代数式的值知识点一代数式的相关概念

合集下载

5讲代数式及代数式求值

5讲代数式及代数式求值

代数式及代数式求值一、知识要点1、代数式的概念:单独一个字母,单独一个数,数或表示数的字母用运算符号连接而成的式子叫做代数式。

注意:等式、不等式都不是代数式,但它们的两边都由代数式组成;注意代数式的书写格式以及是否加括号。

2、代数式的书写要求:①、在含有字母的式子里出现的乘号,通常写作“·”或省略不写,如:a ×b 写成a·b 或ab ;②、字母和数字相乘,数字应写在字母左边,如“4x ”. 当字母前的数字为1或-1时,将“1”省略不写;③、带分数与字母相乘, 把带分数写成假分数;④、在式子中出现除法运算时,一般按分数写法来写; 若式子中有“+、-”运算,式子后面有单位,则式子要用括号括起来。

3、代数式的意义4、代数式求值的一般步骤:(1)代数式化简(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

5、单项式的概念:单独一个字母,单独一个数,数字与字母只进行了乘法(包含乘方)运算,的式子叫做单项式。

单项式的系数: 与字母相乘的数叫作单项式的系数。

特别注意:“系数”必须包括数字前面的符号,另外,当系数是“1”时,通常省略不写;系数是“-1”时,只写“-”就可以了。

单项式的次数:在一个单项式中,所有字母的指数的和,叫做这个单项式的次数。

6、多项式的概念:几个单项式的代数和叫做多项式。

其中的每个单项式叫多项式的项,不含字母的项叫做常数项。

一个多项式含有几个项就叫几项式。

多项式的次数:在多项式里,次数最高项的次数,就是多项式的次数。

如:多项式2x 5-5x 2y+3xy-1共4项,次数分别为5、3、2、0,故该多项式的次数是五次,称为“五次四项式”。

最高项,二次项,一次项,常数项,7、整式:单项式和多项式统称为整式二、典例解析例1 下列各式哪些是代数式?哪些不是代数式(1)a 2+1 (2)s=πr 2 (3)223b a - (4)a>b (5)2πr (6)0(7)a-2b(8)5>-3 例2 (1) 当3=-y x 时,求代数式2x-2y-3x+3y 的值。

代数式考点归纳

代数式考点归纳

代数式考点归纳考点一、整式的有关概念1、代数式:用运算符号把数或表示数的字母连接而成的式子叫做代数式。

(单独的一个数或一个字母)2、代数式的值:用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

求代数式的值:一般是先化简,后求值。

有时求不出其字母的值,需要利用技巧,“整体”代入。

3、单项式:只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中数字因数叫单项式的系数,系数不能用带分数表示。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

4、多项式:几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

5、同类项:所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

6、去括号法则:(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

考点二、式运算1、整式的加减法:(1)去括号;(2)合并同类项。

2、整式的乘法:幂的运算法则 ),(都是正整数n m a a a n m n m +=∙),(都是正整数)(n m a a mn n m =)()(都是正整数n b a ab n n n =)0,,(≠=÷-a n m a a a n m n m 都是正整数),0(1);0(10为正整数p a a a a a pp ≠=≠=-※单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

※单项式乘多项式法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

※多项式乘多项式法则:用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

初一上册数学代数式知识点

初一上册数学代数式知识点

初一上册数学代数式知识点一、代数式1. 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或者字母也是代数式。

2. 用具体的数值代替代数式中的字母,按照代数式中指明的运算计算得出的结果,叫做这个代数式的值。

二、代数式的书写1. 代数式中如果有乘号,应写在字母的前面;2. 代数式中如果有乘方,应写在外面的括号里;3. 代数式中如果是加减运算,添括号时,括号前面是加号,括号里面不变号,括号前面是减号,括号里面要变号;4. 代数式中如果是乘方运算,加括号时要注意顺序。

先写底数,再写指数。

三、代数式的值1. 用数值代替代数式中的字母,按照代数式中的运算关系计算出来的结果叫做代数式的值。

2. 求代数式的值一般有三种方法:直接代入数值求值;变形后代入求值;变形后整体代入求值。

四、代数式的计算1. 代数式的加减运算主要是合并同类项。

合并同类项时把系数相加,字母和字母的指数不变。

2. 代数式的乘法运算主要是乘法分配律的应用。

3. 代数式的除法运算主要是乘除同一数的倒数。

五、整式的加减运算1. 整式的加减运算主要是去括号和合并同类项。

去括号时要注意:括号前面是负号,去掉括号和负号,括号里的每一项都要变号。

合并同类项时要注意系数相加,字母和字母的指数不变。

2. 整式的加减运算要按照运算顺序先做符号运算,再做乘除运算,最后做加减运算。

具体的代数式初步知识如下所示:1. 代数式用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式。

注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。

2. 列代数式的几个注意事项(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写。

(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号。

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a(4)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(5)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .3. 几个重要的代数式(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2(2)若a、b、c是正整数,则两位整数是:10a+b;则三位整数是:100a+10b+c。

《代数式的值》 讲义

《代数式的值》 讲义

《代数式的值》讲义一、什么是代数式的值在数学的世界里,代数式就像是一个个神秘的符号组合,而代数式的值则是这些神秘组合在特定情况下所展现出的具体结果。

我们先来明确一下代数式的概念。

代数式是由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式。

比如 3x + 5 、 2a² 3b 等等。

那代数式的值又是什么呢?简单来说,代数式的值就是当用具体的数值代替代数式中的字母时,按照代数式中指定的运算计算出的结果。

例如,对于代数式 3x + 5 ,当 x = 2 时,将 x = 2 代入这个代数式,得到 3×2 + 5 = 11 ,这里的 11 就是当 x = 2 时,代数式 3x + 5的值。

二、为什么要研究代数式的值了解了代数式的值的基本概念,可能你会问,为什么我们要专门研究它呢?首先,代数式的值能帮助我们解决实际问题。

比如在购物时,我们可以通过代数式来表示商品的总价,然后根据不同的购买数量,求出代数式的值,从而知道需要支付多少钱。

其次,它是数学中进行推理和计算的重要工具。

通过研究代数式的值的变化规律,我们可以发现数学中的很多有趣现象和定理。

再者,代数式的值在函数的学习中也起着基础作用。

函数其实就是一种特殊的代数式,研究函数的值域、定义域等都离不开对代数式的值的理解。

三、如何求代数式的值求代数式的值,关键在于正确代入数值,并按照运算规则进行计算。

(一)直接代入法这是最常见也是最简单的方法。

就是将给定的数值直接代入代数式中相应的字母,然后进行计算。

例如,对于代数式 2x 1 ,当 x = 3 时,直接将 x = 3 代入,得到2×3 1 = 5 。

在代入时,要注意以下几点:1、代入的数值要准确无误。

2、要注意代数式中各项的运算符号,特别是负号。

3、如果代数式中字母的指数不为 1 ,要将数值乘方或相乘相应的次数。

(二)先化简再代入法有些代数式比较复杂,直接代入计算会比较繁琐。

代数式的值

代数式的值

代数式的值一、主要内容:1.代数式的值的概念:一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值。

注:1)字母的取值不能使代数式本身失去意义,如分母不能为零;2)不能使它所表示的实际问题失去意义,如求路程公式S=vt中,v,t不能取负数。

2.求代数式的值的方法:先代入后计算:注:1)代入时,只将相应的字换成相应的数,其它符号不变。

2)代数式中原来省略的乘号代入数值以后一定要还原。

3)对于已知一个比较复杂的代数式的值,求另一个代数式的常用的方法有整体代入法,代换法。

4)根据代数式所表示的运算顺序,按有关运算法则,计算出结果。

二、主要数学思想:代数式的值是由字母所取的值确定的,当代数式中的字母每取一个值时,代数式就表示一个确定的(数)值。

因此,求代数式的值是由一般(式)到特殊(数)的问题,通过求代数式的值,可进一步理解代数式的意义和作用。

三、例题讲解:例1 求下列代数式的值:(1) a2- +2 其中a=4, b=12,(2) 其中a= , b= .解:(1)当a=4, b=12时,a2- +2=42- +2=16-3+2=15(2)当a= ,b= 时,= = = 。

点评:(1)求代数式的值的解题步骤是:①指出代数式中的字母所取的值;②抄写原代数式;③把字母的值代入代数式中;④按规定的运算顺序进行计算。

(2)代数式的值是由代数式里字母所取的数的大小来确定的,代数式里的字母可取不同的值,但这些值必须使代数式和它所表示的实际数量有意义。

(1)题中的a不能取0,因为当a取0时,的分母为零,代数式无意义。

(2)题中a+b不能为0。

例2当a=-1,b=2,c=3时,求下列各代数式的值。

(1)(2)(a2+b2-c2)2(3)分析:求代数式在a=-1,b=2,c=3时的值,就是把代数式中的字a、b、c,分别用-1,2,3代替,按原来的运算顺序进行运算即可。

(1)(2)(a 2+b 2-c 2)2=[(-1)2+22-32]2=[-4]2=16(3)例3 已知a - =2,求代数(a - )2- +6+a 的值。

七年级代数式知识点及例题

七年级代数式知识点及例题

七年级代数式知识点及例题代数式在初中数学中占有重要地位,是进一步学习高中数学和其他科学学科的基础。

本文将为大家介绍七年级代数式的知识点,并通过例题让大家更好地掌握这些知识点。

一、代数式的概念代数式指用数字和字母以及运算符号组成的式子,例如:2x+3y或a²-b²等。

其中数字和字母都被称为代数项,符号+、-、×和÷被称为代数式的运算符号。

二、代数式的基本运算1. 合并同类项合并同类项是代数式基本原则之一。

同类项有相同的字母部分,其指数可以不同,例如:3x、5x和-2x就是同类项。

将同类项相加或相减得到的结果称为合并同类项。

例如:2x²+3x²=5x²,6xy-2xy=4xy。

2. 去括号一般情况下,可以使用分配律去掉括号,从而简化代数式。

例如:3(x+2)=3x+6。

3. 移项移项是指将代数式中的各个式子移到等式两边,通过加、减或乘、除等运算来求解。

三、代数式的解题方法1. 代入法代入法是求解代数式的一种简单方法。

将给定的数值代入代数式中,然后通过基本运算得出最终结果。

例如:已知x=2,求2x+3,将x=2代入得:2*2+3=7。

2. 整理法整理法是指通过基本运算对代数式进行化简,化简后的代数式更符合求解要求,从而实现对代数式求解的目的。

例如:已知3x+2=8,将式子化简为3x=6,然后得出x=2的解。

四、常见的七年级代数式例题1. 合并同类项:将3x+5x+2y-7y合并同类项,并化简为最简代数式。

解:同类项3x和5x的和是8x,同类项2y和-7y的和是-5y,因此合并同类项后得到8x-5y。

2. 去括号:化简3(x+2)+2(x-1),并将其化简为最简代数式。

解:根据分配律,展开式子3(x+2)+2(x-1)得到3x+6+2x-2。

将同类项3x和2x合并,同类项6和-2合并,得到最简代数式5x+4。

3. 求解未知数:已知3x+2=8,求x的值。

【基础知识】代数式的值

【基础知识】代数式的值

3.2代数式的值1.代数式的值(1)代数式的值的概念一般地,用数值代替代数式里的字母,按照代数式中的运算计算得出的结果,叫做代数式的值.①含有字母的代数式的值,由代数式中的字母所取值的确定而确定,也就是说,只要代数式里的字母给一个确定的值,代数式就有唯一确定的值与它对应;②代数式中字母取值的要求:a.字母的取值要确保代数式有意义,如在代数式1x-2中要保证分母x-2≠0,即x取不等于2的数;b.字母的取值除了使代数式本身有意义外,还要使它符合实际意义,如:学校要添置一批排球,每班配2个,学校留10个,那么学校需要添置多少个排球?设学校有n个班,则学校应添置排球(2n+10)个,在这个问题中n只能取自然数;③用数值代替代数式中的字母,不能改变代数式中的运算顺序,并且不能改变其表示的意义.原来省略的乘号应添上,当代入的值是分数或负数时,应视情况将所代入的数值用括号括起来.(2)求代数式的值①求代数式的值的一般步骤是:a.当……时;b.代入;c.计算.②求代数式的值出现的错误主要表现在数字代入时忽视分数或负数应添加括号,忽视分数线的括号作用,忽视用数字代入代数式中的字母后,原代数式中隐含的运算符号应复原.③去括号时出现的错误.去括号时出现的错误通常有两点:一是忽视括号前面的负号,去掉括号时括在括号里的各项没有改变符号;二是忽视括号前面的数字,去掉括号时,没有运用乘法的分配律.如化简2(a2-2ab-3b2)-3(2b2-ab -4a2)就容易出现上述两种错误,特别是第二种.警误区求代数式的值时应注意的问题求代数式的值时,要注意解题的要求:①注意书写格式,“当……时”的字样不要丢;②如果代数式中省略乘号,代入值后需填上乘号;③如果字母取值是分数,做乘方运算时要加括号.【例1】 (1)当a =12,b =-3时,求代数式a 2-2ab +b 2的值;(2)当x =12,y =-32时,求代数式x (4x -y 2)的值;(3)当a =-1,b =2,c =3时,求代数式3a +2b -c a -4b的值. 分析:本题只需按求代数式值的要求把各字母的值分别代入(即用字母的取值替换字母),再按原来的运算顺序进行运算即可.解:(1)当a =12,b =-3时,a 2-2ab +b 2=⎝ ⎛⎭⎪⎫122-2×12×(-3)+(-3)2 =14+3+9=1214.(2)当x =12,y =-32时,x (4x -y 2)=12×⎣⎢⎡⎦⎥⎤4×12-⎝ ⎛⎭⎪⎫-322 =12×⎝ ⎛⎭⎪⎫2-94=-18. (3)当a =-1,b =2,c =3时,3a +2b -c a -4b =3×(-1)+2×2-3(-1)-4×2=-2-9=29. 解技巧 求代数式的值时代入负数添括号 负数在代入代数式求值时,为了防止把负号漏掉,不论参与哪种运算都要添加括号.。

第三章--《代数式》知识点及测试题

第三章--《代数式》知识点及测试题

代数式知识点总结1、代数式的有关概念.(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果叫做代数式的值. 求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.(3)代数式的分类2、_________和________统称为整式。

①单项式:由 或 的相乘组成的代数式称为单项式。

单独一个数或一个字母也是单项式,如,5a 。

·单项式的系数:单式项中的 叫做单项式的系数。

·单项式的次数:单项式中 叫做单项式的次数。

·对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。

例: 232a b -的系数是________,次数是_______。

②多项式:几个 的和叫做多项式。

其中,每个单项式叫做多项式的 ,不含字母的项叫做 。

·多项式的次数:多项式里 的次数,叫做多项式的次数。

·多项式的幂:一个多项式含有几项,就叫几项式。

所以我们就根据多项式的项数和次数来命名一个多项式。

如:42321n n -+是一个四次三项式。

·对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析例:245643a a -++是_______次________项式。

3、同类项:____________________________________ ,叫做同类项.要会判断给出的项是否同类项,知道同类项可以合并.即x b a bxax )(+=+,其中的x可以代表单项式中的字母部分,代表其他式子。

判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同;②相同字母的次数也相同。

在掌握合并同类项时注意:①如果两个同类项的系数互为相反数,合并同类项后,结果为______;②不要漏掉不能合并的项;③只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数式的值知识点一 代数式的相关概念
1.代数式的定义
用加、减、乘、除及乘方等运算符号把数或表示数的字母连接而成的式子,叫做
代数式单个的数或字母也是代数式.如a+b,2ab a y x xy t s a ,2
1,0,,,1 等。

温馨提示:
(1)代数式中不含有“=”“>”“<”“≠”等符号
(2)代数式中,除了含有数、字母和运算符号外,还可含有括号如2(x+y)也是代数式
例1 在式子m+5、ab 、a+b<1、x 、-ah 、s=ab 中,代数式的数是 ( )
2代数式的读法
(1) 按运算顺序读:a+b 读作“a 加b ”,t
s 读作“s ”除以“t ”或“t 分之s ” (2)按运算结果读:a+b 读作“a 与b 的和”,
t s 读作s 与t 的商 温馨提示:
(1)一个代数式无论按哪种读法,都要体现运算顺序,而且不至于引起误解
(2)括号内的代数式应看成一个整体,按运算结果来读
3.书写要求
(1)数与字母相乘或字母与字母相乘时,“×”可以省略不写或用“·”代替;
(2)数与字母相乘时,数要写在字母前面,如4xa 应写作4a
(3)数字因数是1或-1时,“1”常省略不写,如1×mn 写成m,-1*mn 写成-mn;
(4)带分数与字母相乘时应把带分数化为假分数,如211×a 应写成a 2
3
(5)含有字母的除式应写成分数的形式,如b÷a应写成
a
b
(6)式子后面有单位且式子是和或差的形式时,应把式子用括号括起来,如(3+a)米,4+2(m-1)]千克等
例2 下列各式:3.、350×3,x-1,2a÷b,其中符合书写要求的有 ( )
个个个 D4个
4.列代数式
(1)列代数式的含义:列代数式就是把问题中与数量有关的词语用含有数、字母和运算符号的式子表示出来
(2)列代数式的步骤:首先要认真审题,弄清问题中表示的数量关系与运算顺序,然后将题中表示数量关系的词
语正确地转化为代数式
温馨提示
(1)正确理解问题中的数量关系是列代数式的
关键,特别是要弄清楚问题中“和”“差”“积”“商”及“大”“小”“多”“少”“倍”“几分之几”等词语的含义
(2)若所列代数式的结果是含有加、减的式子,且后面带有单位,要用括号把整个代数式括起来,再在后面写上单位
例3用代数式表示:
(1)a除b的商与5的差;
(2)比m小3的数的35%;
(3)m与n的和乘m与n的差
(4)a的一半与b的2倍的和
5.代数式表示的实际意义
(1)若将代数式中的数、字母及运算符号赋予具体的含义,则代数式就表示某些实际意义
(2)解释一个代数式的实际意义时,可联系生活,构造问题情境,使所叙述的数量关系与代数
式中的数量关系一致如代数式
3b
+
2a
的实际意义可解释为购买甲种糖果2千克,乙种糖果1
千克,已知甲种糖果每千克a 元,乙种糖果每千克b 元,则平均每千克糖果的价格是3
b +2a 元。

温馨提示:解释同一个代数式的实际意义时,可以有很多种方式,但对同一实际问题列代数式,只能列出唯一的代
数式
例4解释下列代数式的实际意义 (1)2a-3c;(2)b
a 53;(3)ab+1;(4)22
b a 知识点二 整式的相关概念
1单项式概念:单项式是数字与字母的积构成的代数式。

单独一个数或一个字母也是单项式,单项式中的数字因
数叫做单项式的系数,单项式中所有字母的指数的和是单项式的次数的次数。

重要提示:
(1)单项式不含加减运算,只含字母与字母或数与字母的乘积(包括乘方)运算
|(2)含有分母,且分母中含有字母的式子不是单项式
(2) 单项式的书写格式与用字母表示数的书写格式相同
(3) (4)单项式的系数包括它前面的符号,且只与数字因数有关,而单项式的次数只与字母的指数有关,且是单项
式中所有字母的指数的和
知识拓展:
(1)圆周率π是常数,单项式中出现π时,应将其看作系数;
(2)对于单独一个非零的数,规定它的次数是0;
(3)一个单项式的次数是几就叫做几次单项式,如
232xy 中,x,y 的指数之和为4,则23
2xy 是四次单项式
例5判断下列各式是不是单项式如果是,请指出它的系
数与次数
-13a ,,2
12xy πmn,32,,21,2,3223y x x b a b a c ab -+- 2.多项式
多项式:几个单项式的和叫做多项式。

多项式的项:多项式多项式里,每个单项式叫做多项式,不含字母的项叫做常数项。

多项式的次数:多项式里,次数最高项的次数,个多项式的次数。

重要提示
(1)多项式的每一项都包含它前面的符号
(2)多项式的组成元素是单项式,换句话说若一个式子中的某一单独的项不是单项式,那么这个式子就不是多项式
知识拓展:
(1) 求多项式的次数的一般方式:比较多项式中各项次数的大小,其中次数最高的项的次数即为多项式的次数.
(2) 多项式中项的命名:多项式中某一项的次数是几这一项就叫做几次项,不含字母的项叫做常数项
(3) 多项式有几项,就可叫做几项式;多项式的次数是几,就可叫做几次多项式;若二者兼备也可叫做几次几项式
知识点三 代数式的值
用数值代替代数式里的字母,按照代数式中的运算关
求代数式的值的步骤:
第一步:用数值代替代数式里的字母,简称为“代入”
第二步:按照代数式指明的运算关系计算出结果,简称为“计算”
温馨提示:
(1) 代人时,按已经给定的数值,将相应的字母换成数字
(2) 代数式中原来省略的乘号,代入数字后出现数字与数字相乘时,必须添上乘号
(3) 代数式的值是由所含字母的取值确定的,一般是随着代数式中字母的取值的变化面变化的,所以求代数式的值时,在代入前,要写出“当……时”,表示代数式的值是在这种情况下求得的
(4) “代人”的方法主要有单独代入、整体代入和按指定的程序代入三种
注意
(1)代数式与代数式的值是两个不同的概念,代数式表述的是问题的一般规律;代数式的值是这个规律下的特殊情形
(2)代数式中的字母取值必须使要求的代数式有意义。

如在代数式a
b a 中,a ≠0。

(3)当代数式表示实际问题的数量关系时,字母的取值还要保证具有实际意义,如若a 表示学生人数,则a 只能取非负整数。

例7当a=3,b=-1时,求下列代数式的值
(1)(a+b)(a-b);(2)2a +2ab+2
b .。

相关文档
最新文档