哈工大概率论参考答案习题

合集下载

哈尔滨工业大学概率论答案习题六(精)

哈尔滨工业大学概率论答案习题六(精)

n n m∑ Xi (1)Y1 = i =1 m∑ X i2 ; 2 i n+m (2) Y2 = i =1 n+m n n i = n +1 ∑X n ∑ X i2 i = n +1 解∑X i =1 i ~ N (0, nσ 2 ,1 nσ n ∑X i =1 i ~ N (0,1, n+m i = n +1 X i ~ N (0, σ 2 ,所以n X i2 1 ~ χ 2 (1 ,2 2 σ σ 1 nσ 1 σ2 n ∑X 2 i ~ χ 2 ( m ,m∑ Xi (1)Y1 = i =1 n+m ∑X i =1 2 i i = 2 i n+m i = n +1 ~ t (m; /m n n i = n +1 ∑X ∑X 1 n 2 ∑X /n σ 2 i =1 i n =1 (2)Y2 = n + m = ~ F (n, m. 1 n +m 2 2 n ∑ Xi ∑ Xi / m σ 2 i = n+1 i = n +1 m∑ X i2 13 .设 X 1 ,⋯ , X n , X n +1 是来自总体N ( µ , σ 2 的样本,X = 1 n ∑ Xi ,n i =1 S *2 = 1 n X −X ( X i − X 2 ,试求统计量T = n +1 * ∑ n i =1 S n −1 的分布。

n +1 解于是X n+1 − X ~ N (0, n +1 2 nS *2 σ ,2 ~ χ 2 (n − 1 n σ X n+1 − X ~ N (0,1 n +1 σ n X n+1 − X X − X n −1 n + 1/ nσ ~ t (n − 1 . T = n +1 * = S n +1 nS *2 /(n − 1 σ2 14.设样本 X 1 ,⋯ , X n 和 Y1 ,⋯ , Yn 分别来自相互独立的总体N ( µ1 , σ 12 和1 2 N ( µ 2 , σ ,已知σ 1 = σ 2 ,α 和β 是两个实数,求随机变量 2 2 ·87·α ( X − µ1 + β (Y − µ 2 2 (n1 − 1 S12 + (n2 − 1 S 2 α2 β 2 ( + n1 + n2 − 2 n1 n2 的分布解所以α ( X − µ1 ~ N (0, 2 α 2σ 12 β 2σ 2 ,β (Y − µ 2 ~ N (0, ,又σ 1 = σ 2n1 n2 α ( X − µ + β (Y − µ 2 ~ N (0, ( α ( X − µ + β (Y − µ 2 α2 β2 + σ n1 n2 而所以α2 β 2 2 + σ n1 n2 ~ N (0,1 2 (n1 − 1 S12 + (n2 − 1 S 2 ~ χ 2 (n1 + n2 − 2 2 σ α ( X − µ1 + β (Y − µ 2 2 ⎛α2 β 2 ⎞ (n1 − 1 S12 + (n2 − 1 S 2 + ⎜⎟ n1 + n2 − 2 ⎝ n1 η2 ⎠ [α ( X − µ1 + B(Y − µ 2 ] / = ~ t (n1 + n2 − 2 . 2 (n1 − 1 S12 + (n2 − 1 S 2 /(n1 + n2 − 2 σ2 15.从正态总体 N (3.4, 6 2 中抽取容量为 n 的样本,如果要求样本均值位于区间(1.4, 5.4)内的概率不小于 0.95,问样本容量 n 至少应多大?解α2 β 2 + σ n1 n2 0.95 ≤ P(1.4 < = 2Φ ( 1 n 5.4 − 3.4 1.4 − 3.4X i < 5.4 = Φ ( n − Φ( n ∑ n i =1 6 6 n −1 3 即Φ( n n ≥ 0.975 ,查正态分表得≥ 1.96 即n ≥ 34.57 . 3 3 故样本容量至少应为 35。

哈工大概率论与数理统计期末试卷及标准答案B卷(2006)

哈工大概率论与数理统计期末试卷及标准答案B卷(2006)

一.判断题(5210⨯=分分)1. ()1P A =,则A 为必然事件. ( )2. 设X Y 与不相关,则X Y 与相互独立. ( )3. 参数的无偏估计是唯一的. ( )4. A B 与独立,则A B 与互相互独立. ( )5. 假设检验中,取伪表示事件{拒绝01H H 真} ( ) 二.选择题(5315⨯=分分)6. 设,,A B C 为三个事件,则”这,,A B C 中至多发生一个”的事件为( )()()()()A A B C B AB AC BC C A BC ABC ABCD ABC ABCU U U U U U U7. 设X Y 与相互独立,()4,()2,D X D Y == 则(32)D X Y -=( ) ()8()16()28()44A B C D8. 设(0,1),21X N Y X =-:,则Y : ( ) ()(0,1)()(1,2)()(1,8)()(1,9)A N B N C N D N ---9. 设总体212(3,3),,,,n X N X X X :L 为X 的样本,则下列结果正确的是( )33()(0,1)()(0,1)392()(0,1)((0,1)3X X A N B N X X C N D N n ---::::10. 设2(),()E X D X μσ==,则由切比雪夫不等式可知{2}P X μσ-≥≤ ( )1113()()()()2484A B C D三.填空题(5315⨯=分分)11. 设X 的概率密度为31,0(),30,0xe xf x x -⎧>⎪=⎨⎪≤⎩则()D X =_____________.12. 设事件A B 与相互独立,()0.4,()0.6,P A P A B ==U 则()P B A =_____________. 13. 设()X πλ:,且{3}{4},P X P X ===则λ=____________. 14.设(,)X Y 的概率密度为:6,00(,),0,x x y f x y ≤≤≤⎧=⎨⎩其他则(1)P X Y +≤=__________.15. 设(),X t n :则2X -:______________. 四.计算题(共60分)16. 设()4,12X U :,求关于t 的方程290t Xt -+=有解的概率.(6分)17. 设二维随机变量(,)X Y 的联合分布律如下:问α,β取何值时, ,X Y 相互独立?(6分)18. 设X 的概率密度为2,01()0,x x f x <<⎧=⎨⎩其他,Y 表示对X 四次独立重复观察事件 12X ⎧⎫≥⎨⎬⎩⎭出现的次数.求{}1P Y =.(8分)19. 设X 的概率密度为,02(),240,ax x f x bx c x <<⎧⎪=+≤<⎨⎪⎩其他,已知(){}32,13,4E X P X =<<=,,.a b c 求(8分)20. 袋中有6只全新的乒乓球,每次比赛取出2只用完之后放回,已知第三次取得的2只球都是新球,求第二次取到的只有1只新球的概率. (8分)21. 某保险公司经多年的资料统计表明索赔户中被盗赔户占20%,在随意抽查的10000家索赔户中被盗的索赔户设为随机变量X ,试用中心极限定理估计被盗索赔户在1920户到2080户之间的概率. ()()()()2.50.994,20.977,0.6250.732ΦΦΦ===(8分)22.设总体X 具有分布律其中(01)θθ<<为未知参数.已知取得样本值1231,2,1x x x ===,试求θ的最大似然估计值. (8分)23.有一批枪弹,出厂时,其初速2(950,10)v N :,经过较长时间储存,取9发进行测试得x =945 米/秒.问这批枪弹得初速度是否有显著变化()0.1α=?()0.050.11.645, 1.28u u ==(8分)一.判断题(5210⨯=分分)× × × √ × 二.选择题(5315⨯=分分)B D D D B三.填空题(5315⨯=分分)11、9 12、2313、4 14、6. 15、(,1)F n 四.计算题(共60分)16. 解:因为1,412()80,x f x ⎧<<⎪=⎨⎪⎩其他,(2分)所以{}{}{}122613036066.84P P X P X X dx ∆≥=-≥=≤-≥==⎰或(4分) 17. 解:因为,X Y 相互独立,所以13=13α+⨯23,29=29β+⨯23(4分)所以α=16,β=19.(2分)18. 解:因为12011224P X xdx ⎧⎫≥==⎨⎬⎩⎭⎰,(3分)所以1(4,),4Y b :(3分){}131413271.4464P Y C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭(2分) 19. 解: 22()0.7,()0.7,()0.5,()0.5,E X E X E Y E Y ====Q (2分)()0.21,()0.25D X D Y ∴== (2分)()0.2,(,)()()()0.15E XY COV X Y E XY E X E Y =∴=-=-Q (2分)所以XY ρ∴=== (2分)20. 解:设i A ,i 表示第二次取到只新球0,1,2i =;A 表示第三次取到2只新球.()()()21122244012222666186,,151515C C C C P A P A P A C C C ======()()()222342012222666631|,|,|151515C C C P A A P A A P A A C C C ======.(2分)()16836136151515151515225P A =⨯+⨯+⨯=.(3分) ()18321515|.363225P A A ⨯==(3分) 21. 解: 因为(10000,0.2)X b :,所以()()2000,1600E X D X ==(4分) 所以{}()200019202080222210.954.40X P X P Φ-⎧⎫≤≤=-≤≤=-=⎨⎬⎩⎭(4分)22. 解: ()2252(1)2(1)L θθθθθθθ=⋅-⋅=-,()ln ln 25ln ln(1)L θθθ=++-(4分)()ln 5101d L d θθθθ=-=-,所以5.6θ=)(4分)23. 解: 提出假设0010:,:H H μμμμ=≠拒绝域为2αμμ≥,2αμ≥(4分)又因为00.05945,950,10,9, 1.645x n μσμ=====,所以21.5,x u u αμ==-≤,所以拒绝0H ,枪弹的初速度无显著变化. (4分)。

概率论与数理统计 习题八 参考答案及过程 许承德 哈尔滨工业大学出版社

概率论与数理统计 习题八 参考答案及过程 许承德 哈尔滨工业大学出版社

习 题 八1.设12,,,n X X X 是从总体X 中抽出的样本,假设X 服从参数为λ的指数分布,λ未知,给定00λ>和显著性水平(01)αα<<,试求假设00:H λλ≥的2χ检验统计量及否定域.解 00:H λλ≥ 选统计量 200122nii XnX χλλ===∑记212nii Xχλ==∑则22~(2)n χχ,对于给定的显著性水平α,查2χ分布表求出临界值2(2)n αχ,使22((2))P n αχχα≥=因22χχ>,所以2222((2))((2))n n ααχχχχ≥⊃≥,从而2222{(2)}{(2)}P n P n αααχχχχ=≥≥≥可见00:H λλ≥的否定域为22(2)n αχχ≥.2.某种零件的尺寸方差为21.21σ=,对一批这类零件检查6件得尺寸数据(毫米):32.56, 29.66, 31.64, 30.00, 21.87, 31.03。

设零件尺寸服从正态分布,问这批零件的平均尺寸能否认为是32.50毫米(0.05α=).解 问题是在2σ已知的条件下检验假设0:32.50H μ= 0H 的否定域为/2||u u α≥ 其中29.4632.502.45 6.771.1X u -==⨯=-0.025 1.96u =,因|| 6.77 1.96u =>,所以否定0H ,即不能认为平均尺寸是32.5毫米。

3.设某产品的指标服从正态分布,它的标准差为100σ=,今抽了一个容量为26的样本,计算平均值1580,问在显著性水平0.05α=下,能否认为这批产品的指标的期望值μ不低于1600。

解 问题是在2σ已知的条件下检验假设0:1600H μ≥ 0H 的否定域为/2u u α<-,其中158016005.1 1.02100X u -==⨯=-.0.05 1.64u -=-. 因为0.051.02 1.64u u =->-=-,所以接受0H ,即可以认为这批产品的指标的期望值μ不低于1600.4.一种元件,要求其使用寿命不低于1000小时,现在从这批元件中任取25件,测得其寿命平均值为950小时,已知该元件寿命服从标准差为100σ=小时的正态分布,问这批元件是否合格?(0.05α=)解 设元件寿命为X ,则2~(,100)X N μ,问题是检验假设0:1000H μ≥. 0H 的否定域为0.05u u ≤-,其中95010005 2.5100X u -==⨯=-0.05 1.64u =因为0.052.5 1.64u u =-<-= 所以否定0H ,即元件不合格.5.某批矿砂的5个样品中镍含量经测定为(%)X : 3.25,3.27,3.24,3.26,3.24设测定值服从正态分布,问能否认为这批矿砂的镍含量为3.25(0.01)α=? 解 问题是在2σ未知的条件下检验假设0: 3.25H μ= 0H 的否定域为 /2||(4)t t α>522113.252,(5)0.00017,0.0134i i X S X X S ===-⨯==∑0.005(4) 4.6041t =3.252 3.252.240.3450.013X t -==⨯=因为0.005||0.345 4.6041(4)t t =<=所以接受0H ,即可以认为这批矿砂的镍含量为3.25.6.糖厂用自动打包机打包,每包标准重量为100公斤,每天开工后要检验一次打包机工作是否正常,某日开工后测得9包重量(单位:公斤)如下: 99.3,98.7,100.5,101.2,98.3,99.7,99..1,100.5问该日打包机工作是否正常(0.05α=;已知包重服从正态分布)?解 99.98X =,92211(()) 1.478i i S X X ==-=∑, 1.21S =,问题是检验假设0:100H μ=0H 的否定域为/2||(8)t t α≥. 其中99.9810030.051.21X t -==⨯=-0.025(8) 2.306t =因为0.025||0.05 2.306(8)t t =<= 所以接受0H ,即该日打包机工作正常.7.按照规定,每100克罐头番茄汁中,维生素C 的含量不得少于21毫克,现从某厂生产的一批罐头中抽取17个,测得维生素C 的含量(单位:毫克)如下22,21,20,23,21,19,15,13,16, 23,17,20,29,18,22,16,25.已知维生素C 的含量服从正态分布,试检验这批罐头的维生素含量是否合格。

哈工大概率论与数理统计期末考题及答案(2008)

哈工大概率论与数理统计期末考题及答案(2008)

2
2
1 X Y ,设 Z , (1)求 EZ 和 DZ (2)求 XZ 2 3 2



(草纸内不得答题)
第 3 页 (共 5 页)
试 题:
1 , x 六、 (14 分) .设总体 X 的分布函数为: F ( x; , ) x 0, x
其中未知参数 0, 1 ,设 X 1 , , X n 为来自总体 X 的简单随机样本. (1)当 1 时,求未知参数 的矩估计和极大似然估计; (2)当 2 时,求未知参数 的极大似然估计。 、


(草纸内不得答题)
第 4 页 (共 5 页)
试 题:
七(6 分)设 X , Y 服从 G x, y | 1 x 3,1 y 3 上均匀分布,
1 3.设随机变量 X 的密度函数为 f ( x) e | x| ,则对随机变量 | X | 与 X ,下列结论成立的是 2 (A)相互独立; (B)分布相同; (C)不相关; (D)同期望. 【 】 1 1 4.设随机变量 X 服从参数为 的指数分布, Y ~ U (0,6) ,且 XY ,根据 3 3 切比晓夫不等式有: P (4 X Y 4) 1 5 1 2 (A) . (B) . (C) . (D) . 【 】 8 8 4 9 2 2 2 5.设 X1 , X2 ,, Xn 是总体 X ~ N ( , ) 的样本, EX , DX , X 是样本均值, S 是样本方差,
哈工大
2008
年 秋 季学期
概率论与数理统计
题号 分数 一 二 三 四 五 六 七


Байду номын сангаас

哈工大概率论参考答案习题

哈工大概率论参考答案习题

习 题 一1.写出下列随机试验的样本空间及下列事件中的样本点:(1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’;(2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’;(3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。

解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =L , 135{,,}A e e e =。

(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S =(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)};{(4,6),(5,5),(6,4)}A =;{(3,1),(4,2),(5,3),(6,4)}B =。

(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。

概率论习题(哈工程版)1-1

概率论习题(哈工程版)1-1
概率论与数理统计
数学科学与技术学院 应用数学教研室 胡金燕 lionfr@
概率论的诞生— 概率论的诞生—赌徒学
1654年的某一天梅尔和保罗赌钱 1654年的某一天梅尔和保罗赌钱, 他们 年的某一天梅尔和保罗赌钱, 事先各出6 枚金币, 并约定先胜三局者为胜, 事先各出 6 枚金币 , 并约定先胜三局者为胜 , 取得全部12 枚金币. 由于出现意外情况, 12枚金币 取得全部 12 枚金币 . 由于出现意外情况 , 在 梅尔胜2 局保罗胜1 局时, 不得不终止赌博, 梅尔胜 2 局保罗胜 1 局时 , 不得不终止赌博 , 如果要分赌金,该如何分配才算公平?
结果有可能为: 结果有可能为: 1, 2, 3, 4, 5 或 6.
实例4 实例4 从一批含有正品和次品的产品中任 意抽取一个产品. 意抽取一个产品. 其结果可能为: 其结果可能为: 正品 ,次品. 次品. 实例5 过马路交叉口时, 实例5 过马路交叉口时, 遇上的交通指挥 灯的颜色. 灯的颜色. 其结果可能为: 其结果可能为: 红灯 ,绿灯. 绿灯.
实例: 实例:
H → 字面朝上 T → 花面朝上 S1 = { H , T }. 2个样本点
实例: 实例:
S2 = {1, 2, 3, 4, 5, 6}.
6个样本点
实例: 实例:
S3 = { t t ≥ 0}.Biblioteka 其中 t 为灯泡的寿命 .
无限多个样本点
如果试验是将一枚硬币抛掷两次, 如果试验是将一枚硬币抛掷两次, 则样本空间由如下四个样本点组成: 则样本空间由如下四个样本点组成: S={(H,H), (H,T), (T,H), (T,T)} ={(H,H), (H,T), (T,H), (T,T)} 样本空间在如下 其中 第1次 第2次 次 次 意义上提供了一个理 H H (H,H): 想试验的模型: 想试验的模型: (H,T): : (T,H): (T,T): :

哈工大概率论与数理统计期末试卷及标准答案A卷(2006)

哈工大概率论与数理统计期末试卷及标准答案A卷(2006)

第1页一、判断题(每小题2分,共10分)1、()0P A =,则A 为不可能事件. ( )2、设X Y 与相互独立,则X Y 与一定不相关. ( )3、µµ12,θθ为θ的两个估计量,µµ12()(),D D θθ<则µ1θ更有效. ( ) 4、A B 与互不相容,则A B 与互不相容.( ) 5、假设检验中,弃真表示事件{接收01H H 真}. ( ) 二、选择题(每小题3分,共15分) 6、设,A B 为两个事件,则“这两个事件至少有一个没发生”可表示为( )()()()()A ABB AB ABC A BD AB U U7、设X Y 与相互独立,()4,()1,D X D Y == 则(23)D X Y -=( )()5()11()7()25A B C D 8、设(0,1),21X N Y X =-:,则Y : ( ) ()(0,1)()(1,4)()(1,3)()(1,1)A N B N C N D N ---9、设总体212(2,4),,,,n X N X X X :L 为X 的样本,则下列结果正确的是( )22()(0,1)()(0,1)416X X A N B N ::-- 2()(0,1)((0,1)2X C N D N ::-10、设2(),()E X D X μσ==,由切比雪夫不等式得{3}P X μσ-≥≤ ( )第2页 1218()()()()339A B C D三、填空题(每小题3分,共15分)11、设X 的概率密度为41,0(),40,0xe xf x x -⎧>⎪=⎨⎪≤⎩则()D X =____________.12、设事件A B 与相互独立,()0.4,()0.7,P A P A B ==U 则()P B A = ______13、设()X πλ:,且{2}{3},P X P X ===则λ=____________.14、设(,)X Y 的概率密度为:,01(,),0,cx x y f x y ≤≤≤⎧=⎨⎩其他则c =_________.15、设(),X t n :则2X :______________.四、计算题(共60分)16、(6分)设()4,10X U :,求关于t 的方程2160t Xt -+=有解的概率.17、(6分)设二维随机变量(,)X Y 的联合分布律如下: 问α,β取何值时, ,X Y 相互独立?……………密………………………………封……………………………………装………………………………订…………………第3页18、(8分)设X 的概率密度为2,01()0,x x f x <<⎧=⎨⎩其他,Y 表示对X 三次独立重复观察事件12X ⎧⎫≥⎨⎬⎩⎭出现的次数.求{}2P Y =.19、(8分)设随机变量(,)X Y 的分布律为求XY ρ.20、(8分)袋中有6只全新的乒乓球,每次比赛取出2只用完之后放回,已知第三次取得的2只球都是新球,求第二次取到的也是2只新球的概率.………………密………………………………封………………级 学号 姓名………………………………装………………………………订………………第4页21、(8分)某保险公司经多年的资料统计表明索赔户中被盗赔户占20%,在随意抽查的10000家索赔户中被盗的索赔户设为随机变量X ,试用中心极限定理估计被盗索赔户在1900户到2100户之间的概率.()()( 2.50.994,20.977,ΦΦ==()0.625Φ0.732)=其中(01)θθ<<为未知参数.已知取得样本值121,2,x x ==31x =,试求θ 的矩估计值. 23、有一批枪弹,出厂时,其初速2(950,10)v N :,经过较长时间储存,取9发进行测试得x =928米/秒.问这批枪弹的初速度是否有显著变化()0.1α=?()0.050.11.645, 1.28u u ==(8分)………………密……………封………………………………线…………………学院 专业 级 学号 姓名………………………………装………………………………订………………………………线…………………第5页一.判断题(5210⨯=分分)× √ × × × 二.选择题(5315⨯=分分)C D B B C三.填空题(5315⨯=分分)11、16 12、0.5 13、3 14、6. 15、(1,)F n四.计算题(共60分)16. 解:因为1,410()60,x f x ⎧<<⎪=⎨⎪⎩其他, (2分)所以{}{}{}102811064088.63P P X P X X dx ∆≥=-≥=≤-≥==⎰或 (4分) 17. 解:因为,X Y 相互独立,所以19=19α+⨯13,118=118β+⨯13 (4分)所以α=29,β=19.(2分)第6页18. 解:因为12011224P X xdx ⎧⎫≥==⎨⎬⎩⎭⎰, (3分)所以1(3,),4Y b :(3分){}2231392.4464P Y C ⎛⎫=== ⎪⎝⎭ (2分) 19. 解: 22()0.6,()0.6,()0.5,()0.5,E X E X E Y E Y ====Q (2分)()0.24,()0.25D X D Y ∴== (2分)()0.1,(,)()()()0.2E XY COV X Y E XY E X E Y =∴=-=-Q (2分)所以3XY ρ∴===- (2分)20. 解:设i A ,i 表示第二次取到只新球0,1,2i =;A 表示第三次取到2只新球.()()()21122244012222666186,,151515C C C C P A P A P A C C C ======()()()222342012222666631|,|,|151515C C C P A A P A A P A A C C C ======.(2分)()16836136151515151515225P A =⨯+⨯+⨯=.(3分)()01611515|.366225P A A ⨯== (3分)21. 解: 因为(10000,0.2)X b :,所以()()2000,1600E X D X ==(4分) 所以{}()200019002100 2.5 2.52 2.510.988.40X P X P Φ-⎧⎫≤≤=-≤≤=-=⎨⎬⎩⎭(4分) 22. 解:()221()122(1)3132E X μθθθθθ==⋅+⋅-+⋅-=- (4分)第7页()11412133A =++=4532,.36θθ∴-==) (4分)23. 解: 提出假设0010:,:H H μμμμ=≠拒绝域为2αμμ≥,2αμ≥(4分)又因为00.05928,950,10,9, 1.645x n μσμ=====,所以26.6,x u u αμ==-≥,所以拒绝0H ,枪弹的初速度有显著变化. (4分)。

哈尔滨工业大学《概率论与数理统计》历年期末考试

哈尔滨工业大学《概率论与数理统计》历年期末考试

n
i 1, n , 则 b ai X i i 1
~
N b
n i 1
ai i ,
n i 1
ai2 i 2
亦为正态变量(
a1,, an不全为0
3分
)且
五、解: X ~ B(2, 1) Y ~ U[0,1] 3
0, x 0
FY
(
y
)
x,
0 x 1
1, x 1
FZ (z) P(Z z) P(X Y z)
于是有:
A Ai A i 1
P(A)
i 1
P( Ai )P( A Ai )
i 1
i i!
e (1)i 2
e
( )i 2
e (e 2
1) e 2
e
i1 i!
2分 2分
2011年《概率论与数理统计》期末考试试题及答案解析
一、填空题(每小题 3 分,共 5 小题,满分 15 分)
(z)
n
2
1 1
(
2z 2 1
) n1 ,1
z
2
0,
其它
EZ
2 1
zf Z
( z )dz
2 n 1
n
n
11
1, 但EZ
1(n
)
x(1)为1的渐进无偏估计。
4分
七、解:令 A. 表示器皿产生了甲类细菌而没有产生乙类细菌事件,而 Ai 表示产 生了 i 个细菌的事件( i 1,2,3,)。
于是 1 , 2
矩估计为
ˆˆ12
x x
3s 3s
s s2
4分 4分
(2)似然函数
Lx1,,
xn ;1 , 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题 一1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’;(2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’;(3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。

解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =,135{,,}A e e e =。

(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。

(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。

(5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===。

2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:(1)仅A 发生;(2),,A B C 中至少有两个发生;(3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。

解 (1)ABC (2)AB AC BC 或ABCABC ABC ABC ;(3)AB C 或ABCABC ABC ABC ABC ABCABC ;(4)ABC ABC ABC ; (5)AB AC BC 或ABCABC ABC ABC ;3.一个工人生产了三件产品,以(1,2,3)i A i =表示第i 件产品是正品,试用i A 表示下列事件:(1)没有一件产品是次品;(2)至少有一件产品是次品;(3)恰有一件产品是次品;(4)至少有两件产品不是次品。

解 (1)123A A A ;(2)123A A A ;(3)123123123A A A A A A A A A ;(4)121323A A A A A A 。

4.在电话号码中任取一个电话号码,求后面四个数字全不相同的概率。

解 设A =‘任取一电话号码后四个数字全不相同’,则4104126()0.50410250P P A ===5.一批晶体管共40只,其中3只是坏的,今从中任取5只,求 (1)5只全是好的的概率; (2)5只中有两只坏的的概率。

解 (1)设A =‘5只全是好的’,则537540()0.662C P A C =;(2)设B =‘5只中有两只坏的’,则23337540()0.0354C C P B C =.6.袋中有编号为1到10的10个球,今从袋中任取3个球,求 (1)3个球的最小号码为5的概率; (2)3个球的最大号码为5的概率. 解 (1)设A =‘最小号码为5’,则253101()12C P A C ==;(2)设B =‘最大号码为5’,则243101()20C P B C ==.7.(1)教室里有r 个学生,求他们的生日都不相同的概率; (2)房间里有四个人,求至少两个人的生日在同一个月的概率. 解 (1)设A =‘他们的生日都不相同’,则365()365rrP P A =; (2)设B =‘至少有两个人的生日在同一个月’,则212223214121141241212441()1296C C P C C C P C P B +++==; 或412441()1()11296P P B P B =-=-=.8.设一个人的生日在星期几是等可能的,求6个人的生日都集中在一个星期中的某两天,但不是都在同一天的概率.解 设A =‘生日集中在一星期中的某两天,但不在同一天’,则2676(22)()0.011077C P A -==.9.将,,,,,,C C E E I N S 等7个字母随机地排成一行,那么恰好排成英文单词SCIENCE 的概率是多少?解1 设A =‘恰好排成SCIENCE ’将7个字母排成一列的一种排法看作基本事件,所有的排法:字母C 在7个位置中占两个位置,共有27C 种占法,字母E 在余下的5个位置中占两个位置,共有25C 种占法,字母,,I N C 剩下的3个位置上全排列的方法共3!种,故基本事件总数为22753!1260C C ⋅⋅=,而A 中的基本事件只有一个,故227511()3!1260P A C C ==⋅⋅; 解2 七个字母中有两个E ,两个C ,把七个字母排成一排,称为不尽相异元素的全排列。

一般地,设有n 个元素,其中第一种元素有1n 个,第二种元素有2n 个…,第k 种元素有k n 个12()k n n n n +++=,将这n 个元素排成一排称为不尽相异元素的全排列。

不同的排列总数为12!!!!k n n n n ,对于本题有141()7!7!12602!2!P A ===. 10.从0,1,2,,9等10个数字中,任意选出不同的三个数字,试求下列事件的概率:1A =‘三个数字中不含0和5’,2A =‘三个数字中不含0或5’,3A =‘三个数字中含0但不含5’.解 3813107()15C P A C ==.333998233310101014()15C C C P A C C C =+-=,或182231014()1()115C P A P A C =-=-=,2833107()30C P A C ==.11.将n 双大小各不相同的鞋子随机地分成n 堆,每堆两只,求事件A =‘每堆各成一双’的概率.解 n 双鞋子随机地分成n 堆属分组问题,不同的分法共(2)!(2)!2!2!2!(2!)nn n =‘每堆各成一双’共有!n 种情况,故2!()(2)!n n P A n ⋅=12.设事件A 与B 互不相容,()0.4,()0.3P A P B ==,求()P AB 与()P A B解 ()1()1()()0.3P A B P A B P A P B =-=--= 因为,A B 不相容,所以A B ⊃,于是()()0.6P AB P A ==13.若()()P AB P AB =且()P A P =,求()P B . 解 ()1()1()()()P A B P A B P A P B P A B =-=--+由()()P AB P AB =得()1()1P B P A p =-=- 14.设事件,A B 及A B 的概率分别为,,p q r ,求()P AB 及()P A B解 ()()()()P AB P A P B P A B p q r =+-=+-()()()()()1()()()P AB P A P B P AB P A P B P A P AB =+-=+--+11q p q r p r =-++-=+-.15.设()()0.7P A P B +=,且,A B 仅发生一个的概率为0.5,求,A B 都发生的概率。

解1 由题意有0.5()()()P AB AB P AB P AB =+=+ ()()()()P A P AB P B P AB =-+- 0.72()P AB =-, 所以()0.1P AB =.解2 ,A B 仅发生一个可表示为A B AB -,故0.5()()()()2(),P A B P AB P A P B P AB =-=+-所以()0.1P AB =.16.设()0.7,()0.3,()0.2P A P A B P B A =-=-=,求()P AB 与()P AB .解 0.3()()()0.7(P A B P A P A B P A B =-=-=-, 所以()0.4P AB =, 故()0.6P AB =;0.2()()()0.4P B P AB P B =-=-. 所以()0.6P B = ()1()1()()()0.1P AB P AB P A P B P AB =-=--+=17.设AB C ⊂,试证明()()()1P A P B P C +-≤[证] 因为AB C ⊂,所以()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+-故()()()1P A P B P C +-≤. 证毕. 18.对任意三事件,,A B C ,试证()()()()P AB P AC P BC P A +-≤.[证] ()()()()()()P AB P AC P BC P AB P AC P ABC +-≤+- ()P ABAC ={()}()P A B C P A =≤. 证毕.19.设,,A B C 是三个事件,且1()()(),()()04P A P B P C P AB P BC =====,1()8P AC =,求,,A B C 至少有一个发生的概率。

解 ()()()()()()()(P A B C P A P B P C P A B P A C P B C P A B C =++---+ 因为 0()()0P A B CP A B ≤≤=,所以()0P ABC =,于是315()488P A B C=-=20.随机地向半圆0y <<(a 为正常数)内掷一点,点落在园内任何区域的概率与区域的面积成正比,求原点与该点的连线与x 轴的夹角小于/4π的概率.解:半圆域如图设A=‘原点与该点连线与x 轴夹角小于/4π’ 由几何概率的定义2221142()12a a A P A a ππ+==的面积半园的面积112π=+ 21.把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 解1 设A =‘三段可构成三角形’,又三段的长分别为,,x y a x y --,则0,0,0x a y a x y a <<<<<+<,不等式构成平面域S .A 发生0,0,222a a ax y x y a ⇔<<<<<+< 不等式确定S 的子域A ,所以1()4A P A ==的面积S 的面积解2 设三段长分别为,,x y z ,则0,0,0x a y a z a <<<<<<且 x y z a ++=,不等式确定了三维空间上的有界平面域S .A 发生x y z ⇔+>x z y +>y z x +>不等式确定S 的子域A ,所以 1()4A P A ==的面积S 的面积.22.随机地取两个正数和,这两个数中的每一个都不超过1,试求x 与y 之和不超过1,积不小于0.09的概率.S . A =‘1,0.09x y xy +≤≥’则A 发生的 充要条件为01,10.09x y xy ≤+≤≥≥不等式确定了S 的子域A ,故0.90.10.9()(1)A P A x dx x ==--⎰的面积S 的面积0.40.18ln 30.2=-=23.(蒲丰投针问题)在平面上画出等距离(0)a a >的一些平行线,向平面上随机地投掷一根长()l l a <的针,求针与任一平行线相交的概率.解 设A =‘针与某平行线相交’,针落在平面上的情况不外乎图中的几种, 设x 为针的中点到最近的一条平行线的距离。

相关文档
最新文档