代数式 教案

合集下载

初中初一数学上册《代数式》教案、教学设计

初中初一数学上册《代数式》教案、教学设计
初中初一数学上册《代数式》教案、教学设计
一、教学目标
(一)知识与技能
1.理解代数式的概念,能够识别和书写基本的代数式,如:单项式、多项式、有理式等。
2.学会使用字母表示数,理解字母在代数式中的意义,并能进行简单的代数式的运算。
3.掌握合并同类项的法则,能够对代数式进行简化。
4.学会解代数方程,理解等式的性质,掌握移项、合并同类项等解方程的基本步骤。
2.教学内容:分享小组讨论成果,交流解题经验。
教学过程:各小组汇报讨论成果,展示解题过程。其他小组认真倾听,学习他人的解题方法。最后,教师对各组的表现进行点评,总结解题经验。
(四)课堂练习
1.教学内容:设计不同难度的练习题,巩固所学知识。
教学过程:根据学生的水平,设计基础、中等、提高三个层次的练习题。让学生独立完成,巩固代数式的书写、运算及解方程的方法。在此过程中,教师关注学生的解题情况,及时发现问题并进行个别指导。
2.教学内容:强调学习代数式的重要性,激发学生的学习兴趣。
教学过程:强调代数式在数学学习中的重要性,以及在生活实际中的应用。鼓励学生在课后继续探索代数式的奥秘,提高学生的数学素养。同时,关注学生的情感态度,激发学生的学习兴趣,为下一节课的学习打下基础。
五、作业布置
为了巩固本节课所学的代数式知识,培养学生的数学思维能力,特布置以下作业:
三、教学重难点和教学设想
(一)教学重难点
1.重点:代数式的概念、书写及简单运算;合并同类项;解代数方程。
2.难点:字母表示数的理解;代数式的简化;等式性质的运用。
(二)教学设想
1.对于重点内容的把握:
(1)通过生动的实例引入代数式的概念,如:用a表示苹果的价格,b表示购买的数量,让学生感受到代数式的实际意义。

代数式(公开课)教案

代数式(公开课)教案

代数式(公开课)教案一、教学目标知识与技能:1. 理解代数式的概念,掌握代数式的表示方法。

2. 掌握代数式的运算规则,能够进行简单的代数式运算。

3. 能够运用代数式解决实际问题。

过程与方法:1. 通过观察、分析、归纳等方法,引导学生理解代数式的概念和表示方法。

2. 利用group work,pr work 等合作学习方式,培养学生的团队协作能力和沟通能力。

3. 运用问题驱动的教学方法,引导学生主动探究代数式的运算规则,提高学生的自主学习能力。

情感态度价值观:1. 培养学生对数学学科的兴趣和好奇心,激发学生的学习积极性。

2. 培养学生勇于探究、严谨治学的科学态度。

3. 培养学生团队协作、沟通交流的能力,提高学生的综合素质。

二、教学内容1. 代数式的概念与表示方法数与字母的组合代数式的基本元素:数字、字母、运算符代数式的书写规则:字母的大小写、数字与字母的连接、运算符的优先级2. 代数式的运算规则加减乘除运算:同号相乘、异号相除幂的运算:乘方、幂的乘方、积的乘方合并同类项:同类项的定义、合并同类项的方法三、教学重点与难点重点:1. 代数式的概念与表示方法2. 代数式的运算规则难点:1. 代数式的运算规则2. 运用代数式解决实际问题四、教学方法1. 采用问题驱动的教学方法,引导学生主动探究代数式的概念、表示方法和运算规则。

2. 利用多媒体课件、实物模型等教学资源,直观展示代数式的运算过程,提高学生的理解能力。

3. 采用group work,pr work 等合作学习方式,培养学生的团队协作能力和沟通能力。

4. 设计具有梯度的练习题,让学生在实践中巩固所学知识,提高学生的应用能力。

五、教学过程1. 导入新课:通过生活中的实际问题,引导学生思考如何用数学语言来表示问题中的数量关系。

2. 讲解代数式的概念与表示方法:介绍代数式的定义、基本元素和书写规则。

3. 探究代数式的运算规则:引导学生通过观察、分析、归纳等方法,总结代数式的运算规则。

《代数式复习教案》

《代数式复习教案》

《代数式复习教案》一、教学目标:1. 知识与技能:(1)理解代数式的概念,掌握代数式的表示方法。

(2)掌握代数式的运算规则,能够进行简单的代数式运算。

(3)能够运用代数式解决实际问题。

2. 过程与方法:(1)通过复习,巩固已学的代数式知识。

(2)通过举例、讲解、练习等方式,提高学生对代数式的理解和运用能力。

(3)培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:(1)激发学生对代数式的兴趣,培养学生的学习积极性。

(2)培养学生团队合作、讨论交流的学习习惯。

二、教学内容:1. 代数式的概念与表示方法(1)复习代数式的定义。

(2)讲解代数式的表示方法,如字母表示数、数表示数等。

2. 代数式的运算规则(1)复习代数式的加减乘除运算规则。

(2)讲解代数式的乘方、开方等运算规则。

3. 代数式在实际问题中的应用(1)举例讲解代数式在实际问题中的应用。

(2)让学生尝试解决一些实际问题,运用代数式进行计算和求解。

三、教学重点与难点:1. 重点:代数式的概念与表示方法,代数式的运算规则。

2. 难点:代数式在实际问题中的应用。

四、教学过程:1. 导入:通过复习已学的代数式知识,引导学生回顾代数式的概念和表示方法。

2. 新课讲解:讲解代数式的运算规则,通过举例、讲解等方式,让学生理解并掌握代数式的运算方法。

3. 练习与讨论:让学生进行一些代数式的运算练习,通过团队合作、讨论交流的方式,巩固所学的代数式知识。

4. 应用拓展:举例讲解代数式在实际问题中的应用,让学生尝试解决一些实际问题,运用代数式进行计算和求解。

五、教学评价:1. 课堂练习:通过课堂练习,检查学生对代数式的理解和运用能力。

2. 课后作业:布置一些代数式的运算练习和实际问题,让学生巩固所学知识,并能够灵活运用。

3. 小组讨论:观察学生在团队合作、讨论交流中的表现,评价学生的学习态度和团队合作能力。

六、教学策略:1. 采用问题驱动的教学方法,通过设置问题情境,激发学生的思考和探究欲望。

3.2代数式(教案)

3.2代数式(教案)
3.重点难点解析:在讲授过程中,我会特别强调代数式的分类和运算这两个重点。对于难点部分,比如合并同类项和代数式的乘除运算,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与代数式相关的实际问题,如速度、面积、体积等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过实际测量和计算,让学生们验证长方形面积的计算公式。
3.2代数式(教案)
一、教学内容
本节课选自教材第三章第二节,主题为“代数式”。内容包括:
1.代数式的概念:用字母和数字表示数量关系的式子。
2.代数式的分类:单项式、多项式。
-单项式:只含有一个项的代数式,如32xy、3x³-4x²+5x-6。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解代数式的基本概念。代数式是用字母和数字表示数量关系的式子。它在数学中非常重要,可以帮助我们解决各种实际问题。
2.案例分析:接下来,我们来看一个具体的案例。比如,一个长方形的面积可以用代数式a*b表示,其中a和b分别表示长方形的两个相邻边长。
在教学过程中,教师要针对这些重点和难点内容,通过讲解、举例、练习等多种形式,帮助学生深刻理解代数式的概念、分类、运算和应用,确保学生能够掌握核心知识,突破难点,提高代数思维能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《3.2代数式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要用字母和数字来表示数量关系的情况?”比如,我们用t表示时间,v表示速度,那么速度和时间的关系就可以表示为s=vt。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索代数式的奥秘。

代数式数学教案

代数式数学教案

代数式数学教案
一、教案主题:代数式
二、教学目标:
1. 学生能够理解并掌握代数式的概念。

2. 学生能够熟练地进行代数式的加减乘除运算。

3. 学生能够运用代数式解决实际问题。

三、教学内容:
(一)代数式的概念
1. 代数式的基本定义:由数字、字母及运算符号组成的式子称为代数式。

2. 代数式的分类:单项式、多项式等。

(二)代数式的运算法则
1. 加法法则:同类项可以相加,异类项不能直接相加。

2. 减法法则:转化为加法进行计算。

3. 乘法法则:系数与系数相乘,相同字母与相同字母相乘,不同字母不相乘。

4. 除法法则:转化为乘法进行计算。

(三)代数式的应用
1. 解方程:利用代数式的运算法则解方程。

2. 实际问题的解决:通过建立代数模型,解决生活中的实际问题。

四、教学过程:
(一)引入新课
教师可以通过提问或者实例引出代数式的概念,并引导学生思考代数式在生活中的应用。

(二)新知识讲解
1. 教师讲解代数式的概念,然后给出一些例子让学生判断是否为代数式。

2. 教师讲解代数式的分类,可以让学生自己尝试分类。

3. 教师讲解代数式的运算法则,每讲完一种法则后,都要配以例题进行练习。

(三)课堂活动
教师可以设计一些小组活动,让学生通过合作完成代数式的计算或解方程。

(四)课堂总结
教师带领学生回顾本节课的内容,强调重点和难点,解答学生的疑问。

五、课后作业:
设计一些代数式的计算题和实际问题的应用题,让学生巩固所学的知识。

代数式(公开课)教案

代数式(公开课)教案

代数式(公开课)教案一、教学目标知识与技能:1. 理解代数式的概念,掌握代数式的表示方法和基本性质。

2. 学会使用代数式进行简单的运算和求解。

过程与方法:1. 通过实例引入代数式,培养学生的抽象思维能力。

2. 借助数形结合的思想,引导学生理解代数式的几何意义。

情感态度与价值观:1. 激发学生对代数式的兴趣,培养学生的探究精神。

2. 感受数学与实际生活的联系,提高学生运用数学解决问题的能力。

二、教学内容第一课时:代数式的概念与表示方法1. 导入:通过实际问题引入代数式,例如“已知苹果的重量为x千克,香蕉的重量为y千克,求苹果和香蕉的总重量”。

2. 讲解代数式的概念,引导学生理解代数式是表示数量关系的数学表达式。

3. 介绍代数式的表示方法,如字母表示数、数表示字母等。

第二课时:代数式的基本性质1. 导入:通过具体例子,让学生感受代数式的基本性质。

2. 讲解代数式的四则运算规则,如加减乘除等。

3. 引导学生掌握代数式的化简、因式分解等基本运算技巧。

第三课时:代数式的应用1. 导入:通过实际问题,让学生运用代数式解决问题。

2. 讲解代数式在实际生活中的应用,如购物、测量等。

3. 引导学生进行代数式的求解,培养学生的解决问题的能力。

第四课时:代数式的几何意义1. 导入:通过图形,引导学生理解代数式的几何意义。

2. 讲解代数式与图形之间的关系,如直线方程、圆的方程等。

3. 引导学生运用代数式解决几何问题,提高学生的数形结合能力。

第五课时:代数式的综合练习1. 导入:通过综合练习题,让学生巩固所学知识。

2. 讲解练习题的解题思路和方法。

3. 引导学生独立完成练习题,培养学生的解题能力。

三、教学策略1. 采用问题驱动的教学方法,引导学生通过实际问题理解和掌握代数式。

2. 利用数形结合的思想,让学生感受代数式的几何意义。

3. 设计丰富的练习题,让学生在实践中提高解题能力。

四、教学评价1. 课堂问答:通过提问,检查学生对代数式概念和表示方法的理解。

七年级数学上册《代数式》教案、教学设计

七年级数学上册《代数式》教案、教学设计
4.变式练习,巩固提高:
-设计不同类型的练习题,让学生在练习中巩固所学知识,提高解题能力。
-及时反馈,针对学生的错误进行纠正和指导,帮助他们查漏补缺。
5.拓展延伸,培养思维:
-引导学生运用代数式解决实际问题,培养他们的问题解决能力和创新思维。
-适当拓展代数式的应用领域,提高学生的数学素养。
6.总结反思,提升认知:
2.培养学生的自主学习能力、合作意识和创新思维。
3.激发学生的学习兴趣,使他们乐于探索数学的奥秘。
4.提高学生的问题解决能力,为后续学习打下坚实基础。
四、教学内容与过程
(一)导入新课,500字
1.教师以生活中的实际例子,如手机话费套餐、购物打折等,引出代数式的概念。
“同学们,你们在生活中有没有遇到过这样的问题:手机话费套餐如何计算更划算?购物打折后,实际支付多少钱?这些问题都可以通过一种数学工具来解决,那就是我们今天要学习的代数式。”
2.学生在小组内分享观点,共同解决问题。
“在小组内,大家各抒己见,把你们的方法和思路分享给其他同学。通过讨论,我们可以互相学习,共同提高。”
(四)课堂练习,500字
1.设计不同类型的练习题,让学生独立完成。
“下面,请同学们独立完成以下练习题。这些题目涵盖了代数式的各个方面,希望大家能够巩固所学知识。”
2.举例说明代数式的性质和运算规则,如合并同类项、去括号等。
“代数式具有一些基本的性质,比如交换律、结合律等。在运算过程中,我们可以根据这些性质简化代数式。接下来,我们来看一些具体的例子。”
(三)学生小组讨论,500字
1.教师设计具有梯度的问题,引导学生小组讨论。
“请同学们分组讨论以下问题:如何用代数式表示手机话费套餐?合并同类项、去括号的方法有哪些?”

代数式的值教案

代数式的值教案

代数式的值教案代数式的值教案「篇一」【学习目标】1、了解代数式的值的意义,能准确地求出代数式的值;2、通过代入法求值培养学生良好的学习习惯和品质,提高运算能力与创新设计能力;3、通过字母取不同的值的变化来认识世界发展变化及全面的观点。

【学习重点】能准确地求出代数式的值。

【学习难点】能准确地求出代数式的值。

【学习过程】『问题情境、研讨』情境一:某公园依地势摆若干个由大小相同的正方形构成的花坛,并在各正方形花坛的顶点与各边的中点布放盆花以营造节日气氛。

(1)填写下表图形编号 (1) (2) (3) (4)盆花数(2)若要求第100个图案要用多少盆花,怎样去解答?情境二:(1)看图,如果小朋友的年龄为x岁,那么工人的年龄怎么表示?(2)当x=9时,工人过了40岁了吗?(3)想一想:当x=6时工人的年龄呢?结论:根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系,计算出的结果,就叫做这个代数式的值。

『例题讲评』 P70/例1、 P/71议一议『学生练习』 P71/练一练:1、2补充:(1)当x=1时,求代数式4 -x+x2的值。

(2)当a=2,b=-5时,求下列代数式的值:①(a+b)(a-b) ②a2-b2。

(3)当x+y=-2,xy=-4时,求代数式 - 的值。

3.3 代数式的值(1)随堂练习评价_______________1.当x=-1时,代数式|5x+2|和1-3x的值分别为,则M、N之间的关系为A.MNB.M2.当a=-2时,代数式-a2的值是A.4B.-2C.-4D.23.已知a-b=-2,则代数式3(a-b)2-b+a的值为A.10B.12C.-10D.-124.当a=2,b=-3,c=-4时,代数式b2-4ac的值为___________。

5.如果a+b=-3,ab=-4,代数式的值为__________。

6.已知:x=-1,y=2,则(x-y)2-x3+x2y2 = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学目标
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

5.对本节例题的分析:
例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.
例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.
7.教学重点、难点:
重点:用字母表示数的意义
难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。

教学设计示例
代数式
教学目标
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法.
教学重点和难点
重点:用字母表示数的意义
难点:学会用字母表示数及正确地说出代数式所表示的数量关系
课堂教学过程设计
一、从学生原有的认知结构提出问题
1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?
(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)
(1)加法交换律a+b=b+a;
(2)乘法交换律a·b=b·a;
(3)加法结合律(a+b)+c=a+(b+c);
(4)乘法结合律(ab)c=a(bc);
(5)乘法分配律a(b+c)=ab+ac
指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;
(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数
2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?
3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?
4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?
(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)
此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t
以及a²等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.
三、讲授新课
1代数式
单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义
2举例说明
例1 填空:
(1)每包书有12册,n包书有__________册;
(2)温度由t℃下降到2℃后是_________℃;
(3)棱长是a厘米的正方体的体积是_____立方厘米;
(4)产量由m千克增长10%,就达到_______千克
(此例题用投影给出,学生口答完成)
解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m
例2 说出下列代数式的意义:
(1) 2a+3 (2)2(a+3);(5)a2+b2 (6)(a+b)
解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;
(3)c/ab的意义是c除以ab的商;(4)a-c/d 的意义是a减去c/d的差;
(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方
说明:(1)本题应由教师示范来完成;
(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等
例3 用代数式表示:
(1)m与n的和除以10的商;
(2)m与5n的差的平方;
(3)x的2倍与y的和;
(4)ν的立方与t的3倍的积
分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面
解:(1)(m+n)/10 ;(2)(m-5n)²(3)2x+y;(4)3tν³
四、课堂练习
1填空:(投影)
(1)n箱苹果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;
(3)底为a,高为h的三角形面积是______;
(4)全校学生人数是x,其中女生占48%,则女生人数是____,男生人数是____
2说出下列代数式的意义:(投影)
(1)2a-3c;(2)3a/5b ;(3)ab+1;(4)a2-b2
3用代数式表示:(投影)
(1)x与y的和; (2)x的平方与y的立方的差;
(3)a的60%与b的2倍的和;(4)a除以2的商与b除3的商的和
五、师生共同小结
首先,提出如下问题:
1本节课学习了哪些内容?2用字母表示数的意义是什么?
3什么叫代数式?
教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号
六、作业
1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长
2张强比王华大3岁,当张强a岁时,王华的年龄是多少?
3飞机的速度是汽车的40倍,自行车的速度是汽车的1/3;若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?
4a千克大米的售价是6元,1千克大米售多少元?
5圆的半径是R厘米,它的面积是多少?
6用代数式表示:
(1)长为a,宽为b米的长方形的周长;
(2)宽为b米,长是宽的2倍的长方形的周长;
(3)长是a米,宽是长的1/3 的长方形的周长;
(4)宽为b米,长比宽多2米的长方形的周长。

相关文档
最新文档