ,A 两点,其中点P 在第一象限,过P 作x 轴的垂线,垂足为C ,连结AC ,并延长交椭圆于点B .设直线PA 的斜率为k .(1)当直线PA 平分线段MN 时,求k 的值; (2)当k =2时,求点P 到直线AB 的距离d ; (3)对任意k >0,求证:PA ⊥PB.【解答】 (1)由题设知a =2,b =2,故M (-2,0),N (0,-2),得线段MN 中点的坐标为⎝⎛⎭⎫-1,-22,由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点, 又直线PA 过坐标原点,所以k =-22-1=22.(2)k =2时,直线PA 的方程为y =2x ,代入椭圆方程得x 24+4x 22=1,解得x =±23,因此P ⎝⎛⎭⎫23,43,A ⎝⎛⎭⎫-23,-43. 于是C ⎝⎛⎭⎫23,0,直线AC 的斜率为0+4323+23=1,故直线AB 的方程为x -y -23=0. 因此,d =⎪⎪⎪⎪23-43-2312+12=223.(3)解法一:将直线PA 的方程y =kx 代入x 24+y 22=1,解得x =±21+2k2,记μ=21+2k 2.则P (μ,μk ),A (-μ,-μk ),于是C (μ,0),故直线AB 的斜率为0+μk μ+μ=k2,其方程为y =k2(x -μ),代入椭圆方程得(2+k 2)x 2-2μk 2x -μ2(3k 2+2)=0,解得x =μ(3k 2+2)2+k 2或x =-μ,因此B ⎝ ⎛⎭⎪⎫μ(3k 2+2)2+k 2,μk 32+k 2. 于是直线PB 的斜率k PB =μk 32+k 2-μkμ(3k 2+2)2+k 2-μ=k 3-k (2+k 2)3k 2+2-(2+k 2)=-1k . 因此k PB k =-1,所以PA ⊥PB .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆中的常见最值问题1、椭圆上的点P 到二焦点的距离之积||||21PF PF 取得最大值的点是椭圆短轴的端点,取得最小值的点在椭圆长轴的端点。

例1、椭圆192522=+y x 上一点到它的二焦点的距离之积为m ,则m 取得的最大值时,P 点的坐标是 。

P (0,3)或(0,-3)例2、已知椭圆方程12222=+by a x (222,0c b a b a +=>>)p 为椭圆上一点,21,F F 是椭圆的二焦点,求||||21PF PF 的取值范围。

分析:22221))((||||x e a ex a ex a PF PF -=-+=,)|(|a x ≤当a x ±=时,min 21||||PF PF =222b c a =-,当0=x 时,2max 21||||a PF PF = 即≤2b ||||21PF PF 2a ≤2、椭圆上到的椭圆内一个定点的距离与它到焦点距离之差取得最大值或最小值的点是这个定点与焦点连线延长线或反向延长线与椭圆的交点,最大值、最小值分别是定点到该焦点的距离和其相反数。

例3、已知)1,1(A ,1F 、2F 是椭圆15922=+y x 的左右焦点,P 为椭圆上一动点,则||||2PF PA -的最大值是 ,此时P 点坐标为 。

||||2PF PA -的最小值是 ,此时P 点坐标为 。

3、椭圆上到椭圆内定点的距离与它到椭圆的一个焦点的距离之和取得最小值或最大值的点是另一焦点与定点连线的延长线或反向延长线与椭圆的交点。

例4、已知)1,1(A ,1F 是椭圆15922=+y x 的左焦点,P 为椭圆上一动点,则||||1PF PA +的最小值是 ,此时P 点坐标为 。

||||1PF PA +的最大值是 ,此时P 点坐标为 。

分析:||||||||||2121AF PF PF PF PA ++≤+,当P 是2AF 的延长线与椭圆的交点时取等号。

||||||||||2121AF PF PF PF PA -+≥+,当P 是2AF 的反向延长线与椭圆的交点时取等号。

4、椭圆上的点P 到定点A 的距离与它到椭圆的一个焦点F 的距离的e1倍的和||1||PF ePA +的最小值(e 为椭圆的离心率),可通过e dPF =||转化为d PA +||(d 为P 到相应准线的距离)最小值,取得最小值的点是A 到准线的垂线与椭圆的交点。

例5、已知定点)3,2(-A ,点F 为椭圆1121622=+y x 的右焦点,点M 在该椭圆上移动,求||2||MF AM +的最小值,并求此时M 点的坐标。

例6、已知点椭圆192522=+y x 及点)0,3(),2,2(-B A ,),(y x P 为椭圆上一个动点,则||5||3PB PA +的最小值是 。

5、以过椭圆中心的弦的端点及椭圆的某一焦点构成面积最大的三角形是短轴的端点与该焦点构成的三角形。

例7、过椭圆12222=+by a x (222,0c b a b a +=>>)的中心的直线交椭圆于BA ,两点,右焦点)0,(2c F ,则2ABF ∆的最大面积是 。

例8、已知F 是椭圆22525922=+y x 的一个焦点,PQ 是过原点的一条弦,求PQF ∆面积的最大值。

6、椭圆上的点与椭圆二焦点为顶点的面积最大的三角形是椭圆的短轴的一个端点与椭圆二焦点为顶点的三角形。

例9、P 为椭圆12222=+b y a x (222,0c b a b a +=>>)一点,左、右焦点为)0,(1c F -)0,(2c F ,则21F PF ∆的最大面积是 。

7、椭圆上的点与椭圆长轴的端点为顶点的面积最大的三角形是短轴的一个端点和长轴两个端点为顶点的三角形。

例10、已知A 是椭圆22525922=+y x 的长轴一个端点,PQ 是过原点的一条弦,求A PQ ∆面积的最大值。

8、椭圆上的点到坐标轴上的定点的距离最大值、最小值问题可利用两点间的距离公式及椭圆方程联立化为求函数最值问题。

例11、设O 为坐标原点,F 是椭圆192522=+y x 的右焦点,M 是OF 的中点,P 为椭圆上任意一点,求||MP 的最大值和最小值。

例12、椭圆中心在原点,长轴在x 轴上,23=e ,已知点)23,0(P 到这个椭圆上的最远距离是7,求椭圆方程。

9、椭圆的焦点到椭圆上的距离最近和最远点是椭圆长轴的两个端点。

ex a r +=1)|(|a x ≤为x 的增函数,ex a r -=2)|(|a x ≤为x 的减函数,a x ±=时,22,r r 分别取得最大值c a +和最小值c a -。

例13、椭圆192522=+y x 上的点到右焦点的最大值 ,最小值 。

10、椭圆上的点到定直线的距离最近及最远点分别是与定直线平行的椭圆的两条切线的切点。

例14、已知椭圆8822=+y x ,在椭圆上求一点P ,是P 到直线04:=+-y x l的距离最小,并求最小值。

11、椭圆上的点到与它的两个焦点连线的最大夹角是它的短轴的一个端点和二焦点的连线的夹角。

范围大于等于00,小于它的短轴的一个端点和二焦点的连线的夹角。

分析:⇒=+a PF PF 2||||21||||21PF PF 2a ≤⇒22221222121222122221221||||22||||2||||244||||24||||cos a c a PF PF c a PF PF PF PF c a PF PF c PF PF -≥--=--=-+=θ 等号成立的条件:a PF PF ==||||21,即P 点为短轴的端点。

例15、已知椭圆C :12222=+by a x )0(>>b a ,两个焦点为22,F F ,如果C 上有一点Q ,使021120=∠QF F ,求椭圆的离心率的取值范围。

例16、如图所示,从椭圆12222=+by a x )0(>>b a 上一点M 向x 轴作垂线,恰好通过椭圆的左焦点1F ,且它的长轴的端点A 短轴的端点B 的连线AB 平行于OM 。

(1)求椭圆的离心率(2)设Q 为椭圆上任意一点,2F 为椭圆的右焦点,求21QF F ∠的范围。

(3)当AB QF ⊥2时,延长2QF 与椭圆交于另一点P ,若PQ F 1∆的面积为320,求此椭圆方程。

12、椭圆上的点与它长轴的两个端点的连线的最大夹角是它的短轴的一个端点和长轴的二端点的连线的夹角。

范围为大于2π,小于它的短轴的一个端点和长轴的二端点的连线的夹角。

例17、已知椭圆C :12222=+by a x )0(>>b a ,长轴的两个端点为A 、B ,如果C 上有一点Q ,使0120=∠AQB ,求椭圆的离心率的取值范围。

13、点P 在椭圆上,ny mx u +=(n m ,为常数)的最大值或最小值分别是直线0=-+u ny mx 与椭圆相切时u 的值。

例18、已知点),(y x P 在12514422=+y x 上的点,则y x u +=的取值范围是 。

14、点P 在椭圆上,nx my u --=(n m ,为常数)的最大值或最小值分别是直线m n x u y +-=)(与椭圆相切时的斜率。

例19、点),(y x P 在椭圆4)2(422=+-y x 上,则xy的最大值 ,最小值 。

例20、点),(y x P 在椭圆192522=+y x 上,则46-+=y x t 的最大值 ,最小值 。

15、xb y xa x y sin cos 00--=的最大值或最小值是直线00)(y x x k y +-=与椭圆⎩⎨⎧==θθsin cos b y a x 相切时切线的斜率。

例21、求xxy cos 24sin 3--=的最大值、最小值16、椭圆的平行弦、过定点弦等弦长最值问题及有关弦长的最值问题:例22、求直线1+=kx y 被椭圆1422=+y x 所截得弦长的最大值。

例23、N M Q P ,,,四点均在椭圆上,椭圆方程为:1222=+x y ,F 为椭圆在y轴正半轴的焦点,已知FQ PF ,共线,FN MF ,共线,且021=•PF PF ,求四边形PMQN 面积的最小值。

17、利用方程元的范围求有关最值问题:例24、已知椭圆方程为1y 222=+x ,求过点P (0,2)的直线交椭圆于不同两点A 、B ,λ=,求λ的取值范围。

),(]331[∈λ 18、其它有关最值例24、P 为椭圆:12222=+by a x )0(>>b a 上一动点,若A 为长轴的一个端点,B 为短轴的一个端点,当四边形OAPB 面积最大时,求P 点的坐标。

例25、已知椭圆131222=+y x 和直线09:=+-y x l ,在l 上取一点M ,经过点M 且以椭圆的焦点21,F F 为焦点作椭圆,当M 在何处时所作椭圆的长轴最短,并求此椭圆方程。

例26、设椭圆12222=+by a x )0(>>b a 的两个顶点为)0,(),,0(a B b A ,右焦点为F ,且F 到直线AB 的距离等于它到原点的距离,求离心率的取值范围。

例27、已知椭圆C :)0(12222>>=+b a by a x ,21,F F 为其左右焦点,P 为椭圆C 上一点,x PF ⊥2轴,且21F PF ∠的正切值为43(1)求椭圆C 的离心率。

(2)过焦点2F 的直线l 与椭圆C 交于点N M 、,若MN F 1∆面积的最大值为3,求椭圆C 的方程。

解:c x =代入)0(12222>>=+b a by a x 得:a b y 2±=又21F PF ∠的正切值为43,所以),(2a b c P ,即432432222=-⇒=ac c a ac b 注意到10<<a c ,所以21=a c (2)设),(),,(2211y x N y x M ,过焦点2F 的直线l 的方程为c my x +=,代入椭圆方程得:096)43(134)(1)(22222222222=-++⇒=++⇒=++c mcy y m cy c c my b y a c my 439,4362221221+-=+-=+m c y y m mc y y 2122121214)(|||)||(|2211y y y y c y y c y y c S MNF -+=-=+•=∆ 16249112)43(4464336)436(242222222222+++=++=+++-=m m m c m m c m c m mc c611)1(91121)1(6)1(911222222222++++=+++++=m m cm m m c 设11)1(922+++=m m u ,12+=m t ,则)1(19≥+=t t t u 由于)(t u 在),1[+∞上是增函数,所以10)1(=≥u u ,1=u 时取等号,即0=m 时取等号,此时有2236101121c c S MN F =+≤∆,又MN F 1∆面积的最大值为3, ⎩⎨⎧==⇒=⇒=∴321332b ac c故椭圆C 的方程为:13422=+y x仰望天空时,什么都比你高,你会自卑;俯视大地时,什么都比你低,你会自负;只有放宽视野,把天空和大地尽收眼底,才能在苍穹泛土之间找准你真正的位置。

相关文档
最新文档