光的干涉和干涉系统
工程光学习题参考答案第十一章 光的干涉和干涉系统

第十一章 光的干涉和干涉系统1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多少?解:由题知两种波长光的条纹间距分别为961131589105891010D e m d λ---⨯⨯===⨯ 962231589.610589.61010D e m d λ---⨯⨯===⨯ ∴第十级亮纹间距()()65211010589.6589100.610e e m -∆=-=⨯-⨯=⨯2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为1.58的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了0.5场面,试决定试件厚度。
解:设厚度为h ,则前后光程差为()1n h ∆=- ()1x dn h D∆⋅∴-=230.510100.580.5h --⨯⨯=21.7210h mm -=⨯3. 一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系。
继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长nm 28.656=λ,空气折射率000276.10=n 。
试求注入气室内气体的折射率。
解:设气体折射率为n ,则光程差改变()0n n h ∆=-图11-47 习题2 图()02525x d dn n h e D Dλ∆⋅∴-==⋅= 9025656.2810 1.000276 1.0008230.03m n n h λ-⨯⨯=+=+= 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。
玻璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。
解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D200'4cos 2xd I I I Dπλ== ()'104xd m m D λ⎛⎫∴∆==+≥ ⎪⎝⎭又()1n d ∆=-114d m n λ⎛⎫∴=+ ⎪-⎝⎭5. 若光波的波长为λ,波长宽度为λ∆,相应的频率和频率宽度记为ν和ν∆,证明λλνν∆=∆,对于nm 8.632=λ的氦氖激光,波长宽度nm 8102-⨯=∆λ,求频率宽度和相干长度。
光学第12章_干涉和干涉系统-2010精简

这个范围大则空间相干性好;范围小则空间相干性差.
右图中光源尺寸一定, 干涉孔径角即确定,孔 径角内的两点,距离愈 近,相干性愈好;角外 的两点不相干。
S1
S1
S2
S 2
三、光源非单色性的影响和时间相干性
光程差ΔL越大,折射光越落 后于反射光。ΔL过大,将超 过列波长度L。这时a、b光将 无法进行相干叠加。
劈尖
不规则表面
利用劈尖的等厚干涉可以测量很小的角度。
如: 今在玻璃劈尖上,垂直入射波长为 5893Å 的钠光, 测得相邻暗条纹间距为 5.0mm,若玻璃的折射率为 1.52,求此劈尖的夹角。
检查立方体
标 准 角 规 标 准 角 规
被检体
被检体
干涉膨胀仪
装置
C:铟钢作成的,热 膨胀极小; M:被检体。 M
相邻条纹的角间距:
n 1 2 2n' 1N h
反比于角间距,中心条纹疏,呈里疏外密分布。 反比于h,厚度越大,条纹越密。
透射光的等倾条纹
可见度降低,与反射互补
三、楔形平板产生的等厚干涉
(一)定域面和定域深度
油膜上的彩色条纹即为厚度很小时的等厚干涉条纹
(二)楔形平板产生的等厚条纹
在双孔后的空间,是相干光波的交叠区,形成干 涉.这种干涉,相干光波来自同一原子的发光,叫做 自相干.
双光束干涉,干涉场中某点的光强,与该点到两 光源的距离有关.因此,光强有稳定的空间分布. 在干涉场中距离双孔不太近,又不太远的区域, 处处有干涉.这种干涉称为不定域干涉.
2. 屏幕上光强分布规律 屏幕上P点光强为:
2 2 2 2
2 A1 A2 A1 A2
2 2
振幅相等:K=1 目视干涉仪:K>0.75 好 K>0.5 满意 K=0.1 可辨认
大学物理-12章:光的干涉

iD
n1
e
A
C n2 n1
B
n1
薄膜干涉
§4 分波面双光束干涉
一、杨氏双缝实验(1801)
装置: 稳定、明暗相间条纹
P
S1
Sd
r1
r2
y o
S2
D
物理分析:
d sin d tg yd
D
P
S1
d
r1
r2
y
o
S2 r2 r1
D
yd D
2k
2 (2k 1)
亮纹
暗纹
2
明、暗纹位置:
k 3, 2n1e / 3 368nm
讨论:
1 2k k 0,1, 2
I I1 I2 2 I1I2
if I1 I2 4I1
光的强度为最大值,干涉极大
I I1 I2 2 I1I2 cos
讨论:
2 (2k 1) k 0,1, 2
I I1 I2 2 I1I2
if I1 I2
0
光的强度为最小值,干涉极小
§3 两列单色波的干涉
2e
n22
n12
sin2
i
2
k
2ne 2 k
4ne 41.301.0107 5.20107
2k 1
2k 1
2k 1
k=1时: 5.20 107 m ----绿色光
k=2时: 1.733107 m
----紫外光,不可见
练习:一油轮漏油(n1=1.2)污染海面,在 海水(n2=1.3)表面形成一层薄油污。
随机变化
cos(2
1)
1
cos(2 1)dt 0
0
I I1 I2 非相干叠加加!
第三章 光的干涉和干涉系统

5
I1 I 2 A1 A2 cos
干涉条件(必要条件):
(1)频率相同, 1 2 0; (2)振动方向相同, A1 A2 A1 A2 (3)位相差恒定, 1 2 常数
注意:干涉的光强分布只与光程差 k (r1 k 2 ) 有关。
在两个光波叠加的区域形成稳定的光
强分布的现象,称为光的干涉现象
The term Interference refers to the phenomenon that waves, under certain conditions, intensify or weaken each other.
2
observed visually, projected on a screen, or
recorded photoelectrically.
23
Interference fringes
Zeroth-order maximum
First-order minimum
First-order maximum
1)相干波源到接收屏之间的距离D
2)两相干波源之间的距离d 3)波长
14
干涉条纹间隔与波长的关系
条纹间隔 e ,
e 1 。
白光条纹 0 白条纹 白条纹
15
x
二、两个点源在空间形成的干涉场
两点源形成的干涉场是空间分布的; 干涉条纹应是空间位置对点光源等光程差的轨迹。 =r2 r1 ( x d ) 2 y 2 D 2 ( x d ) 2 y 2 D 2 2 2
axial
24
§3-3 干涉条纹的可见度 the visibility (contrast) of interference fringes
南京理工大学-研究生入学考试大纲-819光学工程

《光学工程》考试大纲
一、复习参考书
1、工程光学. 第二版郁道银、谈恒英编,机械工业出版社,2007.2
二、复习要点
物理光学部分
第一章光的电磁场理论
1.光的电磁性质
2.光在电介质分界面上的反射和折射
3.光波的叠加和傅里叶分析
重点:熟练掌握光的电磁波表达形式和电磁场的复振幅描述;掌握光在介质分界面上反射和折射时光波的变化情况,尤其是正入射的情况;掌握光波的叠加原理与傅里叶分析方法。
第二章光的干涉和干涉系统
1.光波干涉的条件及干涉图样的计算
2.干涉条纹的可见度
3.平行平板产生的双光束干涉及典型双光束干涉仪
4.平行平板产生的多光束干涉及其应用
重点:熟练掌握光程差概念以及对条纹的影响及基本的双光束干涉系统。
掌握条纹定域和非定域的概念及条纹可见度、空间相干性、时间相干性概念;典型的双光束、多光束干涉系统以及单层增透、减反膜的计算结论和实际应用。
第三章光的衍射
1.菲涅耳衍射公式与夫琅和费衍射公式
2.典型孔径(矩孔,单缝和圆孔)的夫琅和费衍射
3.光学成像系统的衍射和分辨本领
4.多缝的夫琅和费衍射与衍射光栅
5.菲涅耳波带片
重点:熟练掌握典型的夫朗和费衍射系统概念和计算;掌握光栅的原理和计算;菲涅耳波带片的概念和使用。
大学物理基础知识光的干涉与衍射现象

大学物理基础知识光的干涉与衍射现象光的干涉与衍射现象光的干涉和衍射现象是大学物理基础知识中的重要内容。
本文将介绍光的干涉和衍射的基本概念、原理以及实际应用。
一、光的干涉现象光的干涉是指两个或多个光波相遇时发生的现象。
干涉可以是构成性干涉(增强光强)或破坏性干涉(减弱或抵消光强)。
干涉现象可以通过光的波动性解释。
1. 干涉光的波动模型根据互相干涉的光波的波函数,可以使用叠加原理对光的干涉进行数学描述。
干涉是由于波峰与波峰相遇或波谷与波谷相遇而形成的,这种相遇会产生干涉图案。
2. 干涉的光程差干涉的关键参数是光程差,它是指两束相干光的传播路径的差值。
当光程差为整数倍的波长时,会出现构成性干涉;当光程差为半整数倍的波长时,会出现破坏性干涉。
3. 干涉的类型干涉现象可分为两种类型:薄膜干涉和双缝干涉。
薄膜干涉是指光线在介质的两个表面之间反射、透射产生的干涉现象;双缝干涉是指光通过两个相隔较近的缝隙后形成的干涉现象。
二、光的衍射现象光的衍射是指光线通过小孔或物体的边缘时发生的现象,光波会向周围扩散形成衍射图样。
衍射现象可以通过光的波动性解释。
1. 衍射光的波动模型光通过一个小孔或物体的边缘时,光波会发生弯曲,并在周围空间中形成散射波。
这些散射波的叠加就会形成衍射图样。
2. 衍射的特点衍射的特点是衍射波传播范围广,可以绕过物体的边缘,进入遮挡区域。
衍射图样的大小与孔径或物体边缘大小有关,小孔或细缝会产生较宽的衍射图样,大孔或宽缝会产生较窄的衍射图样。
3. 衍射的应用光的衍射现象在实际应用中具有广泛的意义,例如天文学中使用的干涉仪、显微镜的分辨率提升、光学存储器的读写操作等。
三、光的干涉与衍射的应用光的干涉与衍射现象不仅仅是基础学科的内容,也有着广泛的实际应用。
1. 干涉与衍射在光学仪器中的应用干涉仪是利用光的干涉现象进行测量和分析的仪器,如干涉计和迈克尔逊干涉仪等。
衍射仪是利用光的衍射现象进行实验和观测的仪器,如杨氏双缝干涉实验装置和夫琅禾费衍射装置等。
第13章 光的干涉

0
3.光强 光强
λ−
∆λ 2
λ λ + ∆λ λ
2
E 矢量,称为光矢量。 E 矢量的振动称为光振动。 矢量,称为光矢量。 矢量的振动称为光振动。 光强I 在光学中,通常把平均能流密度称为光强。 光强 :在光学中,通常把平均能流密度称为光强。
I ∝E
2 0
在波动光学中,主要讨论的是相对光强, 在波动光学中,主要讨论的是相对光强,因此 在同一介质中直接把光强定义为: 在同一介质中直接把光强定义为:
16
三、光程与光程差
干涉现象决定于两束相干光的位相差∆ϕ 干涉现象决定于两束相干光的位相差∆ϕ 两束相干光通过不同的介质时, 两束相干光通过不同的介质时,位相差不能单纯 由几何路程差决定。 由几何路程差决定。
S1 S2
r1
n1
P
r2
n2
光在介质中传播几何路程为r, 光在介质中传播几何路程为 ,相应的位相变化为 r 2π 2π = ⋅ nr λn λ r r2 2π 1 (n1r − n2r2 ) ∆ϕ = 2π − 2π = 1
(k = 0,1,2…)
8
I 4I1两相干光束 2I1 两非相干光束 π π -5π -3π -π π π I1一个光源 3π π 5π π ∆ϕ
普通光源获得相干光的途径(方法) 普通光源获得相干光的途径(方法) (1) 分波阵面方法: 分波阵面方法 方法: (2)分振幅的方法: 分振幅的方法: 分振幅的方法 杨氏干涉 等倾干涉、 等倾干涉、等厚干涉
3
独立(同一原子先后发的光 独立 同一原子先后发的光) 同一原子先后发的光 独立(不同原 独立 不同原 子发的光) 子发的光 光波列频率、位相、振动方向等具有随机性。 光波列频率、位相、振动方向等具有随机性。 2.光的颜色和光谱 2.光的颜色和光谱 可见光频率范围: 7.7×1014 ~ 3.9×1014Hz 可见光频率范围 × × 可见光波长范围: 7600Å 可见光波长范围 3900 Å ∼ 7600 可见光颜色对照: 可见光颜色对照 紫 ~ 红 单色光——只含单一波长的光。 单色光——只含单一波长的光。 ——只含单一波长的光 复色光——含多种波长的光。 复色光——含多种波长的光。 ——含多种波长的光
第12章光的干涉

反射光光程 nr 2
λ
2
?
思考: 与杨氏双缝实验比 干涉条纹有哪些相 同、不同之处?
δ
双镜
M1
s
P
L
s1 θ
d
s2
C
M2
d'
12.3
光的时空相干性
λ ν
一、光的非单色性
1、理想的单色光 2、实际光束: 准单色光
波列长L=τ c
Io
Io 2 0
I
λ
λo
Δλ
光强降到一半时曲线的 宽度—— 谱线宽度 Δλ
Δx14 = x4 − x1 =
d Δx14 λ= D ( k 4 − k1 )
d
( k 4 − k1 ) λ
0 .2 × 7 .5 λ= = 500 nm 1000 × 3
(2)当λ =600nm 时,相邻两明纹间的距离为
1000 D −4 Δx = λ = × 6 × 10 = 3.0mm 0.2 d
E = Eo cos ωt ( ) z E = E0 cos[ω (t − ) ] u π
波强(平均能流密度)
光矢量
2
r E
1 ∫ cos ωtdt = 2 π 0
1
1 2 I = E0 2
2.光程
光程差
波程
L1 = n1 r1 光程
L2 = n 2 r2 光程
经多种介质时 若介质不均匀
• P
r1
1、普通光源:自发辐射
· ·
独立(不同原子发的光) 独立(同一原子先后发的光)
结论: 普通光源发光具有独立性、随机性、间歇性
(1)一个分子(或原子)在一段时间内发出一列光波, 发光时间持续约10-8~10-10s. (间歇性) (2)同一分子在不同时刻所发光的频率、振动方 向不一定相同。(随机性、独立性) (3)各分子在同一时刻所发光的频率、振动方 向、相位也不一定相同.(独立性、随机性)