数值分析第版第一章课件李庆扬著模板

合集下载

河海大学研究生数值分析课件

河海大学研究生数值分析课件
插值节点。其他点 x [a, b]称为插值点。 [a, b称为 ] 插值区间。
若 P(x) 是次数不超过n的多项式,即
P( x) a0 a1 x an x n
则称 P(x)为插值多项式。相应的方法称为多项式插值。 若 P(x) 是分段多项式,则称分段多项式插值。 常用的有拉格朗日插值、牛顿插值、埃尔米特插 值、埃特金插值、三次样条插值等。
定义2 称
f ( x1 ) f ( x0 ) f [ x0 , x1 ] x1 x0
为 f (x)关于点
x0 , x1 的一阶均差;称
f [ x0 , x2 ] f [ x0 , x1 ] f [ x0 , x1 , x2 ] x2 x1
为 f (x)的二阶均差;一般的,称
f ( f ( x ,, x )) | ( ) | ( xk ) xk k 1
1 n n
例3 测量得某场地长 l 的值为 110 0.2 ,宽d m 的值为 80 0.1m ,试求面积 s = ld 的绝对误差限与 相对误差限。 (见黑板)
1.3 误差定性分析与避免误差危害
1 ( n1)
若 x 具有n位有效数字,则相对误差限
r
x 10 (a1 a2 10 an 10
) , a1 0
1 ( n 1) 10 2a1 1 ( n 1) 10 ,则 反之,若 x 的相对误差限 r 2a1
至少具有n位有效数字。 (证明见黑板)
其中数值计算方法是数值分析研究的对象。
主要包括:
(1)函数的数值逼近(包括插值法);
(2)数值微分和数值积分;
(3)非线性方程(组)数值解; (4)数值线性代数(如线性方程组数值解、矩阵 特征值特征向量的计算); (5)(偏)微分方程数值解。

数值分析课件

数值分析课件

n=20 需要运算 多少次?
➢ 存贮量 ➢ 逻辑结构
n=100?
§2 误差来源与误差分析的重要性
一、误差的来源与分类
➢ 从实际问题中抽象出数学模型—— 模型误差
例:质量为m的物体,在重力作用下,自由下落, 其下落距离s 与时间t 的关系是:
m
d 2s dt2
mg
其中 g 为重力加速度。
➢ 通过测量得到模型中参数的值—— 观测误差
S2 计算 D a11a22 a21a12
S3 如果 D 0
则输出原方程无解或有无穷多组解的信息;
否则 D 0
x1
a22b1 a12b2 D
S4 输出计算的结果
x1, x2
x2
a11b2 a21b1 D
开始
输入
a11, a12 , a21, a22 , b1 , b2
D=a11a22-a12a21
(1)如果 D 0,则令计算机计算
x1 b1a22 b2a12 D , x2 b2a11 b1a21 D
输出计算的结果x1,x2。
(2)如果D= 0,则或是无解,或有无穷多组解。
令 D a11a22 a21a12
通过求解过程,可以总结出算法步骤如下:
S1 输入 a11, a12, a21, a22,b1,b2
➢ 求近似解 —— 方法误差 (截断误差)
例如,当函数 f 用 xTaylor多项式
Pn x
f
0
f 0
x 1!
f 0 x2
2!
f (n) 0 xn
n!
近似代替时,数值方法的截断误差是
( 在 与x0之间)。
Rn x
f
x Pn x

数值分析课件 第一章 绪论

数值分析课件 第一章 绪论

1 e 0 1 x n e 0 d I n x 1 e 0 1 x n e 1 d x e 1 1 ( ) I n n n 1 1
公式一:I n 1 e [ x n e x 1 0 n 0 1 x n 1 e x d x ] 1 n I n 1
I01 e 01exdx11 e0.63212 记为0I5 0* 6 此公式精确成
初始的小扰动 |E 0|0.51 0 8迅速积累,误差呈递增趋势。 造成这种情况的是不稳定的算法 /* unstable algorithm */ 我们有责任改变。
公式二: I n 1 n I n 1 I n 1 n 1 ( 1 I n )
方法:先估计一个IN ,再反推要求的In ( n << N )。 注 意在e此理(N 公论1 式上1)与等公价IN 式。一N 1 1
)
0 .0 6 6 8 7 0 2 2 0
I
12
1 (1 13
I
13
)
0 .0 7 1 7 7 9 2 1 4
I
11
1 (1 12
I
12
)
0 .0 7 7 3 5 1 7 3 2
I
10
1 11
(1
I
11
)
0 .0 8 3 8 7 7 1 1 5
I
1
1 2
(1
I
2
)
0 .3 6 7 8 7 9 4 4
0
2! 3! 4!
11/1e111 e1 x 2d1x11 1 3 2! 50 3! 7 4! 9
取 01ex2dxS4 ,
S4
R4 /* Remainder */
则 R 44 1 !1 9 由 留5 1 !下1 部1 分1 称为截断误差 /* Truncation Error */

数值分析 李庆扬ppt课件

数值分析 李庆扬ppt课件
x
x xA xA
➢ 定义2.2 绝对误差界、相对误差界
若 x ,x则A 称 为A绝对误差界,简称 误A 差界
称 为A 相对误差界, 记为 . xA
r
;.
数值分析14
数值分析
➢定义2.3 有效数字 /* significant digits */
用|为x科有 学nx计A 位|数 有(法0效即.,5数 记的字10截,k 取精n按确x A 四到 舍 五(a。1 n入其0 k 规中 则0 ).a )1 ,a . 则2 若称a n
离散集合(部分有理数),此集合的数称为机器数.
浮点数:
这种允36许.83小=数0.3点68位3×置1浮02动=0的.03表68示3×法1称03为数的 浮点形式。
机器数 x 的二进制浮点形式为: 尾数
x 2k0 .12 t

其中, k 12 s(j { 0 ,1 } )
阶的位数
;.
数值分析19
数值分析
促使一些边缘学科的相继出现: 计算数学,计算物理学,计算力学,计算化学,计算生物学, 计算地质学,计算经济学,等等
;.
4 数值分析
数值分析
实际问题
建立数学模型
数值分析提出算法
程序 设计
分析结果并对实际问题进行解释说明
编程上机计算
在建立了数学模型之后,并不能立刻用计算机直接求解,还必须寻找用计算机计算这 些数学模型的数值方法,即将数学模型中的连续变量离散化,转化成一系列相应的算法步 骤,编制出正确的计算程序,再上机计算得出满意的数值结果。
略去高阶项:
A A f( x 1 ,,x n ) f( x 1 ,,x n )
n j1
f
(x) xj

数值分析李庆杨-第一章 引论

数值分析李庆杨-第一章  引论
数值分析
第1章
一、什么是数值分析
绪论
§1 数值分析的研究对象与特点
数值分析是计算数学的一个主要部分,计算数学是数
学科学的一个分支,它研究用计算机求解各种数学问题
的数值计算方法及其理论与软件实现. 实际问题→数学模型→数值计算方法 →程序设计→上机计算求出结果
二、数值分析的基本内容
1、数值逼近 插值法 函数逼近与曲线拟和 数值积分与数值微分 2、数值代数 线性代数问题(方程组和特征值) 非线性方程(组)数值解法 3、常微方程数值解法和偏微方程数值解法
2 2
10
0.0025
x2*=9 000.00,绝对误差限0.005,因为m=3,n=6,x2*=9 000.00 1 101 6 =0.000 000 56 有6位有效数字,相对误差限为r=
29
如果认为小数点后边的0无用,将9 000.00随便写作9000= 9×103,那么它的绝对误差就是=0.5=0.5×103-4+1,即m=3, n=4,表明这个数有4位有效数字. 可见,小数点之后的0,不是可有可无的,它是有实际 意义的.
一元函数f ( x),x为准确值, x * 为近似值,由Taylor公式 f ( x) f ( x*) f ( x*)( x x*)
f ( ) 2 ( x x *) , 2
在x, x * 之间,
得f ( x*)的误差限 ( f ( x*)) | f ( x*) | ( x*).
截断误差
• 精确公式用近似公式代替时,所产生的误差叫截断误 差 例如, 函数f(x)用泰勒(Taylor)多项式
f (0) f (0) 2 f ( n ) (0) n p n ( x) f (0) x x x 1! 2! n!

《数值分析》李庆杨,第五版第1章课件

《数值分析》李庆杨,第五版第1章课件

取3位
x3 * 3.14,
3 * 0.002,
取5位
x5 * 3.1416, 5 * 0.000008,
它们的误差都不超过末位数字的半个单位,即
1 10 2 , 2 1 π 3.1416 10 4. 2 π 3.14
18
定义2
若近似值 x * 的误差限是某一位的半个单位,
例2说明有效位数与小数点后有多少位数无关.
23
从(2.2)可得到具有 n 位有效数字的近似数 x *,其绝对 误差限为
1 * 10 m n 1 , 2
在 m相同的情况下, n 越大则 10 m n 1 越小,故有效位数越 多,绝对误差限越小.
x x*
1 10 m n 1. 2
(2.1)

* r
x x* x*
0.5 10 m n 1 1 10 n 1 ; a1 10 m 2a1
反之,由
1 x x * x * (a1 1) 10 10 n 1 2(a1 1)
* r
m
0.5 10mn 1 ,
该位到 x *的第一位非零数字共有 n位,就说 x *有 n位有效
数字. 表示为
x* 10 m (a1 a2 10 1 an 10 ( n 1) ), (2.1)
其中 ai (i 1,, n)是0到9中的一个数字,a1 0, m为整数, 且
1 x x * 10 m n 1. 2
* * ( x1 / x2 )
x
* 2 2
* ( x2 0).
29
一般情况下,当自变量有误差时函数值也产生误差, 其误差限可利用函数的泰勒展开式进行估计. 设 f (x)是一元函数, x 的近似值为 x *,以 f (x*)近

数值分析全册完整课件

数值分析全册完整课件
似算法的收敛性和数值稳定性; 要有好的计算复杂性,节省时间及存储量; 有数值实验,证明算法有效。
算法基本结构:顺序,分支,循环
算法描述:程序或流程图
常采用的处理方法:
构造性方法 离散化方法 递推化方法 迭代法 近似替代方法 以直代曲法 化整为零的处理方法 外推法
数学基础:
微积分的若干定理: 罗尔定理和微分中值定理; 介值定理及推论; 泰勒公式(一元、二元); 积分中值定理;
设y=f(x)为一元函数,自变量准确值x*,对应函数准确 值y*=f(x*),x误差为e(x),误差限为ε(x),函数近似值 误差e(y),误差限为ε(y)。则(可由Taylor公式推得)
( y) | f '(x) | (x)
r
(
y)
|
xf |f
'(x) (x) |
|
r
(
x)
对于多元函数 z f (x1, x2 ,, xn )
定义1.1 设x*为某一数据的准确值,x为x*的一个近 似值,称e(x)=x-x*(近似值-准确值)为近似值x的绝对 误差,简称误差。
e(x) 可正可负,当e(x) >0时近似值偏大,叫强近似值;当e(x) <0时近似值偏小,叫弱近似值。
由于x*通常无法确定,只能估计其绝对误差值 不超过某整数ε(x),即
设准确值
z* f (x1*, x2*,, xn* )
由多元函数Taylor公式,可得误差估计:
n
(z)
k 1
f xk
(xk )
相对误差限为:
r (z)
n k 1
xk
f xk
r (xk )
z
2. 算术运算的误差估计:

数值分析1.1

数值分析1.1
达到: 从 “学过了”到“学会了” 从 “学会了”到“会学了”
2、上机编程能力。 3、养成守时的习惯。 4、培养诚实守信的品质. 5、培养做事认真的态度。
QQ群: 群名称:2016科大硕士数值分析 群 号:435580365
加入QQ要求: 1、真实姓名。 2、格式:班级+姓名
举例:材料1601陈小军
1、求下列方程的根或零点:
x2 2x sin x 1 0
2、怎么求下列积分?
1ex2 dx
3、已知y=f0(x)在下列点的值,求 f (x)
应用问题举例
1、“鸡兔同笼”问题
a11 a12 a1n x1 b1
a21


an1
etc. )为工具,以数学模型为基础进行模拟研究。
促使一些边缘学科的相继出现: 计算数学,计算物理学,计算力学,计算化学,计算生物学, 计算地质学,计算经济学,等等
21世纪信息社会的两个主要特征: “计算机无处不在” “数学无处不在”
21世纪信息社会对科技人才的要求: --会用数学解决实际问题 --会用计算机进行科学计算
55196 66207 82992 98705 114333 126743
6、铝制波纹瓦的长度问题
建筑上用的一种铝制波纹瓦是用一种机 器将一块平整的铝板压制而成的.
假若要求波纹瓦长4英尺,每个波纹的高度(从 中心线)为1英寸,且每个波纹以近似2π英寸 为一个周期. 求制做一块波纹瓦所需铝板的 长度L.
理科 论学 研实 究验
科 学 计 算
使用计算机通过计算方 法或数值模拟的手段去 解决科学或工程中的关 键问题,简称为科学计 算。
现代科学研究的三大支柱
计算数学与科学计算 现代科学的三个组成部分:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设取 n位有效数字, 由定理1
1 10 ( n 1). 2a1
* r
由于
,就有 20 4.4 , 知 a1 4,故只要取 n 4
* r 0.125 103 103 0.1%,
即只要对
20 的近似值取4位有效数字,其相对误差限就
28
小于0.1%. 此时由开方表得 20 4.472 .
上界,即
e * x * x *
则 * 叫做近似值的误差限, 它总是正数.
11
例如,用毫米刻度的米尺测量一长度 x ,读出和该长 度接近的刻度 x * ,x * , 是 x的近似值,它的误差限是 0.5mm 于是
x * x 0.5mm.
则有 765 x 0.5 . 如读出的长度为 765mm , 虽然从这个不等式不能知道准确的 x 是多少,但可知
764.5 x 765.5,
结果说明 x 在区间 [764.5, 765.5]内.
12
对于一般情形 x * x *,即
x * * x x * *,
也可以表示为
x x * *.
需要注意的是误差限的大小并不能完全表示近似值的好坏.
13
例如,有两个量 x 10 1 , y 1000 5, 则
论与软件实现. 数值分析的主要内容: 本课程主要内容包括插值与数据逼近、数值微分与数 值积分、线性方程组的数值求解、非线性方程与方程组求 解、特征值计算、常微分方程数值解等.
2
虽然数值分析也是以数学问题为研究对象,但它不像
纯数学那样只研究数学本身的理论,而是把理论与计算紧 密结合,着重研究数学问题的数值方法及其理论. 数值分析是一门内容丰富,研究方法深刻,有自身理 论体系的课程.
它们虽然写法不同,但都具有3位有效数字.
22
至于绝对误差限,由于单位不同所以结果也不同
* 1
1 10 2 m/s 2 , 2
* 2
1 10 5 m/s 2 , 2
但相对误差都是
* r 0.005 / 9.80 0.00005 / 0.00980.
注意相对误差与相对误差限是无量纲的,而绝对误差 与误差限是有量纲的.
似 f ( x),其误差界记作 ( f ( x*)) , 利用泰勒展开
f ( x) f ( x*) f ( x*)( x x*) f ( ) ( x x*) 2 , 2 介于x, x * 之间,
取绝对值得
f ( x) f ( x*) f ( x*) ( x*) f ( ) 2
按定义, 上述各数具有5位有效数字的近似数分别是
187.93, 0.037856, 8.0000, 2.7183.
注意: 的5位有效数字近似数是8.0000,而不是8, x 8.000033 因为8只有1位有效数字.
21
如果以 m/s2 为单位,g 9.80m/s 2 , 例2 重力常数g, 若以km/s2为单位, ,它们都具有3位有效 g 0.00980km/s 2 数字, 因为按第一种写法
以上两种误差不在“数值分析”的讨论范围. 数值分析只研究用数值方法求解数学模型产生的误差. 当数学模型不能得到精确解时,通常要用数值方法求 它的近似解.
7
实际问题
数学模型
数值计算方法
上机计算求出结果
近似解与精确解之间的误差称为截断误差或方法误差.
8
例如,用泰勒(Taylor)多项式
f (0) f (0) 2 f ( n ) (0) n Pn ( x) f (0) x x x 1 ! 2! n!
1 10 ( n 1) ; 2a1
* r
1 反之,若 x *的相对误差限 10 ( n 1) , 2( a1 1)
* r
则 x* 至少具有 n 位有效数字.
25
证明 由(2.1)′可得
a1 10m x * (a1 1) 10m ,
当 x *有 n 位有效数字时 x* 10 m (a1 a2 10 1 al 10 (l 1) ), (2.1) x x* 0.5 10 m n 1 1 * n 1 r 10 ; m x* a1 10 2a1 反之,由
(2.2)
19
按这个定义, 如取 x* 3.14 作为 π 的近似值, x *就有3位有效数字,
取 x* 3.1416 π , x * 就有5位有效数字.
20
例1
按四舍五入原则写出下列各数具有5位有效数字的
近似数:187.9325, 0.03785551, 8.000033, 2.7182818.
首先要建立数学模型, 它是对被描述的实际问题进行抽象、 简化而得到的,因而是近似的. 数学模型与实际问题之间出现 的误差称为模型误差.
6
实际问题
数学模型
在数学模型中往往还有一些根据
观测得到的物理量,如温度、长度、 电压等等,这些参量显然也包含误差. 这种由观测产生的误差称为 数学模型 实际问题
观测误差.
1.2.3
数值运算的误差估计
* * * * 两个近似数 x1 与 x2 ,其误差限分别为 ( x1 ) 及 ( x2 ),
它们进行加、减、乘、除运算得到的误差限分别为
* * * * ( x1 x2 ) ( x1 ) ( x2 );
* * * * * * ( x1 x2 ) x1 ( x2 ) x2 ( x1 );
近似代替可微函数 f ( x) , 则数值方法的截断误差是
f ( n ) ( ) n 1 Rn ( x) f ( x) Pn ( x) x , (n 1)!
在0与x之间.
有了计算公式后,在用计算机做数值计算时,还要受
计算机字长的限制,原始数据在计算机上表示会产生误差,
计算过程又可能产生新的误差,这种误差称为舍入误差.
()
24
定理1 设近似数 x *表示为
x* 10 m (a1 a2 10 1 al 10 (l 1) ), (2.1)
其中 ai (i 1,, l ) 是0到9中的一个数字,a1 0, m 为整数. 若 x *具有 n位有效数字, 则其相对误差限为
x* 10,
* x 1;
y* 1000,
* y 5.
* 大 4 倍, 虽然 * 比 但 y x
* y / y* 5 / 1000 0.5%

* x / x* 1 / 10 10%
要小得多,这说明 y * 近似 y 的程度比 x * 近似 x的程度好. 所以除考虑误差的大小外,还应考虑准确值 x本身的大 小.
该位到 x *的第一位非零数字共有 n位,就说 x *有 n位有效
数字. 表示为
x* 10 m (a1 a2 10 1 an 10 ( n 1) ), (2.1)
其中 ai (i 1,, n)是0到9中的一个数字,a1 0, m为整数, 且
1 x x * 10 m n 1. 2
* r
* r
*
x*
.
16
根据定义,上例中 x 与 y 的相对误差限分别为
*x
x*
10%,
*y
y*
0.5%,
可见 y *近似 y的程度比 x *近似 x 的程度好.
17
当准确值 x位数比较多时,常常按四舍五入的原则得 到 x 的前几位近似值 x * ,例如
x π 3.14159265
问题. 这里主要讨论算法的截断误差与舍入误差,而截断 误差将结合具体算法讨论.
10
1.2.2
误差与有效数字
定义1 设 x为准确值, x * 为 x 的一个近似值,称
e* x * x
为近似值的绝对误差, 简称误差. 通常准确值 x是未知的,因此误差 e *也是未知的. 若能根据测量工具或计算情况估计出误差绝对值的一个
* * * * x1 ( x2 ) x2 ( x1 )
* * ( x1 / x2 )
x
* 2 2
* ( x2 0).
29
一般情况下,当自变量有误差时函数值也产生误差, 其误差限可利用函数的泰勒展开式进行估计. 设 f ( x)是一元函数, x 的近似值为 x *,以 f ( x*)近
e* x * x, 知
e * e * e * ( x * x) x x* x* x
(e*) 2 x * ( x * e*) (e * / x*) 2 1 (e * / x*)
* 是 er 的平方项级,故可忽略不计.
相对误差也可正可负,它的绝对值上界叫做相对误差限, 记作 , 即
14
把近似值的误差 e *与准确值 x 的比值
e * x * x x x
* 称为近似值 x *的相对误差,记作 er .
通常取 实际计算中,由于真值 x总是未知的,
e* x * x e x* x*
* r * 作为 x *的相对误差, 条件是 er
e* 较小, 此时利用 x*
15
9
例如,用 3.14159 近似代替 π ,产生的误差
R π 3.14159 0.0000026
就是舍入误差. 此外由原始数据或机器中的十进制数转化为二进制数 产生的初始误差对数值计算也将造成影响. 分析初始数据的误差通常也归结为舍入误差.
研究计算结果的误差是否满足精度要求就是误差估计
第 1章 数值分析与科学计算引论
1.1 数值分析的对象、作用与特点
1.2 数值计算的误差
1.3 误差定性分析与避免误差危害
1.4 数值计算中算法设计的技术
相关文档
最新文档