《代数式的值》教案

合集下载

《代数式的值》教案设计

《代数式的值》教案设计

《代数式的值》教案设计第一章:代数式的基础知识1.1 代数式的概念介绍代数式的定义:用字母和数字的组合表示的数学表达式。

强调代数式中的字母代表未知数或变量。

1.2 代数式的ponents介绍代数式中的常数项、变量项、系数等概念。

举例说明代数式中的不同组成部分。

第二章:代数式的运算2.1 代数式的加减法介绍代数式加减法的规则:同类项相加减,系数相加减,变量不变。

提供练习题,让学生练习代数式的加减法。

2.2 代数式的乘除法介绍代数式乘除法的规则:同类项相乘除,系数相乘除,变量不变。

提供练习题,让学生练习代数式的乘除法。

第三章:代数式的值3.1 代数式的求值介绍代数式的求值方法:将给定的数值代入代数式中的变量,计算出结果。

提供练习题,让学生练习代数式的求值。

3.2 代数式的化简介绍代数式的化简方法:通过运算将代数式简化为更简单的形式。

提供练习题,让学生练习代数式的化简。

第四章:代数式的应用4.1 线性方程的解介绍如何利用代数式求解线性方程:将方程两边的代数式进行运算,找到未知数的值。

提供练习题,让学生练习解线性方程。

4.2 实际问题与代数式的应用提供实际问题,让学生利用代数式解决问题,培养学生的实际应用能力。

第五章:代数式的综合练习5.1 综合练习题提供综合练习题,涵盖代数式的基础知识、运算、求值、化简和应用等方面。

让学生通过练习题巩固所学知识,提高解题能力。

第六章:代数式的多项式6.1 多项式的定义与性质介绍多项式的概念:由多个单项式通过加减运算组成。

强调多项式的每一项称为单项式,且多项式中的常数项、变量项、系数等概念。

6.2 多项式的运算介绍多项式加减法的规则:同类项相加减,系数相加减,变量不变。

介绍多项式乘法的规则:使用分配律进行乘法运算。

提供练习题,让学生练习多项式的加减乘法。

第七章:代数式的指数与对数7.1 指数的基本概念介绍指数的定义:表示乘方的运算。

强调指数运算的规则:同底数幂相乘,指数相加;同底数幂相除,指数相减。

3.2 代数式的值 教案 数学人教版七年级上册(2024年)新版教材

3.2 代数式的值 教案  数学人教版七年级上册(2024年)新版教材

3.2代数式的值【教学目标】1.了解代数式的值的定义,能熟练地求代数式的值,理解代数式求值可以为一个转换过程或一个算法.2.在代数式求值过程中,初步感受函数的对应思想.3.会用代数式解决简单的实际问题.【重点难点】重点:会求代数式的值并解释代数式值的实际意义.难点:应用求代数式的值解决实际问题.【教学过程】一、创设情境为了开展体育活动,学校要购置一批排球,每班配备5个,学校另外留20个.(1)学校总共需要购置个排球.(2)如果学校有15个班级,那么需要购置的排球数是;(3)如果学校有20个班级,那么需要购置的排球数是.你是如何计算的?二、探究归纳探究点1:求代数式的值问题1:上述代数式的值是由谁的取值确定的?总结:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫作代数式的值.问题2:根据下列x,y的值,你能求出代数式2x+3y的值吗?.(1)x=15,y=12;(2)x=1,y=-12总结:1.代入时,将相应的字母换成已给定的数值,其他的运算符号、原来的数及运算顺序都不能改变.2.当字母取不同数值时,代数式的值一般也不同.3.如果字母的取值是负数或分数,乘方时应加括号.【典例探究】例1:教材P79【例2】【针对性训练】教材P80练习总结:(1)求代数式的值的步骤:第一步:代入,用具体数值代替代数式里的字母;第二步:计算,按照代数式中指明的运算,计算出结果.(2)注意事项:①一个代数式中的同一个字母,只能用同一个数值去代替;②如果代数式里省略乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号;③代入时,不能改变原式中的运算符号及数字;④运算时,要注意运算顺序,即先算平方,再算乘除,最后算加减,有括号的要先算括号里面的.【拓展探究】问题3:代数式x2+x+3的值为7,则代数式2x2+2x-3的值是多少?你是如何计算的?探究点2:应用代数式的值解决实际问题问题4:填空:(1)路程=×;(2)工作量=×;(3)总价=×;(4)长为a,宽为b的长方形面积=;(5)边长为a的正方形面积=;(6)底为a,高为h的三角形面积=;(7)上底为a,下底为b,高为h的梯形面积=;(8)半径为r的圆的面积=;(9)长为a,宽为b,高为c的长方体的体积=;(10)棱长为a的立方体的体积=.【典例探究】例2:教材P80例3分析:跑道的周长是两段直道和两段弯道的长度的和.根据圆的周长求出弯道的长度.教师示范解答步骤.例3:教材P81例4分析:三角尺的面积=三角形的面积-圆的面积.总结:涉及不规则图形面积问题时,可以通过割补法把不规则图形转化为规则图形的和或者差来进行求解.【针对性训练】教材P81练习三、检测反馈(一)基础训练:1.当a=b=3时,x,y互为倒数,1(a+b)-3xy的值是()2A.0B.3C.-3D.62.当x=1,y=6时,代数式x2+y2的值是.3.当x=1,y=6时,求下列代数式的值:(1)x2+y2;(2)x2-2xy+y2.4.小亮从家出发乘汽车行驶了a千米用了1小时,又步行了0.5千米,又用了0.1小时到达某地.(1)用代数式表示小亮从家到某地的平均速度.(2)当a=80时,求此平均速度.5.如图,一个直角三角形ABC的直角边BC=a,AC=b,三角尺的厚度为h,三角形内部圆的半径为r.(1)用式子表示阴影部分体积V(结果保留π);(2)当a=10,b=6,r=2,h=0.2时,计算V的值.(π取3.14.结果精确到0.1)(二)拓展训练1.已知|A|=5,|B|=3,且AB<0,则A-B的值是()A.2或8B.1或-8C.±2D.±82.当x=1时,ax4+bx2+2=-3;当x=-1时,ax4+bx2-2=()A.3B.-3C.-5D.-73.我们定义一个新运算“★”如下:x≤y时,x★y=x2;x>y时,x★y=y.则当z=-3时,代数式(-2★z)-(-4★z)的值为.4.某商城销售某品牌运动鞋和袜子,运动鞋每双定价为300元,袜子每双定价为40元,十一期间商城决定开展促销活动,活动期间向顾客提供两种优惠方案:方案一:买一双运动鞋送一双袜子;方案二:运动鞋和袜子都按定价的九折付款;现某顾客要到该商城购买10双运动鞋,x(x>10)双袜子.(1)若该客户按照方案一购买,需付款元(用含x的代数式表示);若该客户按照方案二购买,需付款元(用含x的代数式表示);(2)若x=30,①通过计算说明按照方案一、方案二购买,哪种方案较为合算?②请你设计一个最优惠的购买方案,使得该客户花费最少,并写出你的购买方案和所需的费用.四、本课小结会求代数式的值,对于一个代数式,它所含的字母取不同的值时,所得代数式的值一般也不同,所以在求代数式的值时,要注意解题步骤:(1)指出字母的取值;(2)抄写代数式;(3)代入;(4)计算.五、布置作业P82T3,5,7六、板书设计七、教学反思1.通过导入“代数式的值”概念时,情境导入,达到了激发学生兴趣的成效,让学生感受到了数学的生活化,营造了轻松的学习气氛.进一步理解代数式和代数式值的概念,为本节应用代数式的值解决实际问题作铺垫.在教学中注意引导学生体验字母取值和代数式值的对应思想.2.本节课一开始就直奔主题,提出如何求代数式的值,并要求学生根据两个不同类型的方法(直接代入法与整体代入法)求值,并求相同字母下代数式的值.通过计算,再次巩固了代数式的求值,突出重点.让学生经历探究、讨论、合作、交流的进程,明确符号所代表的数量关系,发展符号意识,熟练掌握求代数式值的方法,升华学生对概念的理解,并锻炼学生的计算能力.通过对实际问题的解决,学生熟悉到数学来源于生活,应用于生活,在问题解决中运用代数式求值的知识,通过实际背景帮学生明白代数式值的实际意义,调动学生的实践意愿.。

《代数式的值》教案设计

《代数式的值》教案设计

《代数式的值》教案设计第一章:代数式的基础知识1.1 代数式的定义介绍代数式的概念,理解代数式是由数字、变量以及运算符号组成的表达式。

举例说明代数式的不同形式,如整式、分式等。

1.2 代数式的变量解释变量的概念,变量是代表未知数的符号。

介绍变量的命名规则,如何使用字母表示变量。

1.3 代数式的运算复习基本的算术运算规则,包括加法、减法、乘法、除法。

讲解代数式中的运算顺序,掌握整式的乘法和除法法则。

第二章:代数式的值2.1 代数式的求值解释代数式的求值是指将变量替换为具体的数值后计算表达式的结果。

举例说明如何求解代数式的值,如将变量的值代入表达式中进行计算。

2.2 代数式的化简介绍代数式的化简,即简化表达式的形式,减少冗余的项或因子。

讲解如何进行代数式的化简,包括合并同类项、分解因式等方法。

2.3 代数式的值的应用探讨代数式的值在实际问题中的应用,如解决方程和不等式问题。

举例说明如何将实际问题转化为代数式的求值或化简问题。

第三章:代数式的求值方法3.1 代数式的代入法介绍代入法求解代数式的值,即将变量的值直接代入表达式中进行计算。

举例说明代入法的具体步骤和应用。

3.2 代数式的替换法解释替换法求解代数式的值,即将代数式中的变量替换为其他表达式。

讲解如何使用替换法求解复杂的代数式问题。

3.3 代数式的图像法介绍使用图形方法求解代数式的值,通过绘制函数图像来观察变量的取值范围。

举例说明如何利用图像法求解代数式的值。

第四章:代数式的化简方法4.1 合并同类项讲解合并同类项的规则,即将具有相同字母和指数的项进行合并。

举例说明如何合并同类项,简化代数式的表达形式。

4.2 分解因式解释分解因式的概念,即将代数式写成乘积的形式,提取公因数或应用公式。

讲解如何使用分解因式的方法化简代数式,如提取公因数、应用完全平方公式等。

4.3 应用完全平方公式介绍完全平方公式的概念,即(a+b)^2 = a^2 + 2ab + b^2,(a-b)^2 = a^2 2ab + b^2。

初中数学教案七年级数学代数式的值教案

初中数学教案七年级数学代数式的值教案

一、教学目标:1.理解代数式的基本概念和性质。

2.掌握计算代数式的值的方法。

3.能够应用代数式的值解决实际问题。

二、教学重难点:1.理解代数式的基本概念和性质。

2.掌握计算代数式的值的方法。

三、教学准备:1.教师准备:教学课件、教学演示素材和相关实例。

2.学生准备:学生课本、笔记本和学习工具。

四、教学过程:Step 1:导入新课(10分钟)1.引入代数式的概念,通过实例提问帮助学生理解:“什么是代数式?”2.解释代数式的组成部分,包括字母、数字、运算符等。

3.引导学生思考与生活中实际问题结合,讨论代数式的应用场景。

Step 2:讲解代数式的值以及计算方法(20分钟)1.通过示意图和具体例子,展示代数式的不同取值。

2.讲解代数式的值的概念,即将代数式中的字母用具体数值代替后的结果。

3.分析代数式计算的基本步骤,包括替换字母、运算符计算等。

4.提供一些练习题,让学生通过实际计算加深理解。

Step 3:合作探究(20分钟)1.将学生分组,出示一些代数式的计算题目。

2.学生在小组内讨论,并通过合作探究的方式计算出答案。

3.每个小组选择一个代表上讲台解答问题,其他小组对其答案进行评价和讨论。

Step 4:拓展应用(20分钟)1.提供一些生活中常见的代数式应用题,如实际购物、运动比赛等。

2.引导学生根据问题提供的信息,构建相应的代数式。

3.学生根据代数式计算,得出问题答案,并进行相关讨论。

Step 5:总结反思(10分钟)1.教师总结本节课的重点和难点,帮助学生理解代数式的概念和计算方法。

2.学生回答教师提问,分享自己的学习体会和问题。

五、课后作业:1.完成课后练习册相关习题。

2.思考并写下自己对代数式概念和实际应用的理解。

六、教学反思:本节课通过引入代数式的概念和性质,帮助学生理解和掌握了代数式的计算方法。

通过合作探究和实际应用题的练习,激发到学生的学习兴趣,并巩固了所学的知识。

但在教学过程中,需要注意让学生通过互动讨论等形式积极参与,增加课堂氛围。

代数式的值 优秀教案

代数式的值 优秀教案

3.2代数式的值第1课时一、课题§3.2代数式的值二、教学目标1.使学生掌握代数式的值的概念,会求代数式的值;2.培养学生准确地运算能力,并适当地渗透对应的思想.三、教学重点和难点重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.难点:正确地求出代数式的值.四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)从学生原有的认识结构提出问题1.用代数式表示:(投影)(1)a与b的和的平方;(2) a,b两数的平方和;(3)a与b的和的50%.2.用语言叙述代数式2n+10的意义.3.对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打出投影)某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50.我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值.这就是本节课我们将要学习研究的内容.(二)师生共同研究代数式的值的意义1.用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值.2.结合上述例题,提出如下几个问题(1)求代数式2n+10的值,必须给出什么条件?(2)代数式的值是由什么值的确定而确定的?当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应.(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?下面教师结合例题来引导学生归纳,概括出上述问题的答案.(教师板书例题时,应注意格式规范化)例1 当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.解:当x=7,y=4,z=0时,x(2x-y+3z)=7×(2×7-4+3×0)=7×(14-4)=70.注意:如果代数式中省略乘号,代入后需添上乘号.解:(1)当a=4,b=12时,注意(1)如果字母取值是分数,作乘方运算时要加括号;(2)注意书写格式,“当……时”的字样不要丢;(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数.最后,请学生总结出求代数值的步骤:①代入数值②计算结果(三)课堂练习1.(1)当x=2时,求代数式x2-1的值;2.填表:(投影)(1)(a+b)2; (2)(a-b)2.(四)师生共同小结首先,请学生回答下面问题:1.本节课学习了哪些内容?2.求代数式的值应分哪几步?3.在“代入”这一步应注意什么?其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母,按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的. 七、练习设计4. 梯形上底m ,下底是上底的2倍,高比上底小1,用代数式表示其面积。

代数式的值教案

代数式的值教案

代数式的值教案代数式的值教案「篇一」【学习目标】1、了解代数式的值的意义,能准确地求出代数式的值;2、通过代入法求值培养学生良好的学习习惯和品质,提高运算能力与创新设计能力;3、通过字母取不同的值的变化来认识世界发展变化及全面的观点。

【学习重点】能准确地求出代数式的值。

【学习难点】能准确地求出代数式的值。

【学习过程】『问题情境、研讨』情境一:某公园依地势摆若干个由大小相同的正方形构成的花坛,并在各正方形花坛的顶点与各边的中点布放盆花以营造节日气氛。

(1)填写下表图形编号 (1) (2) (3) (4)盆花数(2)若要求第100个图案要用多少盆花,怎样去解答?情境二:(1)看图,如果小朋友的年龄为x岁,那么工人的年龄怎么表示?(2)当x=9时,工人过了40岁了吗?(3)想一想:当x=6时工人的年龄呢?结论:根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系,计算出的结果,就叫做这个代数式的值。

『例题讲评』 P70/例1、 P/71议一议『学生练习』 P71/练一练:1、2补充:(1)当x=1时,求代数式4 -x+x2的值。

(2)当a=2,b=-5时,求下列代数式的值:①(a+b)(a-b) ②a2-b2。

(3)当x+y=-2,xy=-4时,求代数式 - 的值。

3.3 代数式的值(1)随堂练习评价_______________1.当x=-1时,代数式|5x+2|和1-3x的值分别为,则M、N之间的关系为A.MNB.M2.当a=-2时,代数式-a2的值是A.4B.-2C.-4D.23.已知a-b=-2,则代数式3(a-b)2-b+a的值为A.10B.12C.-10D.-124.当a=2,b=-3,c=-4时,代数式b2-4ac的值为___________。

5.如果a+b=-3,ab=-4,代数式的值为__________。

6.已知:x=-1,y=2,则(x-y)2-x3+x2y2 = 。

初中初一数学教案代数式的值

初中初一数学教案代数式的值

初中初一数学教案代数式的值一、知识背景在代数式中,字母表示数,可以理解为是一种特殊的数字。

代数式中的字母称为未知数,代数式的值指的就是将未知数的值代入代数式,所得到的结果。

代数式是数学中非常重要的一种工具,它同样也是初中数学的重点部分。

能够理解代数式的概念,并掌握如何求代数式的值,是学好初中数学的一个必要条件。

二、教学目标1.能够掌握代数式的基本概念,理解代数式的组成和构成方式;2.能够理解代数式的值的概念,并能够根据题目要求求出代数式的值;3.能够应用所学的知识,解决实际问题。

三、教学内容1.代数式的定义和组成;2.代数式的值的概念;3.如何求代数式的值;4.实际应用。

四、教学过程1、引入新知识代数式一般由数字和字母按照一定的运算规则组成。

例如:3x+4,ax2+bx+c等等。

这些运算规则同我们平时学习的算术规则很相似。

2、讲解代数式的值代数式的值是指将代数式中的未知数换成具体的数后所得到的结果。

例如,x+3,当x=4时,其值为:x+3=4+3=7。

3、如何求代数式的值求代数式的值,实际上就是将代数式中的未知数用具体的数代替,进行计算。

例:已知代数式2x+5,当x=3时,求其值。

解:将x用3代替,得到$2\\times 3+5=11$,所以当x=3时,2x+5的值为11。

4、实际应用代数式的求值在实际应用中非常广泛。

例如,在经济学中,可以利用代数式求解成本、收益等问题,而在物理学和化学中,可以利用代数式求解力、电磁场等问题。

例:已知出售某种商品的利润百分比为20%,每个月销售量为240个,其销售收益为24x元。

请问,店主每个月的利润为多少元?解:首先,由题意可得利润百分比为20%,即$20\\div100=0.2$。

每销售一个商品的利润为:$20\\% \\times x$元,每个月销售240个,则利润为:$$240 \\times 0.2 \\times x = 48x$$每个月的利润为其销售收益减去成本,即:24x−48x=−24x 元。

《代数式的值》教学设计-优质教案

《代数式的值》教学设计-优质教案

代数式的值(1)教学目标: 1、会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法 2、会利用代数式求值推断代数式所反映的规律 3、能理解代数式值的实际意义 4、通过代数式求值的教学活动,渗透数学中的函数思想,培养学生解决实际问题能力。

教学重点:求代数式的值 教学难点:利用代数式求值推断代数式所反映的规律。

.教学过程: 一、创设情境: (一)1.求下图三角形的面积:2.继续求下图三角形的面积 3.用字母a 表示三角形的底,h 表示三角形的高,求当a =6,h = 3时,三角形的面积。

(二)用火柴棒搭小鱼 搭n 条小鱼,所需火柴棒的根数为:8+6(n-1) 用30代替n ,用100代替n. 引出代数式的值的定义。

二、探索新知及巩固练习 1.师生共同学习例1 当a =-2、b = -3时,求代数式2a 2-3ab +b 2的值。

教师写出例1的全部过程(主要规范学生做此类题目的格式) 解:当a = -2、b = -3时, 2a 2-3ab +b 2=2)2(-⨯2-3)3()2(-⨯-⨯+(-3)2=2⨯4-3⨯(-2)⨯(-3)+9 =8-18+9 =-1 2..学习例2(补充例题) 二次备课当x = 5、y =- 4(1) 练一练1.填表:(2)在下列计算程序中填写适当的数或转换步骤:P77练一练四、小结(本节内容实际在复习有理数混合运算的运算顺序)1.如果先给你计算程序,第一步把计算程序要表达的代数式表示出来。

第二步实质在做求代数式值的工作。

2.如果给你代数式让你设计计算程序,只要严格按照有理数混合运算的运算顺序再结合设计计算框图的规范要求来设计。

3.通过本节课的学习你收获了哪些?还有什么疑问?五、布置作业习题 3.3 2. 3. 4.六、课后反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《代数式的值》教案
【学习目标】
1、了解代数式的值的意义,能准确地求出代数式的值;
2、通过代入法求值培养学生良好的学习习惯和品质,提高运算能力与创新设计能力;
3、通过字母取不同的值的变化来认识世界发展变化及全面的观点.
【学习重点】能准确地求出代数式的值.
【学习难点】能准确地求出代数式的值.
【学习过程】
『问题情境、研讨』
情境一:某公园依地势摆若干个由大小相同的正方形构成的花坛,并在各正方形花坛的顶点与各边的中点布放盆花以营造节日气氛, (1)填写下表
图形编号(1)(2)(3)(4)
盆花数
(2)若要求第100个图案要用多少盆花,怎样去解答?
情境二:
(1)看图,如果小朋友的年龄为x岁,那么工人的年龄怎么表示?
(2)当x=9时,工人过了40岁了吗?
(3)想一想:当x=6时工人的年龄呢?
结论:根据问题的需要,用具体数值代替代数式中的字母,按
照代数式中的运算关系,计算出的结果,就叫做这个代数式的值.
『例题讲评』P70/例1、P/71议一议
『学生练习』P71/练一练:1、2
补充:(1)当x=1时,求代数式4-x+x2的值.
(2)当a=2,b=-5时,求下列代数式的值:①(a+b)(a-b)②a2-b2.
(3)当x+y=-2,xy=-4时,求代数式-的值.
3.3代数式的值(1)随堂练习
评价_______________
1.当x=-1时,代数式|5x+2|和1-3x的值分别为,则M、N之间的关系为()
A.MN
B.M
2.当a=-2时,代数式-a2的值是()
A.4
B.-2
C.-4
D.2
3.已知a-b=-2,则代数式3(a-b)2-b+a的值为()
A.10
B.12
C.-10
D.-12
4.当a=2,b=-3,c=-4时,代数式b2-4ac的值为___________.
5.如果a+b=-3,ab=-4,代数式的值为__________.
6.已知:x=-1,y=2,则(x-y)2-x3+x2y2=.
7.已知:a=,b=,则a2-2ab+b2=.
8.当m-n=5,mn=-2时,则代数式(n-m)2-4mn=.
9.已知:x2+xy=1,xy-y2=-4,则x2+2xy-y2=.
10.若m2+3n-1的值为5,则代数式2m2+6n+1的值为.
11.当a=-2,b=3时,求下列代数式的值:
⑴3(a-b)⑵3a-3b⑶()2⑷
⑸(a-b)2⑹a2-2ab+b2⑺(a+1)(b+1)⑻ab+a+b+1
12.已知x,y互为相反数,a,b互为倒数,t的绝对值为2,求代数式(x+y)xx+(-ab)xx+t2的值.
13.已知=2,求代数式的值.。

相关文档
最新文档