数学常见辅助线做法与小结

合集下载

初中数学作辅助线的方法

初中数学作辅助线的方法

初中数学作辅助线的方法在数学中,辅助线是指在解题过程中,为了更加清晰地理解和解答问题,而额外添加的辅助线条。

辅助线能够帮助我们识别几何形状的性质、简化题目、发现问题的特点,进而解决问题。

下面将介绍一些初中数学中常用的辅助线的方法。

1.直线的辅助线:1.1利用等角性质:当一道题目中出现两条或多条直线之间存在相等角度的关系时,可以通过画一条平行于其中一条直线的辅助线,从而使问题更加清晰。

例如,当一道题目中有两条平行线上辅助线之间的交角等于已知夹角时,我们可以通过画一条与两条线垂直的辅助线,从而找到问题的解决方法。

1.2利用中点性质:当一道题目中出现一个直线段上存在中点的情况时,可以通过连接这个中点和其它的点,并利用中点将辅助线分成两等分的方式,简化问题。

例如,当一道题目中需要证明一个线段平分另一个线段时,可以通过在两个线段的中点之间画一条辅助线,从而将问题转化为证明两个等腰三角形。

2.圆的辅助线:2.1利用相切性质:当一道题目中出现一个圆和另一个圆间存在相切的情况时,可以通过在两个圆的相切点处引出切线,并连接相切点和圆心的辅助线来简化问题。

例如,当一道题目中有两个圆相切于一个点,需要求证两个圆的半径之比时,可以通过连接两个圆心之间的辅助线,并利用切线及其垂直性质来求解。

2.2利用内接性质:当一道题目中出现一个圆内接于一个图形的情况时,可以通过在圆和图形的交点处引出辅助线,并利用内接四边形的特点来简化问题。

例如,当一道题目中有一个圆内切于一个正方形,需要证明半径与正方形边长之比时,可以通过连接正方形的对角线并利用内接四边形的性质来证明。

3.三角形的辅助线:3.1利用中位线性质:当一道题目中有一个三角形的中位线时,可以通过连接三角形的中位线两端点与对应边上其他点的辅助线,来简化问题。

例如,当一道题目中需要证明两个三角形形状相似时,可以通过连接两个三角形的中位线,然后利用垂直性质来证明。

3.2利用高线性质:当一道题目中有一个三角形的高线时,可以通过连接三角形的高线两端点与对应边上其他点的辅助线,来简化问题。

初中数学常见辅助线的做法

初中数学常见辅助线的做法

初中数学常见辅助线的做法
初中数学常见辅助线的做法
在初中数学中,辅助线是解题过程中常用的工具。

通过适当地引入辅助线,可以使问题更加清晰明了,从而更容易解决。

本文将介绍几种常见的辅助线做法。

1.平移法
平移法是一种常用的辅助线做法。

它的基本思想是将图形沿某个方向平移,使得问题更加清晰。

例如,在解决一个三角形的问题时,我们可以平移其中的一条边,使得三角形更加规则,从而更容易解决问题。

2.垂线法
垂线法也是一种常用的辅助线做法。

它的基本思想是引入垂线,将原问题转化为更简单的问题。

例如,在解决一个三角
形的问题时,我们可以引入垂线,将三角形分成两个直角三角形,从而更容易解决问题。

3.对称法
对称法是一种常用的辅助线做法。

它的基本思想是通过引入对称轴,将原问题转化为更简单的问题。

例如,在解决一个图形的问题时,我们可以引入对称轴,将图形分成对称的两部分,从而更容易解决问题。

4.相似法
相似法是一种常用的辅助线做法。

它的基本思想是通过找到相似的图形,将原问题转化为更简单的问题。

例如,在解决一个三角形的问题时,我们可以找到一个相似的三角形,从而更容易解决问题。

总之,辅助线是解决初中数学问题的常用工具。

通过灵活运用各种辅助线做法,我们可以更加轻松地解决各种数学问题。

数学常见辅助线做法与小结

数学常见辅助线做法与小结

几何最难的地方就是辅助线的添加了,但是对于添加辅助线,还是有规律可循的,下面可小编给大家整理了一些常见的添加辅助线的方法,掌握了对你一定有帮助!1三角形中常见辅助线的添加1.与角平分线有关的(1)可向两边作垂线。

(2)可作平行线,构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形2.与线段长度相关的(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

(4)遇到中点,考虑中位线或等腰等边中的三线合一。

3. 与等腰等边三角形相关的(1)考虑三线合一(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 °2四边形中常见辅助线的添加特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线。

下面介绍一些辅助线的添加方法。

1.和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。

(1)利用一组对边平行且相等构造平行四边形(2)利用两组对边平行构造平行四边形(3)利用对角线互相平分构造平行四边形2.与矩形有辅助线作法(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.3.和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题 .(1)作菱形的高(2)连结菱形的对角线4.与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线3圆中常见辅助线的添加1.遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。

八年级下册数学辅助线总结

八年级下册数学辅助线总结

八年级下册数学辅助线总结八年级下册数学辅助线总结如下:1. 辅助线的作用:辅助线可以帮助我们更好地理解和解决数学问题,特别是在几何图形的证明和计算过程中起到重要的作用。

2. 平行线的辅助线:当我们需要证明两条线段平行时,可以通过引入一条辅助线来简化证明过程。

常见的辅助线有平行于已知线段的线段、平行于已知直线的线段或射线等。

3. 垂直线的辅助线:当我们需要证明两条线段垂直时,可以通过引入一条辅助线来简化证明过程。

常见的辅助线有与已知线段垂直的线段、与已知直线垂直的线段或射线等。

4. 三角形的辅助线:在解决三角形相关问题时,可以通过引入一条辅助线来简化问题。

常见的辅助线有中位线、高线、角平分线、垂直平分线等。

5. 相似三角形的辅助线:当我们需要证明两个三角形相似时,可以通过引入一条辅助线来简化证明过程。

常见的辅助线有角平分线、高线、中位线等。

6. 三角形的边长关系:在计算三角形的边长时,可以通过引入一条辅助线来简化计算过程。

常见的辅助线有中线、角平分线等。

7. 圆的辅助线:在解决圆相关问题时,可以通过引入一条辅助线来简化问题。

常见的辅助线有半径、直径、切线等。

8. 辅助线的选择:在选择辅助线时,需要根据具体问题的要求和条件来确定,通常需要根据问题的特点和已知条件进行分析和判断。

选择合适的辅助线可以简化问题,提高解题效率。

总之,辅助线在数学中起到了重要的作用,可以帮助我们更好地理解和解决各种数学问题,但在使用辅助线时需要注意合理选择,根据问题的要求和条件进行分析和判断。

初中数学辅助线的做法总结

初中数学辅助线的做法总结

初中数学辅助线的做法总结一、加法与减法辅助线1.相差减一法:对于计算两个数之差的问题,我们可以使用相减法,即将两个数按位相减,并将每一位之差写在下方。

为了更加清晰,可以在个位上方画一条水平线,表示个位数。

例如:45-23,画线表示为:4-233—2.加减齐次法:当计算加法或减法的时候,两个数位数不同,我们可以借助辅助线将两数齐次,使问题更易解。

例如:34+20,可以在个位上方画一条辅助线,表示个位数相加得4,十位数不变。

+0-----3.补充法:当计算减法时,被减数小于减数,我们可以通过补充的方式,使被减数增加一个数位,将问题转化为一个正常的减法。

例如:36-47,可以在个位上方画一条辅助线,表示个位数不够减,需要向十位借1,并在个位上加10,即变成36+10=46-47,再进行减法运算。

-136+10-47-------1二、乘法与除法辅助线1.竖式计算法:对于较复杂的乘法运算,我们可以使用竖式计算法,将乘法运算拆分为多个小的乘法运算。

例如:36×25,可以将25拆分成20和5,然后依次与36相乘,最后相加。

36×20-----72+180-----9002.倍数计算法:当计算除法时,我们可以利用倍数的性质,将除法问题转化为乘法问题。

分为两种情况:一是被除数为倍数的情况,二是除数为倍数的情况。

例如:115÷5,可以找到被除数和除数都是5的倍数,115÷5=(100+10+5)÷5=20+2+1=233.分数的乘法与除法:对于计算分数的乘除法,我们可以利用分数的定义和简化规则,将计算转化为整数的运算。

例如:(8/5)×(7/3),可以将其转化为整数相乘,然后再进行约分。

8×7=565×3=15所以结果为56/15,再进行约分。

三、几何问题的辅助线1.直角三角形辅助线:解决直角三角形的问题时,可以在直角处画一条垂线,以辅助解题。

初中数学做辅助线的方法总结

初中数学做辅助线的方法总结

初中数学做辅助线的方法总结
在初中数学中,做辅助线是解题的重要方法之一。

以下总结了几
种常见的做辅助线的方法:
1. 对称性辅助线法:当一个图形或方程式具有对称性时,可以
画出一条对称轴或一些对称线,从而利用对称性来简化问题。

例如,
在求三角形的中线长度相等定理时,可以描绘出三角形的垂直平分线,并在中点处作垂线,得到两个相等的直角三角形。

2. 垂线辅助线法:当一个角、线段或线段的垂线很难直接操作时,可以画出一条垂线,将问题转化为一个直角三角形问题。

例如,
在求一条线段的垂线长度时,可以先画出一条垂线与该线段相交,并
组成一个直角三角形。

3. 平移辅助线法:当一个几何图形或方程式涉及到平移时,可
以通过向图形或方程式添加平移线或平移量来使问题变得简单。

例如,在证明平行四边形对角线平分的定理时,可以平移一个平行四边形,
使其成为一个重合的平行四边形,从而使问题变得简单。

4. 分割辅助线法:当一个图形或方程式很复杂时,可以通过将
其分解成几个简单的部分来解题。

例如,在求多边形面积时,可以将
多边形分割成几个三角形或梯形,并将它们的面积相加,从而得到多
边形的面积。

总之,做辅助线的方法不只有以上四种,还可以根据具体问题的
不同情况选用其他的方法。

需要注意的是,在使用辅助线时,要注意
画出清晰的图形,并理解各种辅助线的作用,才能有效地解决问题。

初中数学辅助线整理归纳

初中数学辅助线整理归纳

初中数学辅助线整理归纳一、三角形中常见辅助线的添加1. 与角平分线有关的(1)可向两边作垂线。

(2)可作平行线,构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形2. 与线段长度相关的(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

(4)遇到中点,考虑中位线或等腰等边中的三线合一。

3. 与等腰等边三角形相关的(1)考虑三线合一(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 °二、四边形中常见辅助线的添加特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线。

下面介绍一些辅助线的添加方法。

1. 和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。

(1)利用一组对边平行且相等构造平行四边形(2)利用两组对边平行构造平行四边形(3)利用对角线互相平分构造平行四边形2. 与矩形有辅助线作法(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.3. 和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.(1)作菱形的高(2)连结菱形的对角线4. 与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线。

(完整word版)8种辅助线做法

(完整word版)8种辅助线做法

(完满word版)8种辅助线做法全等三角形问题中常有的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等1.等腰三角形“三线合一〞法:遇到等腰三角形,可作底边上的高,利用“三线合一〞的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角均分线在三种添辅助线4.垂直均分线联系线段两端5.用“截长法〞或“补短法〞:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7. 角度数为 30、60 度的作垂线法:遇到三角形中的一个角为30 度或 60 度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90 的特别直角三角形,尔后计算边的长度与角的度数,这样可以获取在数值上相等的二条边或二个角。

从而为证明全等三角形创立边、角之间的相等条件。

常有辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一〞解题,思想模式是全等变换中的“对折〞法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思想模式是全等变换中的“旋转〞法构造全等三角形.3)遇到角均分线在三种添辅助线的方法,〔1〕可以自角均分线上的某一点向角的两边作垂线,利用的思想模式是三角形全等变换中的“对折〞〔 2〕可以在角均分线上的一点作该角均分线的垂线与角的两边订交,形成一对全等三角形。

〔 3〕可以在该角的两边上,距离角的极点相等长度的地址上截取二点,尔后从这两点再向角均分线上的某点作边线,构造一对全等三角形。

4)过图形上某一点作特定的均分线,构造全等三角形,思想模式是全等变换中的“平移〞或“翻转折叠〞5)截长法与补短法,详尽做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.6)某线段的垂直均分线,那么可以在垂直均分线上的某点向该线段的两个端点作连线,出一对全等三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何最难的地方就是辅助线的添加了,但是对于添加辅助线,还是有规律可循的,下面可小编给大家整理了一些常见的添加辅助线的方法,掌握了对你一定有帮助!
1
三角形中常见辅助线的添加
1. 与角平分线有关的??
(1)可向两边作垂线。

??
(2)可作平行线,构造等腰三角形??
(3)在角的两边截取相等的线段,构造全等三角形??
2. 与线段长度相关的??
(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可??
(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可??
(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

??
(4)遇到中点,考虑中位线或等腰等边中的三线合一。

?
3. 与等腰等边三角形相关的??
(1)考虑三线合一??
(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60?°
2
四边形中常见辅助线的添加
特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线。

下面介绍一些辅助线的添加方法。

1. 和平行四边形有关的辅助线作法? ????
平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。

?
(1)利用一组对边平行且相等构造平行四边形?
(2)利用两组对边平行构造平行四边形?
(3)利用对角线互相平分构造平行四边形??
2. 与矩形有辅助线作法? ?
(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题? (2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.
3. 和菱形有关的辅助线的作法? ??? ? ?
和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.?
(1)作菱形的高??
(2)连结菱形的对角线?
4. 与正方形有关辅助线的作法? ???
正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线?
3
圆中常见辅助线的添加
1. 遇到弦时(解决有关弦的问题时)??
常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。

??
作用:?
①?利用垂径定理? ? ? ? ?
②?利用圆心角及其所对的弧、弦和弦心距之间的关系? ? ? ? ?
③?利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量?
2. 遇到有直径时,常常添加(画)直径所对的圆周角? ?
作用:利用圆周角的性质得到直角或直角三角形? ?
3. 遇到90度的圆周角时,常常连结两条弦没有公共点的另一端点???
作用:利用圆周角的性质,可得到直径??
4. 遇到弦时,常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点?
作用:①可得等腰三角形
②据圆周角的性质可得相等的圆周角??
5. 遇到有切线时,常常添加过切点的半径(连结圆心和切点)?? ? ? ? ?
作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形??
常常添加连结圆上一点和切点? ?
作用:可构成弦切角,从而利用弦切角定理。

??
6. 遇到证明某一直线是圆的切线时? ?
(1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段。

?
作用:若OA=r,则l为切线??
(2)若直线过圆上的某一点,则连结这点和圆心(即作半径)?
作用:只需证OA⊥l,则l为切线??
(3)有遇到圆上或圆外一点作圆的切线?
7. 遇到两相交切线时(切线长)??
常常连结切点和圆心、连结圆心和圆外的一点、连结两切点? ?
作用:据切线长及其它性质,可得到? ??
①?角、线段的等量关系? ??
②?垂直关系? ? ??
③?全等、相似三角形?
8. 遇到三角形的内切圆时??
连结内心到各三角形顶点,或过内心作三角形各边的垂线段? ?
作用:利用内心的性质,可得??
①内心到三角形三个顶点的连线是三角形的角平分线
②内心到三角形三条边的距离相等??
9. 遇到三角形的外接圆时,连结外心和各顶点? ??
作用:外心到三角形各顶点的距离相等??
10. 遇到两圆外离时(解决有关两圆的外、内公切线的问题)??
常常作出过切点的半径、连心线、平移公切线,或平移连心线? ??
作用:①利用切线的性质;? ?②利用解直角三角形的有关知识??
11. 遇到两圆相交时?常常作公共弦、两圆连心线、连结交点和圆心等? ? ?作用:?①?利用连心线的性质、解直角三角形有关知识? ? ? ? ??
②?利用圆内接四边形的性质? ? ? ?
③?利用两圆公共的圆周的性质? ? ? ??
④垂径定理??
12.遇到两圆相切时??
常常作连心线、公切线? ? ??
作用:①?利用连心线性质? ? ? ? ?
②?切线性质等??
13. 遇到三个圆两两外切时??
常常作每两个圆的连心线? ? ? ?
作用:可利用连心线性质? ?
14. 遇到四边形对角互补或两个三角形同底并在底的同向且有相等“顶角”时?常常添加辅助圆??
作用:以便利用圆的性质。

相关文档
最新文档