哈工大概率论与数理统计课后习题答案四

合集下载

概率论与数理统计课后习题参考答案

概率论与数理统计课后习题参考答案

习题11、(1)同时掷两枚骰子,记录点数之和 {2,3,,12}S =;(2)生产产品知道得到5件正品,记录生产产品的总件数 {5,6,}S =; (3)单位圆任取一点,记录它的坐标 22{(,)1,,}S x y x y x R y R =+<∈∈;(4)将单位长线段分3段,观察各段长度{(,,)1,0,0,0}S x y z x y z x y z =++=>>>。

2、(1)A 与B 都发生,C 不发生:ABC ;(2)ABC 至少一个发生:A B C ;(3)ABC 不多于一个发生:ABAC BC 。

3、对事件ABC ,已知P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,求ABC 至少发生一个的概率?解:依题可知,()0P ABC =,则所求的概率为()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ++=++---+1153000488=⨯---+= 4、将10本书任意地放在书架上,其中有一套4卷成套的书,求概率?解:设事件A 表示“成套的书放在一起”,B 表示“成套的书按卷次顺序排好放在一起”,由概率的古典定义可得所求的概率为 (1)成套的书放在一起:7!4!1()10!30P A ⋅==(2)成套的书案卷次顺序排好放在一起:7!11()10!720P B ⋅==5、从5双不同的鞋子中任取4只,问这4只鞋子不能配成一双的概率是多少?解:设事件A 表示“取出的4只鞋子不能配成一双”,由概率的古典定义可得所求的概率为 44541028()21C P A C ⋅== 6、在电话号码簿中任取一个电话号码,求后面4个数全不相同的概率?解:设事件A 表示“电话号码的后面4个数全不相同”,由概率的古典定义可得所求的概率为4104()0.50410A P A ==7、已知P(非A)=0、3,P(B)=0、4,P(A 非B)=1/2,求P(B|AU 非B)? 解:依题可知,()1()0.7P A P A =-=,()1()0.6P B P B =-=,而()0.55()()0.77P AB P B A P A ===则2()1()7P B A P B A =-=,()()()0.2P AB P A P B A ==,故所求的概率为 ()()()()()P BAB P ABBB P B A B P AB P AB ⎡⎤⎣⎦== ()0.20.25()()()0.70.60.5P AB P A P B P AB ===+-+-8、设AB 是随机事件,P(A)=0、7,P(A-B)=0、3,求P (非(AB))?解:由()()()P A B P A P AB -=-,得()()()0.70.30.4P AB P A P A B =--=-=故 ()1()0.6P AB P AB =-=9、半圆内均匀的投掷一随机点Q ,试求事件A={Q于π/4}的概率?解:事件A 所对应的区域D 如下图所示,由概率的几何定义得所求的概率为()()()m D P A m S ==10、10解:设事件A 表示“这对夫妇正好坐在一起”,(91)!22()(101)!9P A -⋅==-11、已知10只晶体管中有2只是次品,在其中任取两只,每次随机取一只作不放回抽取 解:设事件A 表示“两只都是正品”, B 表示“两只都是次品”, C 表示“一只是正品,一只是次品”, D 表示“第二次取出的是次品”, 由概率的古典定义可得所求的概率为(1)两只都是正品2821028()45A P A A == (2)两只都是次品222101()45A P B A ==(3)一直是正品,一只是次品11128221016()45C C C P C A ⋅⋅== (4)第二次取出的是次品11292101()5C C PD A ⋅== 12、某学生接连参加同一课程的两次考试,第一次及格的概率为p ,如果他第一次及格,则x第二次及格的概率也为p ,如果第一次不及格,第二次及格概率为p/2。

概率论与数理统计课后习题答案 第四章

概率论与数理统计课后习题答案 第四章

(2) ρxy.
(1)
(2)(X,Y)的分布律为
Y X
0
1
-1
0
1
习题 4.1 1. 设随机变量 X 的概率密度为
(1) 求 E(X)
其他
(2)
解: (1)
(2) 2. 设连续型随机变量 X 的分布函数为
试确定常数 a,b,并求 E(X). 解:
(1)
其他
又因当

(2) 3. 设轮船横向摇摆的随机振幅 X 的概率密度为
的导数为 的导数为
即 即
求 E(X). 解:
4. 设 X1, X2,….. Xn 独立同分布,均值为 ,且设
D. (X,Y)~N(
)
解: 与 不相关 ρ
5. 设二维随机变量(X,Y)~N(
A.
B. 3
C. 18
解: ρ
),则 Cov(X,Y)= B . D. 36
6. 已知随机变量 X 与 Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则 E(XY)= A .
A. 3
B. 6
C. 10
解: Cov(X,Y)=0
2. 设随机变量 X 的分布律为 3 .
X
-1
0
1
2

P
0.1 0.2 0.3 0.4
令 Y=2X+1,则 E(Y)=
3
.
解: E(2X+1)=(2*-1+1)*0.1+(2*0+1)*0.2+(2*1+1)*0.3+(2*2+1)*0.4=3
3. 已知随机变量 X 服从泊松分布,且 D(X)=1,则 P{X=1}=

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案1. 引言概率论与数理统计是统计学的基础课程之一,通过学习这门课程,我们可以理解和运用概率和统计的概念和方法,从而分析和解决实际问题。

本文档将提供《概率论与数理统计》课后习题的详细答案。

2. 习题答案第一章:概率论的基本概念和基本原理1.1 选择题a.概率是以【答案】】D.形式结果给出的。

b.从一副有 52 张牌的扑克牌中,任意取一张牌,其点数是 7 的概率是【答案】】C.$\\frac{4}{52}$。

1.2 计算题a.设 A, B 是两个事件,已知 P(A) = 0.5,P(B) = 0.4,且P(A ∪ B) = 0.7,求P(A ∩ B)。

【解答】根据概率的加法定理可知,P(P∪P)=P(P)+P(P)−P(P∩P)代入已知数据,得到:0.7=0.5+0.4−P(P∩P)解上式得到P(A ∩ B) = 0.2。

所以,P(A ∩ B) = 【答案】0.2。

b.有两个相互独立的事件 A 和 B,且 P(A) = 0.3,P(A∪ B) = 0.5,求 P(B)。

【解答】由于事件 A 和 B 是相互独立的,所以根据概率的乘法定理可知,P(P∪P)=P(P)×P(P)代入已知数据,得到:0.5=0.3×P(P)解上式得到 P(B) = 0.5 ÷ 0.3 = 1.67。

所以,P(B) = 【答案】1.67。

第二章:随机变量及其分布2.1 选择题a.设 X 是一个随机变量,其概率密度函数为:$$ f(x) = \\begin{cases} \\frac{1}{2}x & 0 < x < 2 \\\\ 0 &其他 \\end{cases} $$则 P(X < 1) = 【答案】】C. 0.25。

b.对 X 的分布函数 F(x) = 1 - e^{-x}, 其中x ≥ 0,下列说法中错误的是【答案】】B. F(x) 是一个概率密度函数。

概率论与数理统计》课后习题答案第四章

概率论与数理统计》课后习题答案第四章

习题4.11.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的数学期望.解 可得X 的概率分布为0123~77711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为7771()012310301201204531208E X =⨯+⨯+⨯+⨯==2..某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数X 的数学期望.解 可得X 的概率分布为12~111n X nn n ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为111()121(1)122E X n n n nn n n n =⨯+⨯++⨯++==3.设5次重复独立试验中每次试验的成功率为0.9,若记失败次数为X ,求X 的数学期望。

解 由题意~(5,0.1)X B ,则X 的数学期望为 ()50.10.E X =⨯= 4.设某地每年因交通事故死亡的人数服从泊松分布.据统计,在一年中因交通事故死亡一人的概率是死亡两人的概率的21,求该地每年因交通事故死亡的平均人数。

解 设该地每年因交通事故死亡的人数为X ,由题意X 服从泊松分布() (0)P λλ>.因1{1}{2}2P X P X === 即121 41!22!ee λλλλλ--=⇒= 于是X 的数学期望为()4E X λ== 所以地每年因交通事故死亡的平均人数为4人。

5.设随机变量X 在区间(1,7)上服从均匀分布,求2{()}P X E X <. 解 因X 在区间(1,7)上服从均匀分布,故X 的数学期望为17()42E X +== 于是22{()}{4}1 {22}6P X E X P X P X <=<=<-<<=6.设连续型随机变量X 的概率密度为01() (,0)0 b ax x p x a b ⎧<<=>⎨⎩其它又知()0.75E X =,求,a b 的值解 由密度函数的性质可得()1p x dx +∞-∞=⎰即1111b aax dx b =⇒=+⎰又由()0.75E X =,可得1()0.75b xp x dx x ax dx +∞-∞=⋅=⎰⎰即0.752ab =+ 求解110.752ab a b ⎧=⎪⎪+⎨⎪=⎪+⎩可得 3,2a b ==.7.设随机变量X 的概率密度为0<1()2 120 x x p x x x <⎧⎪=-≤<⎨⎪⎩其它求数学期望()E X解1201331221()() (2) ()133E X xp x dxx xdx x x dx x x x +∞-∞==⋅+⋅-=+-=⎰⎰⎰8.设随机变量X 的概率分布为X -2 -1 0 1 P 0.2 0.3 0.1 0.4 求 (1)(21)E X -;(2)2()E X .解 (1) (21)2()1E X E X -=- 其中()20.210.3010.40.3E X =-⨯-⨯++⨯=-则(21)2()12(0.3)1 1.6E X E X -=-=⨯--=-(2)22222()0.2(2)0.3(1)0.100.41 1.5E X =⨯-+⨯-+⨯+⨯=9.假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作。

概率论与数理统计答案完整版

概率论与数理统计答案完整版

概率论与数理统计答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】习题答案第1章三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的 (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = ,P (B ) = ,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少 (2) 在什么条件下P (AB )取到最小值,最小值是多少 解:因为)()()()(B A P B P A P AB P -+≤,又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以(1) 当)()(B A P B P =时P (AB )取到最大值,最大值是)()(A P AB P ==.(2) 1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=+=. 3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P =,即)()()(1)(1)()(AB P B P A P B A P B A P AB P +--=-== ,所以 .1)(1)(p A P B P -=-=4.已知P (A ) = ,P (A – B ) = ,试求)(AB P .解:因为P (A – B ) = ,所以P (A )– P(AB ) = , P(AB ) = P (A )– , 又因为P (A ) = ,所以P(AB ) =– =,6.0)(1)(=-=AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少 解:显然总取法有410C n=种,以下求至少有两只配成一双的取法k :法一:分两种情况考虑:15C k=24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k ⋅⋅=+25C其中:!2161815C C C ⋅⋅为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k-=+25C其中:)(142815C C C -为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k=-25C法五:考虑对立事件:410C k=-45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k ⋅⋅⋅-=其中:!4141618110C C C C ⋅⋅⋅为没有一双配对的方法数所求概率为.2113410==C k p6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025==C C p ,法二:1213102513==A A C p (2) 法二:20131024==C C p ,法二:2013102413==A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341==A M P , 1694)(324232=⨯=A C M P , 1614)(3143==C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则3.0)(25232==C C M P ,6.0)(2512131==C C C M P ,1.0)(25221==C C M P 9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则φ==2121M M M M M 且.所以.2813C C C C )()()()(282328252121=+=+==M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间 = {(x ,y ):0 x ,y 1} 事件A =“两数之和小于6/5”= {(x ,y ) : x + y 6/5} 因此2517154211)(2=⎪⎭⎫ ⎝⎛⨯-=Ω=的面积的面积A A P . 图11.随机地向半圆220x ax y -<<(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标,表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间 ={(x ,y ):220,20x ax y a x -<<<<}事件A =“原点和该点的连线与x 轴的夹角小于4π” ={(x ,y ):40,20,202πθ<<-<<<<x ax y a x }因此211214121)(222+=+=Ω=πππa aa A A P 的面积的面积.12.已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P . 解:,1213141)()()(=⨯==A B P A P AB P ,6121121)|()()(=÷==B A P AB P B P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。

概率论与数理统计答案 第四章习题

概率论与数理统计答案 第四章习题

(x2
3000x)dx
1 1500 2
x3 3
1500 0
1 1500 2
(
x3 3
1500
x
2
)
3000 1500
500 4(500) (1000) 1500
X -2 0 2
6.设随机变量X的分布律为 pk 0.4 0.3 0.3 求E(X),E(X2),E(3X2+5).
3

E( X ) xk pk (2) 0.4 0 0.3 2 0.3 0.2
0),
2t ,
(a 1) a(a),
dx dt
2t
(1)
1,
(1
2)
.
E(X) 02tet
dt
2t
2 0t1 2etdt
2(3 2)
2 1 (1 2)
2
2
E(
X
2
)
0
3
(2t )3
2
2
et
2t
dt
2
2
0
te t
dt
2
2(2)
2
2
20. 设长方形的高(以m计)X~U(0,2),己知长方形的周长(以m计)为 20,求长方形面积A的数学期望和方差.
k 1
3
E( X 2 ) xk2 pk (2)2 0.4 02 0.3 22 0.3 2.8
k 1
3
E(3X2 5) (3xk2 5)pk [3(2)2 5]0.4[302 5]0.3[322 5]0.3 13.4
k1
或 E(3X2+5)= 3E(X2) + 5 = 32.8 + 5 =13.4

概率论与数理统计(I)第四章答案

概率论与数理统计(I)第四章答案

第四章 大数定律及中心极限定理导 学——极限论在概率研究中的应用本章是承前启后的一章:明晰了“频率与概率的关系”,这是一个遗留问题。

并将《概率论》部分划上了一个句号,这是承前;说它启后,有定理设定:⋯⋯,21,,,n X X X 独立同分布,这一设定在《数理统计》部分一直沿用了下去。

全章由四节组成,§1节特征函数,§2节大数定律,讲了三个定理, §3节随机变量序列的两种收敛性,§4节中心极限定理。

三个定理。

“大数”及“极限”均要求+∞→n ,在实际问题中,n 充分大即可。

§2节主要研究对象为:算术平均值()n X X nX +⋯+=11;§4节的主要研究对象为: nni i X X X +⋯+=∑=11,比n X 1少了。

§2节的学习,不妨先从复习入手。

第二、三章已熟悉了()()⋅⋅D E 及,先推算出21)(,)(σμnX D X E =⋯==⋯=这是核心推导之一,后面学《数理统计》会反复使用,再由契比雪夫不等式及夹逼原理,可推出定理一,其中NX D 2)(σ=中的n1很宝贵。

定理二是由定理一推得的,关键点为:n A X X X n +⋯++=21及X X n n n ni i A ==∑=11,于是可用定理一了。

推导本身是一件很愉快的事。

§2节的三个定理可在比对中学习。

定理一(契)不要求⋯⋯,21,,,n X X X 一定为同分布,(贝)是由定理一(契)的特例。

定理二(马)不要求⋯⋯,21,,,n X X X 独立或同分布。

定理三(辛)不要求)(X D 一定存在,“契”“马”与“辛”的结论均为:μ−→−PX ,即算术平均值依概率收敛于数学期望。

“贝”的结论为:p nn PA −→−,即频率依概率收敛于概率。

这个结论很精致,十分简单了。

翻开§4节,一堆一堆的符号映入眼中,让人头大。

其实,若标准化方法娴熟,这一节并不难。

概率论与数理统计课后答案第4章

概率论与数理统计课后答案第4章

概率论与数理统计课后答案第第4章大数定律与中心极限定理4.1设D(x)为退化分布:讨论下列分布函数列的极限是否仍是分布函数?1 1 卄亠(1){D(x n)}; (2){D(x )};(3){D(x 0},其中n =1,2;n n解:(1) (2)不是;(3)是。

4.2设分布函数F n(x)如下定义:‘0x 兰-nl /、x + nF n (x)=」---- 一n c x 兰n2n1 x > n问F(x) =lim F n(x)是分布函数吗?n_)pC解:不是。

4.3设分布函数列{ F n(x)}弱收敛于分布函数F(x),且F(x)为连续函数,则{F n(x)}在(」:,::)上一致收敛于F(x)。

证:对任意的;.0,取M充分大,使有1 —F(x) ::;, —x _ M; F(x) ::;,—x^ -M对上述取定的M,因为F(x)在[-M,M]上一致连续,故可取它的k分点:捲- -M :: X2 :…X k4 ::X k = M ,使有F(X j .J - F(xJ ::;,1 一i ::k ,再令x° - - ::, X k 1 =::,则有F(X i J —FW) :::;,0 G ::k 1(1)这时存在N,使得当n • N时有| F n(X i) —F(X i)|::;,0 叮牛 1(2)成立,对任意的X •(-::,::),必存在某个i(0 _i 一k),使得x・(X i,X i 1),由(2) 知当n •N时有F n (X)— F n (X i i ) ::: F(X j .J ;F n (X)_ F n (X i ) . F(X i )-;(4) 由( 1), (3), (4)可得F n (x) -F(x)::: F(X i 1)-F(x) , F(X i i )-F(X i ); :::2;,F n (x) - F (x) F (X i ) - F (x) - ; _ F (X i ) - F (X i .1)- ; -2 ;,即有F n (x )-F (x ) 名成立,结论得证4.5设随机变量序列「鳥同时依概率收敛于随机变量 •与,证明这时必有P (二)二1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题 四1.一个袋子中装有四个球,它们上面分别标有数字1,2,2,3,今从袋中任取一球后不放回,再从袋中任取一球,以,X Y 分别表示第一次,第二次取出的球上的标号,求(,)X Y 的分布列.解 (,)X Y 的分布列为其中 (1,1)(1)(1|1)0P X Y P X P Y X =======(1,2)(1)(2|1)P XY P X P Y X ======121436=⨯= 余者类推。

2.将一枚硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值,试写出(,)X Y 的分布列及边缘分布列。

解 一枚硬币连掷三次相当于三重贝努里试验,故1~(3,).2X B331()(),0,1,2,32k P X k C k ===,于是(,)X Y 的分布列和边缘分布为其中 (0,1)(0)(1|0)0P X Y P X P Y X =======,13313(1,1)(1)(1|1)()128P X Y P X P Y X C =======⨯=,余者类推。

3.设(,)X Y 的概率密度为1(6),02,24,(,)80,.x y x y f x y ⎧--<<<<⎪=⎨⎪⎩其它又(1){(,)|1,3}D x y x y =<<;(2){(,)|3}D x y x y =+<。

求{(,)}P X Y D ∈解 (1)13021{(,)}(6)8P x y D x y dxdxy ∈=--⎰⎰1194368228-⎡⎤--=⎢⎥⎣⎦; 13021{(,)}(6)8x P X Y D x y dxdy -∈=--⎰⎰11200113(1)[(3)4]82x x dx x dx ⎧⎫-----⎨⎬⎩⎭⎰⎰524.4.设(,)X Y 的概率密度为222(,(,)0,.C R x y R f x y ⎧-+≤⎪=⎨⎪⎩其他求(1)系数C ;(2)(,)X Y 落在圆222()x y r r R +≤<内的概率.解 (1)22223201(R x y R CR dxdy C R C r drd ππθ+≤==-⎰⎰⎰⎰333233R R C R C πππ⎡⎤=-=⎢⎥⎣⎦,∴ 33C Rπ=. (2)设222{(,)|}Dx y x y r =+≤,所求概率为22233{(,)}(x y r P X Y D R dxdy R π+≤∈=-⎰⎰322323232133r r r Rr R R R πππ⎡⎤⎡⎤=-=-⎢⎥⎢⎥⎣⎦⎣⎦. 5.已知随机变量X 和Y 的联合概率密度为4,01,01(,)0,.xy x y f x y ≤≤≤≤⎧=⎨⎩其它 求X 和Y 的联合分布函数.解1设(,)X Y 的分布函数为(,)F x y ,则(,)(,)x y F x y f u v dudv -∞+∞=⎰⎰001001000,00,4,01,01,4,01,1,4,1,01,1,1, 1.x y x y x y uvdudv x y uydudy x y xvdxdv x y x y ⎧<<⎪⎪≤≤≤≤⎪⎪⎪=≤≤>⎨⎪⎪>≤≤⎪⎪>>⎪⎩⎰⎰⎰⎰⎰⎰或 22220,00,,01,01,,01,1,,1,01,1,1, 1.x y x y x y x x y y x y x y ⎧<<⎪≤≤≤≤⎪⎪=≤≤>⎨⎪>≤≤⎪⎪>>⎩或 解2 由联合密度可见,,X Y独立,边缘密度分别为2,01,()0,;X x x f x ≤≤⎧=⎨⎩其他 2,01,()0,.Y y y f y ≤≤⎧=⎨⎩其它 边缘分布函数分别为(),()X Y F x F y ,则20,0,()(),01,1, 1.x X X x F x f u du x x x -∞<⎧⎪==≤≤⎨⎪>⎩⎰20,0,()(),01,1, 1.y YX y F y f v dv y y y -∞<⎧⎪==≤≤⎨⎪>⎩⎰设(,)X Y 的分布函数为(,)F x y ,则22220,00,,01,01(,)()(),01,1,,1,01,1,1, 1.X Y x y x y x y F x y F x F y x x y y x y x y ⎧<<⎪≤≤≤≤⎪⎪=⋅=≤≤>⎨⎪>≤≤⎪⎪>>⎩或6.设二维随机变量(,)X Y 在区域:01D x <<,||y x <内服从均匀分布,求边缘概率密度。

解 (,)X Y 的概率密度为 1,(,),(,)0,.x y D f x y ∈⎧⎨⎩其他 关于X 和Y 的密度为0,01()(,),01,x X xx x f x f x y dy dy x +∞-∞-⎧≤≥⎪==⎨<<⎪⎩⎰⎰或 2,01,0,.x x <<⎧=⎨⎩其他110,1,,10,()(,),01,0, 1.yY y y dx y f y f x y dx dx y y +∞--∞≤-⎧⎪⎪-<≤⎪==⎨⎪<<⎪⎪≥⎩⎰⎰⎰1,10,1,01,0,.y y y y +-<≤⎧⎪=-<<⎨⎪⎩其他 1||,||1,0,.y y -<⎧=⎨⎩其他7.设(,)X Y 的概率密度为,0,(,)0,.y e x y f x y -⎧<<⎪=⎨⎪⎩其他求边缘密度和概率(1)P X Y +≤解0,0,0,0,()(,),0.,0;X x y xx x f x f x y dy e x e dy x +∞+∞---∞≤⎧≤⎧⎪===⎨⎨>>⎩⎪⎩⎰⎰00,0,0,0,()(,),0.,0;y Y yy y y f y f x y dx ye y e dx y +∞---∞⎧≤⎧≤⎪⎪===⎨⎨>>⎪⎪⎩⎩⎰⎰111122001(1)(,)()x y x x x x y P X Y f x y dxdy e dy dx e e e dx ----+≤⎛⎫+≤===- ⎪⎝⎭⎰⎰⎰⎰⎰ 11212ee --=-+.8.一电子仪器由两个部件组成,以X 和Y 分别表示两个部件的寿命(单位:千小时)已知,X Y的联合分布函数为:0.50.50.5()1,0,0(,)0,.x y x y e e e x y F x y ---+⎧--+≥≥⎪=⎨⎪⎩其他 (1)问,X Y 是否独立?为什么?(2)求两个部件的寿命都超过100小时的概率. 解 (1)先求边缘分布函数:0.51,0,()lim (,)0,0.x X y e x F x F x y x -→+∞⎧-≥==⎨<⎩0.51,0,()lim (,)0,0.y Y x e y F y F x y y -→+∞⎧-≥==⎨<⎩因为(,)()()X Y F x y F x F y =⋅,所以,X Y 独立.(2)(0.1,0.1)(0.1)(0.1)[1(0.1)][1(0.1)]P X Y P X P Y P X P Y ≥≥=≥≥=-≤-≤0.050.050.1ee e ---=⋅=. 9.设(,)X Y 的概率密度为 (),0,0,(,)0,.x y ex Y f x y -+⎧≥≥⎪=⎨⎪⎩其他间,X Y是否独立?解 边缘密度为00,0,0,0,()(,),0.,0;X x x y x x f x f x y dy e x e e dy x +∞+∞----∞<⎧<⎧⎪===⎨⎨≥>⎩⎪⎩⎰⎰ 0,0,(),0.Y y y f y e y -<⎧=⎨>⎩因为 (,)()()X Y f x y f x f y =⋅,所以,X Y 独立.10.设(,)X Y 的概率密度为8,01,(,)0,.xy x y f x y ≤<<⎧=⎨⎩其他 问,X Y 是否独立.解 边缘密度210,01,4(1),01,()(,)0,8,0 1.X x x x x x x f x f x y dy xydy x +∞-∞⎧<>⎧-≤≤⎪⎪===⎨⎨≤≤⎪⎩⎪⎩⎰⎰或其他;304,01,8,01,()(,)0,0,y Y y y xydx y f y f x y dx +∞-∞⎧⎧≤≤≤≤⎪⎪===⎨⎨⎪⎩⎪⎩⎰⎰其他;其他;因为(,)()()X Y f x y f x f y ≠⋅,所以,X Y不独立。

11.设(,)X Y 的概率密度为1,||1,||1,(,)40,.xyx Y f x y +⎧<<⎪=⎨⎪⎩其他试证明X 与Y 不独立,但2X 与2Y 是相互独立的。

证 先求,X Y的联合分布函数(,)F x y111111110,11,1,||1,||1,41(,),||1,1,41,1,||1,41,1,1;x yx y x y uv dudv x y uvF x y dudv x y uvdudv x y x y ------⎧≤-≤-⎪+⎪<<⎪⎪+⎪=<>⎨⎪+⎪><⎪⎪≥≥⎪⎩⎰⎰⎰⎰⎰⎰或220,1111(1)(1)(1)(1),||1,4161(1),1,||121(1),||1,1,21,1, 1.x y x y x y x y x y x x y x y ⎧≤-≤-⎪⎪+++++<⎪⎪⎪=+>≤⎨⎪⎪+≤>⎪⎪>>⎪⎩或关于X 的边缘分布函数为0,1,1()lim (,)(1),11,21,1.X y x F x F x y x x x →+∞⎧<-⎪⎪==+-≤≤⎨⎪⎪>⎩关于Y 的边缘分布函数为0,1,1()(1),11,21, 1.Y y F y y y y <-⎧⎪⎪=+-≤≤⎨⎪>⎪⎩因为(,)()()X Y F X Y F x F y ≠⋅,所以,X Y不独立.再证2X 与2Y 独立:设22,X Y 的联合分布函数为1(,)F z t ,则0,0221(,)(,){z t F z t P X z Y t P x Y >>=≤≤====≤<≤((F F F F =--+0,00,01,01,,1,01,,01,1,1,1, 1.z t z t z t z t z t ⎧≤≤<<<<=≥<<<<≥⎪≥≥⎪⎩或关于22()X Y 的边缘分布函数分别为210,0,()lim (,)01,1, 1.X t z F z F z t z z →+∞⎧≤==<<≥⎪⎩20,0,()01,1, 1.Yt F t t t ⎧≤=<<≥⎪⎩因为221(,)()()X Y F z t F z F t =⋅,所以2X 与2Y 独立.证2 利用随机向量的变换(参见王梓坤《概率基础及其应用》83页) 设 22,Z X T Y ==. 函数2z x =的反函数为212x x t y ===的反函数为12y y ==111111,,x x z tJ y y z t∂∂∂∂===∂∂∂∂,22111221,J J J J ===;于是22(,)X Y 的概率密度函数为22111(,)(,)||i j ij i j f z t f x y J ===∑∑1[111101,01,40,.z t ⎧<<<<⎪=⎨⎪⎩其他01,01,0,z t <<<<=⎩其它.关于2X 的边缘密度为2101,()(,)0,.X z f z f z t dt +∞-∞<<==⎩⎰其它 关于2Y的边缘密度为201,()0,.Y t f t <<=⎩其他 因为221(,)()()X Y f z t f z f t =⋅,所以22,X Y独立.12.设随机变量X 与Y 相互独立,下表列出了二维随机变量(,)X Y 的联合分布律及关于X解 设(,)1,2,1,2,3.i j ijP Xx Y y p i j =====由联合分布和边缘分布的关系知11124p =由独立性 11111311()68p p p =⨯++,即 131114248p =++,故13112p =,11111248124p ⋅=++=,234p ⋅=222213()84p p =+⨯, 所以 2238p =,212p ⋅=31111623p ⋅=--= 231113124p =-= 所以(,)X Y 的分布为13.已知随机变量1X 和2X 的概率分布为 1101~111424X -⎡⎤⎢⎥⎢⎥⎣⎦, 21~1122X ⎡⎤⎢⎥⎢⎥⎣⎦而且 12(0)1P X X ==(1)求1X 和2X 的联合分布; (2)问1X 和2X 是否独立?为什么?解 (1)12(0)1P X X ==知1212(1,1)(1,1)0P X X P X X =-=====,再由联合分布和边缘分布的关系知12(,)X X 的分布为(2)因1212111(1,0)(1)(0)442P X X P X P X =-==≠⨯==-=,所以,X Y不独立.14.设随机变量,X Y相互独立,且都服从(,)b b -上的均匀分布,求方程20t tX Y ++=有实根的概率.解 设A =‘方程有实根’,则 A 发生240X Y ⇔-≥即 224()(4)(,)x yP A P X Y f x y dxdy ≥=≥=⎰⎰2242211()444x bb bbb x dxdy b dx b b ---==+⎰⎰⎰ 32211[2]46242b b b b =+=+, 4b ≤.2221(4)1()4x P XY b dx b -≥=--⎰3322211[4(88)]412b b b -+15.已知随机变量X 和Y 的联合分布为(,)(0,0)(0,1)(1,0)(1,1)(2,0)(2,1)(,)0.100.150.250.200.150.15x y P X x Y y ==试求:(1)X 的概率分布;(2)X Y +的概率分布 解 (1)X 的分布为0120.250.450.30X P(2)X Y +的分布为01230.100.40.350.15X Y P +16.设X与Y为独立同分布的离散型随机变量,其概率分布列为()P X n =1()()2n P Y n ===,1,2,n =,求X Y +的分布列.解 设Z X Y =+,Z 的分布为11()()()()k i P Zk P X Y k P X i P Y k i -===+====-∑1111()()22k i k i i --==∑1(1)()2,3,2k k k =-=17.设,X Y是相互独立的随机变量,它们都服从参数为,n p 的二项分布,证明Z X Y =+服从参数为2,n p 的二项分布.证 0()()()()ki P Zk P X Y k P X i P Y k i ===+====-∑0(1)(1)ki i n i k i k in k in n i Cp p C p p ----+==-⋅-∑2220(1)(1)kkn kik i k k n kn n n i p p C CC p p ---==-=-∑ 0,1,,2k n = 故ZX Y =+服从参数为2,n p 的二项分布.注:此处用到一个组合公式:kik i k m n m n i CC C -+==∑此公式的正确性可直观地说明如下:从m n +个不同的元素中取k 个共有km n C +种不同的取法。

相关文档
最新文档