各省高中数学竞赛预赛试题汇编
(整理)全国各省高中数学竞赛预赛试题汇编含答案

2012各省数学竞赛汇集2012高中数学联赛江苏赛区初赛试卷一、填空题(70分) 1、当[3,3]x ∈-时,函数3()|3|f x x x =-的最大值为__18___.2、在ABC ∆中,已知12,4,AC BC AC BA ⋅=⋅=-则AC =___4____.3、从集合{}3,4,5,6,7,8中随机选取3个不同的数,这3个数可以构成等差数列的概率为_____310_______. 4、已知a 是实数,方程2(4)40x i x ai ++++=的一个实根是b (i 是虚部单位),则||a bi +的值为_____5、在平面直角坐标系xOy 中,双曲线:C 221124x y -=的右焦点为F ,一条过原点O 且倾斜角为锐角的直线l 与双曲线C 交于,A B 两点.若FAB ∆的面积为,则直线的斜率为___12____.6、已知a 是正实数,lg a ka =的取值范围是___[1,)+∞_____.7、在四面体ABCD 中,5AB AC AD DB ====,3BC =,4CD =该四面体的体积为____________.8、已知等差数列{}n a 和等比数列{}n b 满足:11223,7,a b a b +=+=334415,35,a b a b +=+=则n n a b +=___132n n -+___.(*n N ∈)9、将27,37,47,48,557175,,这7个数排成一列,使任意连续4个数的和为3的倍数,则这样的排列有___144_____种.10、三角形的周长为31,三边,,a b c 均为整数,且a b c ≤≤,则满足条件的三元数组(,,)a b c 的个数为__24___.二、解答题(本题80分,每题20分)11、在ABC ∆中,角,,A B C 对应的边分别为,,a b c ,证明: (1)cos cos b C c B a +=(2)22sin cos cos 2C A Ba bc+=+12、已知,a b为实数,2a >,函数()|ln |(0)af x x b x x=-+>.若(1)1,(2)ln 212ef e f =+=-+. (1)求实数,a b ; (2)求函数()f x 的单调区间;(3)若实数,c d 满足,1c d cd >=,求证:()()f c f d <13、如图,半径为1的圆O 上有一定点M 为圆O 上的动点.在射线OM上有一动点B ,1,1AB OB =>.线段AB 交圆O 于另一点C ,D 为线段的OB 中点.求线段CD 长的取值范围.14、设是,,,a b c d 正整数,,a b 是方程2()0x d c x cd --+=的两个根.证明:存在边长是整数且面积为ab 的直角三角形.2012年全国高中数学联合竞赛湖北省预赛试题参考答案(高一年级)说明:评阅试卷时,请依据本评分标准。
高中数学联赛之历年真题分类汇编(2015-2021):专题14三角函数与解三角形第一缉(解析版)

专题 14 三角函数与解三角形第一缉
1.【2021 年江西预赛】△ 퐴�
72° ,则∠� =
.
中,AB= �, � = �, 퐴 = � ,且�4 + �4 + �4 = 2�2 �2 + �2 ,若∠퐴 =
【答案】63
【解析】cos2
3
−
52 4
.
7.【2021 年浙江预赛】已知△ 퐴� 三个顶点的坐标为퐴(0,0), �(7,0), (3,4) ,过点(6 − 2 2, 3 − 2) 的
直线分别与线段 AC,BC 交于 P,Q。若�훥��
=
14 3
,则|
�| + |
�| =
.
【答案】4
+
42 3
【解析】如下图所示,
设
(6 − 2 2, 3 −
,
sin(�
+
�)
=−
3 5
, sin
�−�
4
=
12 13
.则 cos
�
+
� 4
的值为
.
【答案】−
56 65
【解析】因为�, � ∈
3� 4
,
�
.所以� + � ∈
3� 2
,
2�
,
�
−
� 4
∈
� 2
,
3� 4
.
因为
sin(�
+
�)
=−
3 5
,
sin
�−�
4
=
12 13
,
所以
高中数学竞赛试题及答案

高中数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数不是有理数?A. πB. √2C. 1/3D. -3.142. 若函数f(x) = 2x^2 + 3x + 1,求f(-2)的值。
A. -1B. 3C. 5D. 73. 一个圆的半径为5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的首项为3,公差为2,求第5项的值。
A. 11B. 13C. 15D. 175. 以下哪个是二次方程x^2 - 5x + 6 = 0的根?A. 2B. 3C. -2D. -3二、填空题(每题4分,共20分)6. 一个三角形的内角和为______度。
7. 若a,b,c是三角形的三边,且a^2 + b^2 = c^2,则此三角形是______三角形。
8. 一个正六边形的内角为______度。
9. 将一个圆分成4个扇形,每个扇形的圆心角为______度。
10. 若sinθ = 1/2,且θ在第一象限,则cosθ = ______。
三、解答题(每题10分,共65分)11. 证明:对于任意实数x,等式e^x ≥ x + 1成立。
12. 解不等式:2x^2 - 5x + 3 > 0。
13. 已知数列{an}的通项公式为an = 3n - 2,求前n项和Sn。
14. 求函数y = x^3 - 3x^2 + 2x的极值点。
15. 已知椭圆的方程为x^2/a^2 + y^2/b^2 = 1(a > b > 0),求椭圆的焦点坐标。
四、附加题(10分)16. 一个圆内接正六边形的边长为a,求圆的半径。
答案一、选择题1. A2. B3. B4. C5. A二、填空题6. 1807. 直角8. 1209. 9010. √3/2三、解答题11. 证明:设g(x) = e^x - (x + 1),则g'(x) = e^x - 1。
当x < 0时,g'(x) < 0,当x > 0时,g'(x) > 0。
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛一试(A卷)试题(含答案)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 取到最小值8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r .根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x≤−,则2()24f x x x=−,在这一区间上的最小值为(116f−=+;2.若(13x∈−−,则()88f x x=−+,在这一区间上的最小值为(316f=−+…………15分3.若31x∈−,则2()24f x x x=−+,在这一区间上的最小值为((3116f f=−+=−+;4.若13x∈− ,则()88f x x=−,在这一区间上的最小值为(116f−+=−+;5.若3x≥+,则2()24f x x x=−,在这一区间上的最小值为(316f=+.综上所述,所求最小值为((3116f f=−+=−.…………20分。
2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛试题

暨2023年全国高中数学联合竞赛一试试题(模拟4)一、填空题:本大题共8小题,每小题8分,满分64分.1.已知11sin(),cos sin 36αβαβ-==,则cos(22)αβ+的值为.2.等比数列{}n a 的前n 项和为n S ,若246215,S S S ==-,则8S =.3.从圆内接正八边形的8个顶点中任取3个顶点构成三角形,则所得的三角形是直角三角形的概率是.4.已知定义域为R 的偶函数()f x 满足(2)()f x f x +=-,若20231()1k f k ==-∑,则(0)f 的值为.5.已知z 为复数,且关于x 的方程243i 0x zx +++=有实数解,则z 的最小值为.6.在平面直角坐标系中,直线l 与双曲线2222:1(0,0)x y a b a bΓ-=>>的左右两支交于,A B 两点,与Γ的渐近线交于,C D 两点,且,,,A C D B 在l 上顺次排列.若OA OB ⊥,,,AC CD DB 成等差数列,则Γ的离心率的取值范围是.7.已知在四棱锥P ABCD -中,60APB BPC CPD DPA ∠=∠=∠=∠=︒,,APC BPD PB PD ∠=∠=.若该四棱锥存在半径为1的内切球,且PA =PC 的长为.8.令实数集123456}{,,,,,S a a a a a a =,定义函数:f S S ®,使得234561())()()(()())())()()((()f f a f f a f f a f f a f f a f f a =====,则满足条件的f 的个数为.二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)设实数,,x y z 满足0,,1x y z <<,求S的最小值,其中S =.10.(本题满分20分)已知函数3()22f x x x =-,若正实数a 使得存在三个两两不同的实数,,b c d ,满足(,()),(,()),(,()),(,())a f a b f b c f c d f d 恰好为一个矩形的四个顶点,求a 的取值范围.11.(本题满分20分)在平面直角坐标系xOy 中,拋物线2:4C y x =的焦点为F ,过点F 的直线交C 于,A B 两点(其中点A 在第一象限),过点A 作C 的切线交x 轴于点P ,直线PB 交C 于另一点Q ,直线QA 交x 轴于点T .(1)证明:AF AT BF QT ×=×;(2)记,,AOP AFT BQT D D D 的面积分别为123,,S S S ,当点A 的横坐标大于2时,求321S S S -的最小值.暨2023年全国高中数学联合竞赛一试(模拟4)参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准.填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1.已知11sin(),cos sin 36αβαβ-==,则cos(22)αβ+的值为..角形是直角三角形的概率是.4.已知定义域为R 的偶函数()f x 满足(2)()f x f x +=-,若1()1k f k ==-∑,则(0)f 的值为.答案:1.解:因为()()2f x f x +=-,所以()()()42f x f x f x +=-+=,所以()f x 的周期为4,所以()()20f f =-,()()31f f =-,()()()420=-=f f f ,即()()()()()()()()123410100+++=--+=f f f f f f f f .若20231()1k f k ==-∑,则()()()()()123420231+++++=- f f f f f ,即()()()()()()()50512341231f f f f f f f ⎡⎤⨯++++++=-⎣⎦,可得()()()()()()1231011++=--=-f f f f f f ,所以()01f =.5.已知z 为复数,且关于x 的方程243i 0x zx +++=有实数解,则z 的最小值为.6.在平面直角坐标系中,直线l 与双曲线22:1(0,0)a b a bΓ-=>>的左右两支交于,A B 两点,与Γ的渐近线交于,C D 两点,且,,,A C D B 在l 上顺次排列.若OA OB ⊥,,,AC CD DB 成等差数列,则Γ的离心率的取值范围是.60APB BPC CPD DPA ∠=∠=∠=∠=︒,,APC BPD PB PD ∠=∠=.⎫⎪⎭123456234561())()()(()())())()()((()f f a f f a f f a f f a f f a f f a =====,二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)设实数,,x y z 满足0,,1x y z <<,求的最小值.10.(本题满分20分)已知函数3()22f x x x =-,若正实数a 使得存在三个两两不同的实数,,b c d ,满足(,()),(,()),(,()),(,())a f a b f b c f c d f d 恰好为一个矩形的四个顶点,求a 的取值范围.解:已知3()22f x x x =-,若正实数a 使得存在三个两两不同的实数b ,c ,d ,满足(,())a f a ,(,())b f b ,(,())c f c ,(,())d f d 恰好为一个矩形的四个顶点,因为3()22f x x x =-是奇函数,所以若存在一个矩形,则矩形的中心在原点,则…………12分…………16分为F ,过F 的直线交C 于,A B 两点(其中点A 在第一象限),过点A 作C 的切线交x 轴于点P ,直线PB 交C 于另一点Q ,直线QA 交x 轴于点T .(1)证明:AF AT BF QT ×=×;(2)记,,AOP AFT BQT D D D 的面积分别为123,,S S S ,当点A 的横坐标大于2时,求321S S S -的最小值.。
高中数学竞赛一试模拟题汇编

高中数学竞赛一试模拟题汇编高中数学竞赛一试,是评估学生数学能力和思维水平的重要方式,也是培养优秀的数学人才的必要手段。
以下是数学竞赛一试的模拟题目,希望对学生加深对数学知识的理解和巩固数学基础有所帮助。
一、选择题1.已知曲线y=2x²-3x+5,求曲线在点(1,4)的切线方程的斜率。
A. -1B. 0C. 1D. 2答案:D2.函数y=f(x)的导函数为y=x(x-2),且f(1)=3,求f(2)的值。
A. 1B. 2C. 3D. 4答案:D3.已知函数f(x)和g(x)都在区间[0,1]上单调递增且满足f(0)=0,f(1)=1,g(0)=1,g(1)=0,在这个区间内的任意点x,交点f(x)和g(x)的坐标为(x,f(x))和(x,g(x)),求这两条曲线之间的面积。
A. 1/2B. 1/4C. 1/8D. 1/16答案:B二、填空题1.若f(-1)=2,f'(x)=3x²+2x-1,则f(x)=______。
答案:x³+x²-x+32.已知函数y=ln(7x-8)的反函数为f(x),则f'(4)的值为______。
答案:1/273.已知函数y=cos(x),则当0°≤x≤45°时,y从最大值变为最小值的增量的绝对值为______。
答案:√2/2三、解答题1.已知直角三角形ABC中,角A=90°,BC=a, AB=b,以BC为底画一高为AD,则已知两边AD和AB之比是5:12,求a与b之比。
解:连接BD,设AD=5k, BD=12k,则AB=√(BC²+AC²)=√(a²+b²),同时有BC²=AD²+BD²,即a²=(5k)²+(12k)²,b²=AB²-BC²=144k²-(5k)²=119k²,所以有a/b=5k/√(119k²-25k²)=5/√(119-25)=5/√94,所以a/b=5√94/94。
2024年全国高中数学联赛(浙江预赛)试题(含答案)

2024年全国中学生奥林匹克数学竞赛浙江赛区初赛试题本卷共15道题目,12道填空题,3道解答题,所有答案填写在答题纸上,满分150分一、填空题(每小题8分,共计96分)1.设集合10,21x A xx ⎧−⎫=≤⎨⎬−⎩⎭集合2{20}B x x x m =++≤。
若A B ⊆,则实数m 的取值范围为 。
2.设函数{}{}:1,2,32,3,4f → 满足 ()()1()ff x f x −=,则这样的函数有_______个。
3.函数22sin sin 1sin 1x x y x ++=+的最大值与最小值之积为 。
4.已知数列{}n x满足:11,12n x x x n +==≥,则通项n x =__________。
5 .已知四面体A BCD −的外接球半径为1,1,60BC BDC =∠=,则球心到平面BDC 的距离为______________。
6.已知复数z 满足24510(1)1zz =−=,则z =__________________。
7.已知平面上单位向量,a b 垂直,c 为任意单位向量,且存在(0,1)t ∈,使得向量(1)a t b +−与向量c a −垂直,则a b c +−的最小值为__________________________。
8. 若对所有大于2024的正整数n ,成立202420240, ii n i i na C a ==∈∑,则12024a a +=_________。
9.设实数,,(0,2]a b c ∈,且3b a ≥或43a b +≤,则max{,,42}b a c b c −−−的最小值为 ___ __ __。
10.在平面直角坐标系xOy 上,椭圆E 的方程为221124x y +=,1F 为E 的左焦点;圆C 的方程为222())x a y b r −+−=( ,A 为C 的圆心。
直线l 与椭圆E 和圆C 相切于同一点(3,1)P 。
则当1OAF ∠最大时,实数r =_____________________。
各省高中数学竞赛试题汇编——函数小题目

各省数学竞赛试题汇编——函数小题目1.【2018年湖南预赛】函数的定义城为_________.【答案】【解析】由得,所以函数的定义城为.故答案为2.【2018年湖南预赛】已知函数对任意的实数满足:,且当时,,当时,,则象与的图象的交点个数为___________。
【答案】10【解析】由题意知,f(x)=且周期是6,,且此函数是偶函数,在同一个直角坐标系中画出两个函数的图象如下图所示:由图可得,两个函数图象的交点个数是10个.3.【2018年陕西预赛】已知函数,若存在,使得,则正整数的最大值是________.【答案】6【解析】由题意得.故尽可能大时的情形为,此时. 4.【2018年陕西预赛】已知函数,若存在,使得,则正整数的最大值是________.【答案】6【解析】由题意得.故尽可能大时的情形为,此时. 5.【2018年陕西预赛】已知函数,若存在,使得,则正整数的最大值是________.【答案】6【解析】由题意得.故尽可能大时的情形为,此时. 6.【2018年贵州预赛】若方程有两个不等实根,则实数的取值范围是_____________. 【答案】【解析】由知x>0,故.令,则.当时,;当时,.所以在(0,e)上递增,在(e,+)上递减.故,即.7.【2018年安徽预赛】设点P、Q分别在函数的图象上,则的最小值=_________. 【答案】【解析】设P(),Q()使最小.由互为反函数,知点P、Q处的切线斜率都是1,直线PQ的斜率都是-1.故.故答案为:8.【2018年广东预赛】函数的值域为_____________.【答案】当时,的值域为();当时,的值域为().【解析】,因为,所以当时,的值域为();当时,的值域为().故答案为:当时,的值域为();当时,的值域为().9.【2018年广东预赛】已知方程在区间(-2,2)内恰有两个实根,则k的取值范围是__________. 【答案】【解析】记,令,得.当时,在()上为增函数.当时,在()上为减函数.所以在点处取得最大值,当且仅当时,在区间(-2,2)内恰有两个实根,故k的取值范围是.故答案为:10.【2018年贵州预赛】方程组的实数解为___________.【答案】【解析】因为,所以,即,代入,得.由.11.【2018年湖北预赛】设是定义在上的单调函数,若对任意的,都有,则不等式的解集为______.【答案】【解析】由题设,存在正常数,使得,且对任意的,有.当时,有,由单调性知此方程只有唯一解.所以.不等式,即,解得.故不等式的解集为.12.【2018年甘肃预赛】关于的方程有唯一实数解,则实数的取值范围是______.【答案】【解析】解法一原方程化为.(1).(2)时,的两根分别为1、3,不符合题意.(3)时,的两根分别为2,.因此,符合题意要求.(4),即时,若,不符合要求;若,因此,符合要求.解法二,因为,所以.上单调递增,在上单调递减.又,所以的取值范围是.13.【2018年吉林预赛】函数的定义域为__________.【答案】(1,2)(4,5)【解析】由题得,解之得x∈(1,2)(4,5).故答案为:(1,2)(4,5)14.【2018年山东预赛】对任意的实数的最小值为______.【答案】【解析】设,则①+②+③得.解得.又当时,有解.故当时,取到最小值.15.【2018年山东预赛】已知,且为方程的一个根,则的最大可能值为______.【答案】9【解析】由题设,则.因为,则必为完全平方数.设,则.所以.解得,8,,0.所以的最大可能值为9.16.【2018年山东预赛】设为最接近的整数,则______.【答案】【解析】设,则,即.而,因此满足个.注意到,从而或7.由于,所以.因此.17.【2018年天津预赛】已知函数的定义域都是,它们的图象围成的区域面积是_____________【答案】【解析】将的图象补充为完整的圆,则由中心对称性易知答案是圆面积的一半,为.故答案为:18.【2018年天津预赛】若为正实数,且是奇函数,则不等式的解集是_____________【答案】【解析】由可得即也即,所以.由于在(0,+)上递增,所以在(0,+)上是增函数,结合是奇函数可知在R上是增函数.解不等式,只需找到的解.方程等价于也即两边平方,解得.因此,不等式的解集是.故答案为:19.【2018年河南预赛】已知函数,若的定义域为,值域为,则的值为______.【答案】0【解析】因为,所以有,得,故上是增函数,进而.解得(舍)或.故填0.20.【2018年河北预赛】若,且满足那么. 【答案】1【解析】把已知条件变形为函数上为增函数且是奇函数,另,故,所以.21.【2018年四川预赛】设函数上的最大值为,最小值为,那么的值为______. 【答案】4【解析】因为上单调递减,在上单调递增,所以的最小值为.又的最大值为故故答案为:422.【2018年四川预赛】的值为______.【答案】1【解析】令,则从而,化简为.所以,原式故答案为:123.【2018年浙江预赛】已知a为正实数,且是奇函数,则的值域为________.【答案】【解析】由为奇函数可知,解得a= 2,即,由此得的值域为.24.【2018年浙江预赛】设,则有________个不同的解. 【答案】3【解析】因为由得到,或.由,得一个解;由得两个解,共3个解.25.【2018年浙江预赛】设满足,则x的取值范围为________. 【答案】【解析】由.令,,所以.26.【2018年江西预赛】函数的值域是区间______.【答案】【解析】显然函数定义域为,在此区间内,由于,即,故有角使得.于是,因为,则.在此范围内,则有.因此.(当时,;当时,)故答案为:27.【2018年山西预赛】函数的值域为________.【答案】【解析】由条件知.令.则,,,因为,所以,.28.【2018年湖南预赛】如图,A与P分别是单位圆O上的定点与动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数,则=__________.【答案】【解析】对角度x进行简单的分类,然后根据三角函数的定义得到利用函数的周期性得到.故答案为:29.【2018年湖南预赛】如图放置的边长为1的正方形ABCD沿x轴正向滚动,即先以A为中心顺时针旋转,当B落在x轴上时,再以B为中心顺时针旋转,如此继续,设顶点C滚动时的轨迹方程为,则上的表达式为__________.【答案】【解析】①由于是以4为周期的周期函数,所以当时此时由周期性及①式的结果得到故答案为:30.【2018年湖南预赛】设,函数(其中表示对于,当时表达式的最大值),则的最小值为_____.【答案】【解析】对于每一个,函数是线性函数.因此,在任意有限闭区间上,函数的最大值与最小值均在区间端点处达到,从而有由于函数图像交点的横坐标c满足,得到其图像为两条折线组成,且故答案为:31.【2018年福建预赛】已知定义在上的奇函数,它的图象关于直线对称.当时,,则______.【答案】2【解析】由为奇函数,且其图象关于直线对称,知,且,所以.是以8为周期的周期函数.又,所以.32.【2018年福建预赛】已知整系数多项式,若,则______.【答案】24【解析】设,则,于是.所以.所以是多项式的一个根.又不可能是三次整系数多项式、二次整系数多项式的零点.所以整除.故为整数.所以.由,得.所以.33.【2018年福建预赛】已知函数满足:对任意实数,都有成立,且,则______.【答案】【解析】在中,令,得.令,得.又,所以,即.又,,所以.故.34.【2016年上海预赛】若x∈(-1,1)时,恒为正值,则实数a的取值范围是____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012各省数学竞赛汇集目录1.2012高中数学联赛江苏赛区初赛试卷------第3页2. 20XX年高中数学联赛湖北省预赛试卷(高一年级)---第7页3. 20XX年高中数学联赛湖北省预赛试卷(高二年级)---第10页4. 20XX年高中数学联赛陕西省预赛试卷------第16页5. 20XX年高中数学联赛上海市预赛试卷------第21页6. 20XX年高中数学联赛四川省预赛试卷------第28页7. 20XX年高中数学联赛福建省预赛试卷(高一年级)---第35页8. 20XX年高中数学联赛山东省预赛试卷---第45页9. 20XX年高中数学联赛甘肃省预赛试卷---第50页10. 20XX年高中数学联赛河北省预赛试卷---第55页11. 20XX年高中数学联赛浙江省预赛试卷---第62页12. 20XX年高中数学联赛辽宁省预赛试卷---第72页13. 20XX年高中数学联赛新疆区预赛试卷(高二年级)---第77页14. 20XX年高中数学联赛河南省预赛试卷(高二年级)---第81页15. 20XX年高中数学联赛北京市预赛试卷(高一年级)---第83页2012高中数学联赛江苏赛区初赛试卷一、填空题(70分)1、当[3,3]x ∈-时,函数3()|3|f x x x =-的最大值为__18___.2、在ABC ∆中,已知12,4,AC BC AC BA ⋅=⋅=-则AC =___4____.3、从集合{}3,4,5,6,7,8中随机选取3个不同的数,这3个数可以构成等差数列的概率为_____310_______. 4、已知a 是实数,方程2(4)40x i x ai ++++=的一个实根是b (i 是虚部单位),则||a bi +的值为_____5、在平面直角坐标系xOy 中,双曲线:C 221124x y -=的右焦点为F ,一条过原点O 且倾斜角为锐角的直线l 与双曲线C 交于,A B 两点.若FAB ∆的面积为,则直线的斜率为___12____. 6、已知a 是正实数,lg a ka =的取值范围是___[1,)+∞_____.7、在四面体ABCD 中,5AB AC AD DB ====,3BC =,4CD =该四面体的体积为_____8、已知等差数列{}n a 和等比数列{}n b 满足:11223,7,a b a b +=+=334415,35,a b a b +=+=则n n a b +=___132n n-+___.(*n N ∈)9、将27,37,47,48,557175,,这7个数排成一列,使任意连续4个数的和为3的倍数,则这样的排列有___144_____种.10、三角形的周长为31,三边,,a b c 均为整数,且a b c ≤≤,则满足条件的三元数组(,,)a b c 的个数为__24___.二、解答题(本题80分,每题20分)11、在ABC ∆中,角,,A B C 对应的边分别为,,a b c ,证明:(1)cos cos b C c B a +=(2)22sin cos cos 2CA B a b c+=+12、已知,a b为实数,2a >,函数()|ln |(0)af x x b x x=-+>.若(1)1,(2)ln 212ef e f =+=-+.(1)求实数,a b ; (2)求函数()f x 的单调区间;(3)若实数,c d 满足,1c d cd >=,求证:()()f c f d <13、如图,半径为1的圆O 上有一定点M 为圆O 上的动点.在射线OM上有一动点B ,1,1AB OB =>.线段AB 交圆O 于另一点C ,D 为线段的OB 中点.求线段CD 长的取值范围.14、设是,,,a b c d 正整数,,a b 是方程2()0x d c x cd --+=的两个根.证明:存在边长是整数且面积为ab 的直角三角形.20XX 年全国高中数学联合竞赛湖北省预赛试题参考答案(高一年级)说明:评阅试卷时,请依据本评分标准。
填空题只设8分和0分两档;解答题的评阅,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分。
一、填空题(本题满分64分,每小题8分。
直接将答案写在横线上。
)1.已知集合∈>=≤=b a b x x B a x x A ,},|{},|{N ,且 B A N }1{=,则=+b a 1 .2.已知正项等比数列}{n a 的公比1≠q ,且542,,a a a 成等差数列,则=++++963741a a a a a a 35-.3.函数741)(2+++=x x x x f 的值域为6[0,6. 4.已知1sin 2sin 322=+βα,1)cos (sin 2)cos (sin 322=+-+ββαα,则=+)(2cos βα13-. 5.已知数列}{n a 满足:1a 为正整数,⎪⎩⎪⎨⎧+=+,,13,,21为奇数为偶数n n n nn a a a a a 如果29321=++a a a ,则=1a 5 .6.在△ABC 中,角C B A ,,的对边长c b a ,,满足b c a 2=+,且A C 2=,则=A sin 7.7.在△ABC 中,2==BC AB ,3=AC .设O 是△ABC 的内心,若AC q AB p AO +=,则qp 的值为32. 8.设321,,x x x 是方程013=+-x x 的三个根,则535251x x x ++的值为 -5 .二、解答题(本大题满分56分,第9题16分,第10题20分,第11题20分)9.已知正项数列}{n a=11a =,28a =,求}{n a 的通项公式.解 在已知等式两边同时除以1+n n a a ,得3141112++=++++nn n n a aa a , 所以11)=. ------------------------------------------4分 令111++=+nn n a a b ,则n n b b b 4,411==+,即数列}{n b 是以1b =4为首项,4为公比的等比数列,所以nn n b b 4411=⋅=-.------------------------------------------8分所以n nn a a 4111=+++,即 n n n a a ]1)14[(21--=+. ------------------------------------------12分 于是,当1>n 时,22221121]1)14[(]1)14[(]1)14[(-------⋅--=--=n n n n n n a a a∏∏-=--=---=--==112111121]1)14[(]1)14[(n k k n k k a ,因此,⎪⎩⎪⎨⎧≥--==∏-=-.2,]1)14[(,1,11121n n a n k k n ------------------------------------------16分10.已知正实数b a ,满足122=+b a ,且333)1(1++=++b a m b a ,求m 的最小值. 解 令cos ,sin a b θθ==,02πθ<<,则322333)1sin (cos 1)sin sin cos )(cos sin (cos )1sin (cos 1sin cos ++++-+=++++=θθθθθθθθθθθθm .----------------------------------------5分令θθsin cos +=x ,则]2,1()4sin(2∈+=πθx ,且21sin cos 2-=x θθ.------------------------------10分 于是21)1(23)1(22)1(22)1(232)1(1)211(223332-+=+-=+-+=+-+=++--=x x x x x x x x x x x x m . ------------------------------15分因为函数21)1(23)(-+=x x f 在]2,1(上单调递减,所以)1()2(f m f <≤.因此,m 的最小值为2423)2(-=f . ------------------------------------------20分11.设)3(log )2(log )(a x a x x f a a -+-=,其中0>a 且1≠a .若在区间]4,3[++a a 上1)(≤x f 恒成立,求a 的取值范围.解 22225()log (56)log [()]24a a a a f x x ax a x =-+=--.由⎩⎨⎧>->-,03,02a x a x 得a x 3>,由题意知a a 33>+,故23<a ,从而53(3)(2)022a a a +-=->,故函数225()()24a a g x x =--在区间]4,3[++a a 上单调递增.------------------------------------------5分(1)若10<<a ,则)(x f 在区间]4,3[++a a 上单调递减,所以)(x f 在区间]4,3[++a a 上的最大值为)992(log )3(2+-=+a a a f a .在区间]4,3[++a a 上不等式1)(≤x f 恒成立,等价于不等式1)992(log 2≤+-a a a 成立,从而a a a ≥+-9922,解得275+≥a 或275-≤a . 结合10<<a 得10<<a . ------------------------------------------10分(2)若231<<a ,则)(x f 在区间]4,3[++a a 上单调递增,所以)(x f 在区间]4,3[++a a 上的最大值为)16122(log )4(2+-=+a a a f a .在区间]4,3[++a a 上不等式1)(≤x f 恒成立,等价于不等式1)16122(log 2≤+-a a a 成立,从而a a a ≤+-161222,即0161322≤+-a a ,解得4411344113+≤≤-a .易知2344113>-,所以不符合. ------------------------------------------15分综上可知:a 的取值范围为(0,1). ------------------------------------------20分20XX 年全国高中数学联合竞赛湖北省预赛试题(高二年级)说明:评阅试卷时,请依据本评分标准。