组合变形(例题)

合集下载

材料力学习题组合变形#(精选.)

材料力学习题组合变形#(精选.)

组合变形基 本 概 念 题一、选择题1. 偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到 形心的距离e 和中性轴到形心距离d 之间的关系是( )。

A .e = dB .e >dC .e 越小,d 越大D .e 越大,d 越小2.三种受压杆件如图所示,设杆1、杆2和杆3中的最大压应力(绝对值)分别用1max σ、2max σ、3max σ表示,则( )。

A .1max σ=2max σ=3max σB .1max σ>2max σ=3max σC .2max σ>1max σ=3max σD .2max σ<1max σ=3max σ 题2图3.在图示杆件中,最大压应力发生在截面上的( )。

A .A 点B .B 点C .C 点D .D 点题3图 题4图4. 铸铁杆件受力如图4所示,危险点的位置是( )。

A .①点B .②点C .⑧点D .④点5. 图示正方形截面直柱,受纵向力P 的压缩作用。

则当P 力作用点由A 点移至B 点时柱内最大压应力的比值()max A σ﹕()max B σ为( )。

A .1﹕2B .2﹕5C .4﹕7D .5﹕26. 图示矩形截面偏心受压杆件发生的变形为( )。

A .轴向压缩和平面弯曲组合B .轴向压缩,平面弯曲和扭转组合C .轴向压缩,斜弯曲和扭转组合D .轴向压缩和斜弯曲组合-41-题5图 题6图 7. 图所示悬臂梁的横截面为等边角钢,外力P 垂直于梁轴,其作用线与形心轴y 垂直,那么该梁所发生的变形是( )。

A .平面弯曲B .扭转和斜弯曲C .斜弯曲D .两个相互垂直平面(xoy 平面和xoz 平面)内的平面弯曲题7图 8. 图示正方形截面杆受弯扭组合变形,在进行强度计算时,其任一截面的危险点位置有四种答案,正确的是( )。

A .截面形心B .竖边中点A 点C .横边中点B 点D .横截面的角点D 点题8图 题9图9. 图示正方形截面钢杆,受弯扭组合作用,若已知危险截面上弯矩为M ,扭矩为T ,截面上A 点具有最大弯曲正应力σ和最大剪应力τ,其抗弯截面模量为W 。

14-1组合变形-材料力学

14-1组合变形-材料力学

Fz F sin
五、自由端的变形
z
A
y
y

FL3 cos
3EI z
z
B y
x
B z

FL3 sin
3EI y
B
z
y
查表7-1(3)
在 Fz B点的位移 z :
例题14.1 图所示屋架结构。已知屋面坡度为1:2, 两屋架之间的距离为4m,木檩条梁的间距为1.5m, 屋面重(包括檩条)为1.4kN/m2。若木檩条梁采

"

Iy
Iy
'
M z y M y z
Iz
Iy
cos sin
M ( y z)
Iz
Iy
四、斜弯曲时的强度条件
1、中性轴的位置


M (
Iz
yo

sin
Iy
zo )

0
tan yo Iz tan
zo
和扭矩图如图c、d
危险截面在杆的根部(固定端)
(3)应力分析
B

M W
T
T Wp
在杆的根部取一单元体分析
y 0, x B , xy T
计算主应力
1

3


B
2

( B
2
)2


2 T
2 0
(4)强度分析
选择第三、第四强度理论
r3

入偏心拉伸的强度条
4
32
件校核
32.4106 32.4MPa 35MPa
满足强度条件,最后选用立柱直 d = 12.5cm

材料力学 第11章 组合变形习题集

材料力学 第11章  组合变形习题集

横截面m-m上任一点C(y,z)处由 弯矩Mz和My引起的正应力分别为
M z y M cos y M y z M sin z
Iz
Iz
Iy
Iy
38
C点的正应力
' ''
M
cos
Iz
y
sin
Iy
z
悬臂梁固定端截面A的弯矩Mz和My 均达到最大值,故该截
面是危险截面。设yo、zo为中性轴上任一点的坐标,并令σ
算 圆轴表面上与轴线成30°方位上的正应变。
32
解: (1)由内力图知,所有截面均为危险截面,危险点为靠近
轴表面的各点,应力状态如图。计算危险点的主应力。轴力
引起的正应力
FN 4F
A πd 2
扭矩引起的切应力
T M 8F
Wp Wp 5πd 2
危险点处的主应力为
1
2
(
)2
( )2
它在y、z两轴上的截距分别为
y* z* h / 2
该截面惯性半径的平方为
iy2
Iy A
h2 12
iz2
Iz A
b2 12
28
中性轴①对应的核心边界上点1的坐标为
ey1
iz2 y*
0
ez1
iy2 z*
h 6
按上述方法可求得与它们对应的截面核
心边界上的点2、3、4,其坐标依次为:
ey2
b 6
ez2 0
车臂的直径d。
18
解:两个缆车臂各承担缆车重量的一半,如 图。则缆车臂竖直段轴力为FN=W/2=3kN 弯矩为M=Wb/2=540N·m 危险截面发生在缆车臂竖直段左侧,由强度条件

材料力学——8组合变形

材料力学——8组合变形
A
F m
B
T 15kN m
M max 20kN m
W
15kN· m
D 3
32
(1 )
4
+
r3
20kN· m
-
M2 T2 157.26MPa [ ] W
例题8 传动轴如图所示。在A处作用一个外力偶矩
m=1kN· m,皮带轮直径 D=300mm,皮带轮紧边拉力为 F1,松边拉力为F2。且F1=2F2,L=200mm,轴的许用 应力[]=160MPa。试用第三强度理论设计轴的直径
例3 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, []=100MPa,试按第三强度理论校核此杆的强度。 解:拉扭组合,危险点应力状态如图 T P A T P
P 450 10 3 6.37 MPa A 0.12

T 167000 35 .7MPa 3 Wn 0.1
P
P
1
1
a a
a a
未开槽前 立柱为轴向压缩
N P P P 1 2 A A (2a) 4a2
开槽后 立柱危险截面为偏心压缩;
P
1
P
1
a a
a a
P
1
Pa/2
1
N M P Pa 2 2P 2 2 A W 2 a a 1 2a 2 a a 6 2 P a2 开槽后立柱的最大压应力 8 2 P 4a 未开槽前立柱的最大压应力
2、相当应力计算 第三强度理论,计算相当力
2 0
r 3 1 3 2 4 2
第四强度理论,计算相当应力
r 4 2 3 2
3、强度校核

第8章组合变形及连接部分的计算(答案)

第8章组合变形及连接部分的计算(答案)

第8章组合变形及连接部分的计算(答案)8.1梁的截⾯为2100100mm ?的正⽅形,若kN P30=。

试作轴⼒解:求得约束反⼒24Ax F KN =,9Ay F KN =,9B F KN =为压弯组合变形,弯矩图、轴⼒图如右图所⽰可知危险截⾯为C 截⾯最⼤拉应⼒maxmax 67.5ZM MPa W σ== 最⼤压应⼒max max69.9N Z M FMPa W Aσ=+=8.2若轴向受压正⽅形截⾯短柱的中间开⼀切槽,其⾯积为原来⾯积的⼀半,问最⼤压应⼒增⼤⼏倍?解:如图,挖槽后为压弯组合变形挖槽前最⼤压应⼒挖槽后最⼤压应⼒22222286/)2/(4/2/a P a a Pa a P W M A N c =+=+=σ8//82212==a P a P c c σσ211a P A N c ==σ8.3外悬式起重机,由矩形梁AB (2=bh尺⼨。

解:吊车位于梁中部的时候最危险,受⼒如图解得BC F P =,2Ax F P =,2Ay P F =梁为压弯组合变形,危险截⾯为梁中N F =压),4PL M =(上压下拉)[]max4NZ F PL W A σσ=+≤,代⼊()226Z b b W =,A bh =,由2h b = 解得125b mm =, 250h mm =8.4图⽰为⼀⽪带轮轴(1T 、2T 与3T 相互垂直)。

已知1T 和2T 均为kN 5.1,1、2轮的直径均为mm 300,3轮的直径为mm 450,轴的直径为mm 60。

若M P a 80][=σ,试按第三强度理论校核该轴。

解:由已知条件解得32T KN = 内⼒图如右:最⼤弯矩所在截⾯可能为:1C M KN m ==?1.2D M KN m =?故危险截⾯为D 截⾯32T KN =由第三强度理论[]360r MPa σσ==故安全38.5铁道路标圆信号板装在外径mm D 60=的空⼼圆柱上,若信号板上所受的最⼤风载2/2m kN p =,MPa 60][=σ,试按第三强度理论选择空⼼柱的厚度。

材料力学第七章组合变形

材料力学第七章组合变形

P2=406N
外力向形心简化并分解 弯扭组合变形
每个外力分量对应 的内力方程和内力图
M (x)
M
2 y
(
x)M
2 z
(
x)
解续
MMZz ((NNmm)) 71.25
40.6
MMyy ((NNmm)) MT n ((NNmm))
7.05 120 Mn
+
MM ((NNmm)) Mmax=71.3
41.2
核心边界上的一个角点;
截面角点边界
核心边界上的一条直线;
截面曲线边界
核心边界上的一条曲线。
例:
求右图示矩形截面的截面核心。
解:取截面切线 l1作为中性轴,其截距:
b
az
b 2
ay
4
3
a
并注意到: iz2 Iz / A h2 /12 iy2 I y / A b2 /12

h
5 21 z
34
ay
iz2 yP
az
iy2 zP
当偏心外力作用在截面 形心周围一个小区域内, 而对应的中性轴与截面周 边相切或位于截面之外时, 整个横截面上就只有压应 力而无拉应力。
2.截面核心的性质及其确定
(1)性质:是截面的一种几何特征,它只与截面的形状、尺
寸有关,而与外力无关。
(2)确定:根据中性轴方程知,截面上中性轴上的点的坐标
cmax
B
Fp A
MB Wz
Fp 6M B 13.4MPa bh bh2
在 B 截面右边缘处
3、最大拉应力
t
max
Fp A
MB Wz
3.4MPa
4、最大剪应力

材料力学 第十章 组合变形(4,5,6)

材料力学 第十章 组合变形(4,5,6)

[例10-7]:偏心拉伸杆,弹 性模量为E,尺寸、受力如图 所示。求: (1)最大拉应力和最大压 应力的位置和数值; (2)AB长度的改变量。 分析:这是偏心拉伸问题
最大拉应力发生在AB线 上各点,最大压应力发 生在CD线上各点。
CL11TU24
解:(1)应力分析
Ph Pb N P, M y , M z 2 2 t N M y Mz c A Wy Wz
3.算例 [例10-4]求高h,宽b的矩形截面的截面核。 b (1)作中性轴Ⅰ,z , a y a 解:
(2)求载荷点① , 2 iy b2 2 b zF ② az 2 6 b 3 z iz ③ yF 0 ① ay ④ (3)作中性轴Ⅱ , h a z , a y 2 b y b (4)求载荷点② , 2 2 2 Ⅰ 2 2 iy iz h h h z F 0, yF ay 6 2 3 az
(1)过截面周边上的一点作切线,以此作为第一 根中性轴; (2)据第一根中性轴的截距求第一个载荷点坐标; (3)过截面周边上相邻的另一点作切线,以此作 为第二根中性轴; (4)按(2)求于第二个中性轴对应的第二个载荷 点坐标; (5)按以上步骤求于切于周边的各特征中性轴对应 的若干个载荷点,依次连接成封闭曲线即截面核心。
中性轴把横截面分为受拉区和受压区,两个 区范围的大小受载荷作用点坐标的控制。 定义:使横截面仅受一种性质的力时载荷作用 的最大范围成为截面核心。
二.截面核心的求法 1.截距与载荷坐标的关系
z F , az ; zF , az
2.作截面核心的方法
zF 0, az ; zF , az 0
解:(1)简化外力:

ch10 组合变形(3rd)

ch10 组合变形(3rd)

第十章 组合变形10-2 图a 所示板件,b =20mm ,δ=5mm ,载荷F = 12 kN ,许用应力[σ] = 100 MPa ,试求板边切口的允许深度x 。

题10-2图解:在切口处切取左半段为研究对象(图b ),该处横截面上的轴力与弯矩分别为F F =N)(a b F M -= (a)显然,222xb x b a -=-=(b)将式(b)代入式(a),得2FxM =切口段处于弯拉组合受力状态,该处横截面上的最大拉应力为22N max 432(2a)6 22a Fxa F Fx a F W M A F δδδδσ+=+=+=根据强度要求,在极限情况下,][4322σδδ=+a Fx a F 将式(b)与相关数据代入上式,得01039.61277.042=⨯+--x x由此得切口的允许深度为m m 20.5=x10-3 图示矩形截面钢杆,用应变片测得上、下表面的纵向正应变分别为aε=1.0×10-3与b ε=0.4×10-3,材料的弹性模量E =210GPa 。

试绘横截面上的正应力分布图,并求拉力F 及其偏心距e 的数值。

题10-3图解:1.求a σ和b σ截面的上、下边缘处均处于单向受力状态,故有MPa84Pa 104.010210 MPa 210Pa 100.1102103939=⨯⨯⨯===⨯⨯⨯==--b b a a E εσE εσ偏心拉伸问题,正应力沿截面高度线性变化,据此即可绘出横截面上的正应力分布图,如图10-3所示。

图10-32.求F 和e将F 平移至杆轴线,得 Fe M F F ==,N于是有 a za E εW Fe A F σ=+=E εW Fe AF σzb =-=代入相关数据后,上述方程分别成为 26250240=+Fe F 10500240=-Fe F 经联立求解,于是得mm 786.1m 10786.1kN 38.18N 183753=⨯=≈=-e F ,10-6 图示直径为d 的圆截面铸铁杆,承受偏心距为e 的载荷F 作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
P 450
A
0.12
103
6.37MPa
T Wn
16700.1030
35
.7MPa
3
24 2
故,安全。
6.372435.72
71.7MPa
p.8
例题
习题6.
例题
图示皮带轮传动轴传递功率N=7kW,转速n=200r/min。皮带轮重量Q=1.8kN。左端齿轮
上的啮合力Pn与齿轮节圆切线的夹角(压力角)为20o。轴的材料为45钢, [] =80MPa。
例题
b
P
25 e
a
P
5
解:(1)将外力向轴线简化,如图所示;
b
其中:M=Pe,这属于拉弯组合变形;
P
a
P
(2)求出a、b点的应力;
a
P A
Pe W
,
b
P A
Pe W
(3)二点均属单向应力状态,求出二点的轴向应变;
a
a E
P 1 e EA W
b
b E
P E
1 A
e W
(4)解方程组得 P EAa b 18.4kN
力是水平方向,B轮上胶带的张力是垂直方向,大小如图示;圆轴的许用应力[σ]=80MPa;试按
第三强度理论求轴所需的直径。
5kN
(3)求可能危险截面C和B上的合成弯矩:
AC
B
D
2kN
MC
M
2 yC
M zC 2
1.52 2.12 2.58kNm
2kN
5kN
300
500
500
MB
M
2 yB
M zB2
xz平面的弯矩图为 代入第三强度理论的强度条件得
p.11
(2)求出约束反力,并画出内力图; a.xz平面内弯曲的弯矩图
zy
AC 5kN ZC
B 12kN
Dx ZD
Z 12.5kN, Z 4.5kN
C
D
b.xy平面内弯曲的弯矩图
z
y 7kN
YC
AC
B
YD Dx
Y 9.1kN, Y 2.1kN
C
D
c.扭矩图
zy 1.5kNm
1.5kNm
AC
B
Dx
1.5kNm
论校核此杆的强度。
P1
80ºP2 z
x
解:
①外力分析:
A 150
B 200 C 100 D
y
P1 A 150
Mx B 200
z
P2z
Mx
P2yx
C 100 D
y
弯扭组合变形
p.6
例题
例题
例8-4 图示空心圆杆,内径d=24mm,外径D=30mm,P1=600N,[]=100MPa,试用第三强度
理论校核此杆的强度。
x
X
Xx
* 3
M
2 m
axM
2 n
W
3.312407.10.3332(11200.824 ) xx
97.5MPa
Xx
安全
p.7
例题
例题
例8-5 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, []=100MPa,试按第三强度理论校核此杆
的强度。
T
P
P
A
T
解:拉扭组合,危险点应力状态如图
例题
3
2
4
例题
组合变形
1
5
p.1
例题
例题
例8-1 图示一简易起重架由No.18工字钢和拉杆组成;滑车自重及载重共为P=25kN,梁AB的许
用应力σ=120 MPa;当滑车移动到梁中点时,校核梁AB的强度。
C
解:(1)研究AB,受力分析,求约束反力
XB
D SA
A
300 A BP
l=2.6m
B
YB
P
X B 21.65kN , YB 12.5kN , SA 25kN
80º P2 z
P1
②内力分析:危险面内力为:
A 150
B 200
C 100
MZ (Nm)
My (Nm)
71.25
My
Mz
((NNmm) )
40
M (Nm) Mn n
(Nm)
120 Mn
7.05
M
M
((NNmm) )
7M1m.3ax
5.5 40.6
x
M max71.3Nm
D y
M n 120 Nm
③应力分析:
(2)杆属压缩与弯曲的组合变形,画内力图;
N(kN)
M(kNm)
16.25
(-)
(+)
21.65
(3)危险截面是D截面,危险点是D截面的上边缘,最大压应力的值为:
c max
N A
M max W
查型钢表得:A=3060 mm2,Wt=185000 mm3,则
c max
21.65 103 3060 106
2kN
5kN
300
500
zy 7kN
YC
AC
2kN
500
1.5kNm B
YD Dx
5kN ZC
12kN
ZD
My(kNm)
2.25 x
1.5
Mz(kNm) 2.1 1.05 x
T(kNm) 1.5
x
p.4
例题
例题
例8-3 钢制圆轴上装有胶带轮A和B,二轮的直径都是D=1 m,重量是P=5 kN,A轮上胶带的张
16.25103 185000 109
94.9MPa
(4)强度校核:
max
所以强度是足够的;
p.2
例题
例8-2 承受偏心载荷的矩形截面杆,用实验方法测得杆二侧的纵向应变分别是εa=1×10-3 和 εb=0.4×10-3 ,材料的弹性模量E=210GPa ;求拉力P和偏心矩e的值。
2
e EW a b 1.78mm
2P
p.3
例题
例题
例8-3 钢制圆轴上装有胶带轮A和B,二轮的直径都是D=1 m,重量是P=5 kN,A轮上胶带的张
力是水平方向,B轮上胶带的张力是垂直方向,大小如图示;圆轴的许用应力[σ]=80MPa;试按
第三强度理论求轴所需的直径。
5kN
AC
B
D
解:(1)将外力向轴线简化,得计算简图;
2.252 1.052 2.48kNm
可见C截面是危险截面;
My(kNm)
2.25
(4)强度计算:
x 1.5
Mz(kNm)
1
r3 W
M2 C
T2
32 d 3
M2 C
T2
2.1 1.05
32 d 3
M2 C
T2
72mm
x T(kNm)
1.5
x
p.5
例题
例题
例8-4 图示空心圆杆,内径d=24mm,外径D=30mm,P1=600N,[]=100MPa,试用第三强度理
试分别在忽略和考虑皮带轮重量的两种情况下,按第三强度理论估算轴的直径
解:(1)传动轴的计算简图 求传动轴的外力偶矩及传动力
p.9
Байду номын сангаас
例题
(2)强度计算 a.忽略皮带轮的重量(Q=0)
轴的扭矩图为
xz平面的弯矩图为
xy平面的弯矩图为 所以B截面最危险
例题 p.10
例题
例题
第三强度理论
b.考虑皮带轮的重量
相关文档
最新文档