BIT数值分析第一章误差

合集下载

数值分析01-误差.

数值分析01-误差.

,用计算机计算
3出2 1.2599210498 9487
,(15位数)。尽管精确度相
当高,但仍是近似值。下面的表1-1列出了对h取前有限位 数时,计算所得体积的误差。
阜师院数科院第一章 误差
1-6
W
Y
例 1(续)
表1-1 立方倍积问题的计算
位数
高度
体积
误差
2
1.2
1.728
2.7200×10-1
3! 5! 为其截断误差。
阜师院数科院第一章 误差
1-10
W
Y
条件问题
计算方法中有一类问题称为条件问题,
条件问题是一个算法 (公式)由于初始
数据或者中间某些数据微小摄动对计算结
果产生影响的敏感性的问题。舍入误差、
观测误差都属初始数据的摄动。研究坏条
件问题的计算方法是十分重要的课题,有
的时候,一些问题的条件并不坏,但由于
e x x*
er

e x

x x* x
分别称e为近似值 x *的绝对误差或误差, er为x*的相对误差。
一般情况下,准确值是不知道的,从而也不能算出绝
对误差e的准确值,但往往可以根据测量工具或计算的情 况估计出e 的取值范围,即估计出绝对误差的一个上界ε :
e xx*
这样的ε称为x *的绝对误差限或误差限。
差是需要特别重视的。
(4)在计算中遇到的数据可能位数很多,也可能是无
穷小数,如, , e , 2,1/ 3 等,由于计算机数系是
间断的且有界,即计算时只能对有限位数进行运算,因
此必须进行四舍五入,这样产生的误差称为舍入误差
。阜师院数科院第一章 误差

数值分析第一章ppt

数值分析第一章ppt

s 某商品标注重量为 27±0.5kg, 实际重量是多少?
}
1.2.2 相对误差和相对误差限
x*的相对误差
r
x x x
在不同近似值中,|εr (x)|越小,x*的精确度越高。
r(x)
| ( x) | |x|
x x x
——x*的相对误差限
常用计算公式: r ( x)
( x)
x*Βιβλιοθήκη x x* x* ,}
(2)相对误差:
r ( x1
x2 )
( x1 x2 )
x1 x2
( x1 ) ( x2 )
x1 x2
x1 x1 x2
( x1 )
x1
x2 x1 x2
(x2 )
x2
x1
x1
x2
r
(
x1
)
x1
x2
x2
r
(
x2
)
当x1≈x2时, x1 – x2 ≈0,所以相近两数之差的相对误差将很大 。
}
1.2 误差的基本估计方法
= 1.2.1 绝对误差和绝对误差限 = 1.2.2 相对误差和相对误差限 = 1.2.3 有效数字 = 1.2.4 算术运算的误差
}
1.2.1 绝对误差和绝对误差限
设某准确值x近似值为x*。 x*的绝对误差 ε(x)=x–x*
在同一量的不同近似值中,|ε(x)|越小,x*的精确度越高。
sin x x x3 x5 x7 , x 3! 5! 7!
用近似计算公式 sin x x
截断误差 sin x x x3 x5 x7 cos x3
3! 5! 7!
3!
sin x x 1 x 3 6

数值分析1.误差分析

数值分析1.误差分析

则有误差限 |x-x*|≤1= εx ,
虽然εy是εx 的3倍,但在1000内差3显然比10内差1更精确 些。这说明一个近似值的精确程度除了与绝对误差有关 外,还与精确值的大小有关,所以这时可以用相对误差 来比较这两个近似数的准确度。
2014-12-9 19
第一章 绪论与误差分析
e x x* 定义1 .2 记 er x x 则称其为近似值 x *的相对误差。 由于 x 未知, 实际使用时总是将 x * 的相对误差取为
2014-12-9 第一章 绪论与误差分析 7
二、计算数学研究的对象和任务
根据数学模型提出的问题,建立求解问题的数值计算 方法并进行方法的理论分析,再编制出算法程序上机计算 并对计算结果进行分析,这一过程就是计算数学研究的对 象和任务。因此,计算数学就是研究用计算机解决数学问 题的数值计算方法及其理论。 计算数学是数学学科的一个分支,但它不象纯数学那 样只研究数学本身的理论,而是把理论与计算紧密结合, 着重研究面向计算机的,能够解决实际问题的数值方法及 其理论,具体地说,数值分析研究的内容包括: 1.构造可在计算机上求解数学问题的数值计算方法 2.分析方法的可靠性,即按此方法计算得到的解是否 可靠,与精确解之差是否很小,以确保计算解的有效性。
对给定的 x ,要计算函数值 ex 时,可采用近似公式 2 n x x x e 1 x 2! n! 那么此近似公式的截断误差为
2014-12-9
x n 1 θ x R( x ) e , 0θ 1 ( n 1)!
第一章 绪论与误差分析
14
4.舍入误差(计算误差)
由于计算机的字长有限,参加运算的数据以及计算结 果在计算机上存放时,计算机会按舍入原则舍去每个数据 字长之外的数字,从而产生误差,这种误差称为舍入误差 或计算误差。 例如,在十进制十位的限制下,会出现 (1.000002)2-1.000004=0

数值分析(01) 数值计算与误差分析

数值分析(01) 数值计算与误差分析

数值分析
数值分析
一、误差的来源
1、数学模型
数学模型是通过科学实验或者观察分析一系列数据 后,用数学作为工具近似地描述客观事物的一种数学表 达式。
在数学模型中,往往包含了若干参量如物体比重、阻 力系数、热交换系数等,这些物理参数通常由实验仪器测 得,根据仪器的精密程度,物理参数的确定也会产生一定 的误差。
(4)在研究区左端连续注入浓度为C0的废水,废水中的 污染物不发生吸附解吸和衰变;
(5)对流弥散是一维的。
数值分析
数值分析
基于以上假设,定浓度注入污染物一维迁移的数学物理方程为:
方程的解为:
c(ctx,0D) 0x2c,20Vxxc
,0
x
, t
0
c(0,
t)
c0
,
0
t
c(,t) 0, 0 t
有递推公式
sn sk
axn sk 1
ak
k n 1, ,2,1,0
Pn (x) s0
需乘法n次,加法n次,存储单元n+3个。
数值分析
数值分析
算法1 (输入a(i)(i=0,1,…,n),x;输出y)
t 1 u a(0)
注意
for i 1 : n
t x*t
u u a(i)* t
end
Hale Waihona Puke 的基础.数值分析数值分析
一、数值分析的特点
现代科学的三个组成部分: 科学理论,科学实验,科学计算
科学计算的核心内容是以现代化的计算机及数学软 件为工具,以数学模型为基础进行模拟研究。
计算数学,计算物理学,计算力学,计算化学, 计算生物学,计算地质学,计算经济学,等等
数值分析

BIT数值分析第一章误差

BIT数值分析第一章误差

PI=3.14=0.314101 则其绝对误差为:0.510-3101=0.5 10-2
1.2.3 有效数字(8) 有效数字与相对误差的关系 相对误差限 有效数字 如果 x*的相对误差限满足:
1 εr 10 n 1 2( a1 1)
则x*至少有 n 位有效数字。
1.2.3 有效数字(8)
1.2.1 误差的来源与分类 1.2.2 绝对误差、相对误差 1.2.3 有效数字
1.2.1 误差的来源与分类(1)
• 模型误差
反映实际问题有关量之间关系的计算公式,即数 学模型,通常只是近似的。由此产生的数学模型的解 与实际问题的解之间的误差称为模型误差。
• 观测误差
由观测得到的数据与实际的数据之间的误差,称 为观测误差。
1.2.3 有效数字(7)
有效数字与相对误差的关系
有效数字 相对误差限
m x 0 . 10 已知 有 n 位有效数字,则其相 1 n 对误差限为:
1 r 10n 1 21
1.2.3 有效数字(8)
证明:
1 1 n m x x 10 10 10mn 2 2 1 m n 10 1 1 n 2 r * 10 x 0.1 n 10m 21
例1-2:设a=-2.18和b=2.1200是分别由准确值x 和y经过四舍五入而得到的近似值,问: (a), (b), r (a), r (b) 各是多少? 解: (a) 0.005 (b) 0.00005mm
0.005 r (a) 0.23% a 2.18 0.00005 r (b) 0.0024% b 2.1200
1 0.333333 3

数值分析第一章1.1误差

数值分析第一章1.1误差
* *

f * * f * * e ( z ) ( ) e ( x) ( ) e ( y ) x y
*
(1)
函数近似值 z* 的相对误差
e* ( z ) f * x * f * y * e ( z ) * ( ) * er ( x) ( ) * er ( y ) x z y z z
得到一个精度很高的近似值。
四、避免“大数除以小数”
由二元函数的误差传播规律式知
y e x x e y x e y y2
可知,当 y 相对
x e* x 小时, y
会很大。
五、 防止大数“吃掉”小数 由于计算机采用浮点制,在数值运算中,如果 数据的数量级相差很大,如不注意运算次序,就可
因而实际计算的递推公式是:
I 5I
* n
* n 1
1 n
n 1, 2, , 20

I I0 e0
* 0
(2)
误差 e0 是怎么传递的
(1)-(2)得
* * I n I n 5(I n1 I n1 )
n 1, 2,, 20
递推得到
I n I (5) e0
z f ( x, y)
时,
用 z* f ( x , y ) 作为函数 z f ( x, y) 的近似值,
于是函数近似值 z* 的绝对误差
f * f * e ( z) z z f ( x, y) f ( x , y ) ( ) ( x x ) ( ) ( y y ) x y
e* (v) V V * 2(v)
绝对误差可以刻画近似值的准确程度。
2、相对误差与相对误差限 若 x 的近似值 x* 的绝对误差为

数值计算方法第一章 误差

数值计算方法第一章 误差

1 10n1 2a1
所以 1 10n1 是 x* 的相对误差限。
2a1

r
1
2a1
1
10n1,
由式(1-4)
21
绝对误差、相对误差和有效数字
e x* x*er x* 0.a1a2 L an L 10mr
a1
1
10m1
2
1 a1
1
10n1
1 10mn 2
由式(1-6),x* 至少有n位有效数字。
1.3.1 基本运算中的误差估计
本节中所讨论的基本运算是指四则运算与 一些常用函数的计算。
由微分学,当自变量改变量(误差)很小时, 函数的微分作为函数改变量的主要线性部分可以 近似函数的改变量, 故利用微分运算公式可导出 误差运算公式。
24
数值计算中误差的传播
设数值计算中求得的解与参量(原始数据)
由以上各式还可得出
ex1 x2 ex1 ex2 ex1 ex2 (1-14)
er x1x2 er x1 er x2 er x1 er x2 (1-15)
er
x1 x2
er x1 er x2
er x1
er x2
(1-16)
29
数值计算中误差的传播
因此,和、差的误差限不超过各数的误差限之 和,积、商的相对误差限不超过各数的相对误 差限之和。
定义: 若x的某一近似值 x* 的绝对误差限是某一位 的半个单位, 则称其“准确”到这一位,且从该位直到
x* 的第一位非零数字共有q位,则称近似值 x* 有q
位有效数字。
16
绝对误差、相对误差和有效数字
例如, 2 的近似值1.414准确到小数点后第3位, 它具有4位有效数字。

数值分析1——误差分析

数值分析1——误差分析

第一章: 第一章:误差主要内容• 误差的来源与分类 误差的来源与分类 • 误差与有效数字 • 在近似计算中应注意的几个问题1. 来源与分类 ( Source & Classification )• • • •模型误差 参数误差(观测误差) 参数误差(观测误差) 方法误差(截断误差) 方法误差(截断误差) 舍入误差1.1 模型误差 (Modeling Error)用计算机解决实际问题时, 首先要建立数学 用计算机解决实际问题时 , 首先要建立 数学 模型, 各种实际问题是十分复杂的, 模型 , 各种实际问题是十分复杂的 , 而数学 模型是对被描述的实际问题进行抽象 抽象、 模型是对被描述的实际问题进行 抽象 、 简化 而得到的, 往往忽略 了一些次要因素 忽略了一些 次要因素, 而得到的 , 往往 忽略 了一些 次要因素 , 因而 近似的 是 近似 的 , 我们把数学模型与实际问题之间 出现的这种误差称为模型误差 模型误差。

出现的这种误差称为 模型误差 。

如自由落体 公式1 2 s = gt 2忽略了空气阻力。

忽略了空气阻力。

参数误差(观测误差, 1.2 参数误差(观测误差,Measurement Error) 数学模型中的物理参数的具体数值, 数学模型中的物理参数的具体数值,一般通过 实验测定或观测得到的,因此与真值之间也有 实验测定或观测得到的, 得到的 误差,这种误差称为参数误差 观测误差。

参数误差或 误差,这种误差称为参数误差或观测误差。

例如前例中的重力加速度g=9.8 米 例如前例中的重力加速度 g=9.8米 / 秒 , 这 g=9.8 个数值是由多次实验而得到的结果实际的值 有一定的误差,这时g-9.8就是参数误差。

g-9.8就是参数误差 有一定的误差,这时g-9.8就是参数误差。

1.3 方法误差 (截断误差 Truncation Error)在数学模型( 包括参数值) 确定以后, 在数学模型 ( 包括参数值 ) 确定以后 , 就要考虑 选用某种数值方法具体进行计算, 选用某种数值方法具体进行计算 , 许多数值方法 都是近似方法, 都是近似方法 , 故求出的结果与准确值之间是有 误 差 的 , 该 误 差称 为 截断 误 差 或 方 法 误 差 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 计算机的诞生和发展,对数学的发展产生了不可估量的 影响
4. 国内外具有代表性的部分综合数学软件库 IMSL(International Mathematics and Statistics Library) (美国:影响最大的数值软件库之一) Mathematic:目前国内外广泛流行的软件包,几乎 实现了大学本科的所有数学演算和数值计算 Matlab:Matrix Laboratory的简称,美国 MathWorks公司出品的商业数学软件,用于算法 开发、数据可视化、数据分析以及数值计算的高 级技术计算语言和交互式环境

1.2.2 绝对误差、相对误差 (2)
结论:
上界的不唯一决定了绝对误差限和相对误差限
不唯一;
绝对误差限和相对误差限越小,近似值近似代
替准确值的程度越好;
实际应用中通常按照四舍五入的方法取近似值
1.2.2 绝对误差、相对误差 (2)
3.1415926 ,
1 3.14, 0.002 0.005 10 2 2 1 3.142, 0.0004 0.0005 10 3 2
数值问题和计算方法


将求解“数值问题”的“计算机上可执行” 的系列计算公式称为数值计算方法. 数值问题:输入数据与输出数据之间函 数关系的一个确定而无歧义的描述。
“计算机上可执行”的系列计算公式: 四则运算和逻辑运算等计算机上可执行 的运算
数值问题和计算方法
2 n x x 指数运算:e x 1 x 2 n!
解:假设 * 取到 n 位有效数字,则其相对误差上限为
1 εr 10 n 1 2( a1 1) 要保证其相对误差小于0.001%,只要保证其上限满 足 1 εr 10 n 1 0.001% 2( a1 1)
已知 a1 = 3,则从以上不等式可解得 n > 6 log8, 即 n 6,应取 * = 3.14159。
例1-2:设a=-2.18和b=2.1200是分别由准确值x 和y经过四舍五入而得到的近似值,问: (a), (b), r (a), r (b) 各是多少? 解: (a) 0.005 (b) 0.00005mm
0.005 r (a) 0.23% a 2.18 0.00005 r (b) 0.0024% b 2.1200
Software Engineering Embedded Sys Programming (CMMI, MSF, (DSP, FPGA, (思想、语言、工具) SOA ...) ASIC...)
1.1 数值分析的研究对象与特点
1. 数值分析是计算机与数学的交叉科学 2. 计算机科学是在数学的基础上发展起来的
解:
(a) (b) 0.5mm
0.5 r (a) 0.16% a 312 (b) 0.5 r (b) 0.28% b 24 311.5mm x 312.5mm
(a)
23.5mm y 24.5mm
1.2.2 绝对误差、相对误差 (6)
误差和误差限的意义
对于同一个准确值而言, e或者越小, 近似值越准确。 对于不同的准确值而言,比较e或者的大 小没有意义。
1.2.2 绝对误差、相对误差 (4)
一般用百
相对误差
e x x* er x x 相对误差限
er
r
分比表示
OR
e x x* er * x x*
1.2.1 误差的来源与分类 1.2.2 绝对误差、相对误差 1.2.3 有效数字
1.2.1 误差的来源与分类(1)
• 模型误差
反映实际问题有关量之间关系的计算公式,即数 学模型,通常只是近似的。由此产生的数学模型的解 与实际问题的解之间的误差称为模型误差。
• 观测误差
由观测得到的数据与实际的数据之间的误差,称 为观测误差。

PI=3.14=0.314101 则其绝对误差为:0.510-3101=0.5 10-2
1.2.3 有效数字(8) 有效数字与相对误差的关系 相对误差限 有效数字 如果 x*的相对误差限满足:
1 εr 10 n 1 2( a1 )
则x*至少有 n 位有效数字。
1.2.3 有效数字(8)
例如:
1 5 x 0.003400 10 2
表示:近似值0.003400准确到小数点后第5位, 有3位有效数字。
n个有效数字
x*= … …
最左边不 为零的数
误差不超过该位 数的半个单位
1.2.3 有效数字(4)
• 结论 同一准确值的不同 近似值,有效数字越 多,它的绝对误差和 相对误差都越小。 由准确值经过四舍 五入的得到近似值, 从它的末位数字到第 一位非零数字都是有 效数字。 例子:2.140012 近似值1:2.14; 3 近似值2:2.1400 5 两种近似值各有几 位有效数字,那种 更精确?
§1.3
算术运算中的误差
由微分学:当自变量改变量(误差)很小时, 函数的微分作为函数改变量的主要线性部分可 以近似函数的改变量,故利用微分运算公式可 导出误差运算公式。 假设: 数值计算中求得的解与参量(原始数据)x1, x2,…,xn 有关,计为:y=f(x1, x2,…,xn) xi,yi为准确值, xi*,yi*分别为其近似值; y*=f(x1*, x2*,…,xn*)
1.2.3 有效数字(2)
非零小数总可以写成如下形式:
x 0.1 2
*
n
10
m
其中: (1)m是整数, (2)a10, (3) i (1, 2, , k ) 是0到9之间的整数; (4) x x* 1 10mn
2
则称近似值x*有n位有效数字。
1.2.3 有效数字(3)
y( x h) y( x) 微分运算:y ( x ) h
3. 研究数值计算方法的主要任务有三个:
(1)将计算机不能直接计算的运算,化成在计算机上可执行的运算;
(2)针对数值问题研究可在计算机上执行且行之有效的新系列计算公式
(3)误差分析,即研究数值问题的性态和数值方法的稳定性.
1.2 误差
0.00000182 0.000002
0 . 0000019 或 者 0 . 000002 0.0000019 4 相对误差限 : r * 0.704 10 e 2.71828
0.000002 r * 0.8 10 4 e 2.71828
证明:
r
1 2(1 1) 10 n 1
x r 0.1 n 10m r
(1 1) 10 1 10m n 2
m 1

1 2(1 1)
10 n 1
可见 x*至少有 n 位有效数字。
例1-4:为使 π * 的相对误差小于0.001%,至少应取几位有 效数字?
1 0.333333 3
1.2.1 误差的来源与分类(3)
研究对象
数学模型
计算方法
客 观 世 界 测量数据
数值运算 结果
1.2.2 绝对误差、相对误差 (1)
误差和(绝对)误差限(误差界)的概念
设 x 是准确值 x* 的一个近似值,记为 e=xx* ,称e为近似值x*的绝对误差,简称误差。 e可正可负。 如果|e|的一个上界已知为,记为|e|= |x- x* | , 则称为近似值x*的一个绝对误差限或绝对误 差界,简称误差限或误差界。 为正值。 误差限不唯一。
(a)
(b)
1.2.3 有效数字(1)
有效数字
近似值的一种表示法; 表示近似值的大小; 表示近似值的精度;
有效数字的定义: 设数x*是数x的近似值。如果x* 的绝对误差限 是它的第n位的半个单位(四舍五入),则称x* 准确到小数点后第n位,并且从第一位非零数字 到该位的所有数字均称为有效数字。
a 0.138 10 m 1
1
1 1 n (a) 10 0.005 2
答 案 c: 没 有 有 效 数字(n=-2)
n3
1.2.3 有效数字(6)
例1-3:对准确值x=3.95进行四舍五入后得x*= 4.0;但是,若将x最后一位5舍掉成为x*=3.9. 它们的误差绝对值都不超过末一位的半个单位, 均为:0.05 对有效数字理解的几点说明: 1.近似值的有效数字不一定都是通过四舍五入得到 2.近似值小数点后面的0不能随便增减 3.当绝对误差等于末位的半个单位时,会出现有效 数字不唯一的情况
注意:数字末尾的 0不可随意省去!
1.2.3 有效数字(5)
例1-3:下列近似值的绝对误差限都是 0.005,a=1.38,b=-0.0312,c=0.86 10-4 问:各个近似值有几个有效数字? 解: (a) (b) (c) 0.005 1 答案a:1,3,8(n=3) (a) 10mn 答案b:3(n=1) 2
Multimedia
人工智能AI 虚拟现实VR 科学计算
性能 功耗 安全 可靠 易用 可扩展
Application
应用研究
Computer Science
系统研究
Hardware
Computer Architecture
Software
PC, HPC (Multi-core, Manycore, Cluster, Grid, Cloud...)
数值分析
课时:40 时间:(4-11)周 考核方式:闭卷考试 主讲教师:王一拙 联系方式:frankwyz@
第一章 绪论 1.1 数值分析的研究对象与特点 1.2 误差 1.3 算术运算中的误差
1.4 数值计算中应该注意的问题 1.5 误差分配原则与处理方法
相关文档
最新文档