2007年全国硕士研究生入学统一考试数学三试题答案
2007年全国硕士研究生入学统一考试数学试题数学三试题

(A) 3p(1− p)2
(B) 6 p(1− p)2
水木艾迪考试培训网: 27
清华大学东门外创业大厦 1006
2007 年考研数学试题详解与评析 水木艾迪考研辅导班 教务电话:62701055 网管电话:62780661-433
(C) 3 p2 (1 − p)2
2007 年考研数学试题详解与评析 水木艾迪考研辅导班 教务电话:62701055 网管电话:62780661-433
2007 年全国硕士研究生入学统一考试数学试题数学三试题
试题详解与评析 水木艾迪考研辅导班
一、 选择题(本题共 10 小题,每小题 4 分,满分 40 分,在每小题给的四个选项中, 只有一项符合题目要求,把所选项前的字母填在题后括号内)
0
2
∫ ∫ (D)
1
dy
π −arcsin y
π
f (x, y)dx
0
2
【解】答案:B。二次积分交换积分次序的过程:
二次积分 ⇒ 确定区域、二重积分 ⇒ 二次积分。
1
y
π − arcsin y
π
1
1
π
∫ ∫ ∫ ∫ π dx f (x, y)dy = sin x
dy
f ( x, y)dx
0
π −arcsin y
需求弹性的绝对值等于 1,则商品的价格是
(A)10
(B)20
(C)30
(D)40
【解】答案 D。商品需求弹性的绝对值等于 dQ P = − 2P = 1 ,则 P = 40 。 dP Q 160 − 2P
本题考点:导函与微分应用。相同例题参见水木艾迪 2007 模拟试题数四 18 题。
(6)曲线 y = 1 + ln(1 + e x ) ,渐近线的条数为 x
2007考研数学三真题及答案解析

y
y(2 ln y)
求在(1,1)的值:y''
x 1
( y'
)2
x 1
1(2 ln1)
1 8
0
所以y y(x)在点(1,1)处是凸的
(18)(本题满分 11 分)
设二元函数
x2.
f
(x,
y)
1, x2 y2
x y 1. 1 x y 2.
计算二重积分 f (x, y)d .其中 D (x, y) x y 2
(D) 1 2 2 , 2 23 ,3 21
2 1 1
1 0 0
(8)设矩阵 A 1 2 1 , B 0 1 0 则 A 与 B (B)
1 1 2
0 0 0
(A)合同,且相似
(B) 合同,但不相似
(C) 不合同,但相似
(D) 既不合同,也不相似
(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第 4 次射击恰 好第 2 次命中目标的概率为 (C)
所以 B 的全部特征值为-2,1,1.
前面已经求得1 为 B 的属于-2 的特征值,而 A 为实对称矩阵,
于是根据 B 与 A 的关系可以知道 B 也是实对称矩阵,于是属于不同的特征值的特 征向量正交,设 B 的属于 1 的特征向量为 ( x1, x2 , x3 )T ,所以有方程如下:
x1 x2 x3 0 于是求得 B 的属于 1 的特征向量为 2 (1, 0,1)T , 3 (1,1, 0)T 因而,矩阵 B 属于 2 的特征向量是是 k1 (1, 1,1)T ,其中 k1 是不为零的任意常数. 矩阵 B 属于 1 的特征向量是是 k2 (1,1, 0)T k3 (1, 0,1)T ,其中 k2 , k3 是不为零的任意 常数.
2007年考研数学三真题及完整解析

2007年研究生入学考试数学三试题一、选择题:1~10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)当0x +→时,与x 等价的无穷小量是 (A )1ex - (B )1ln1xx+- (C )11x +- (D )1cos x - [ ](2)设函数()f x 在0x =处连续,下列命题错误的是:(A )若0()limx f x x →存在,则(0)0f = (B )若0()()lim x f x f x x→+-存在,则(0)0f = .(B )若0()lim x f x x →存在,则(0)0f '= (D )若0()()lim x f x f x x→--存在,则(0)0f '=.[ ](3)如图,连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-的图形分别是直径为2的下、上半圆周,设0()()d xF x f t t =⎰,则下列结论正确的是:(A )3(3)(2)4F F =-- (B) 5(3)(2)4F F = (C )3(3)(2)4F F = (D )5(3)(2)4F F =-- [ ](4)设函数(,)f x y 连续,则二次积分1sin 2d (,)d xx f x y y ππ⎰⎰等于(A )10arcsin d (,)d yy f x y x ππ+⎰⎰(B )10arcsin d (,)d yy f x y x ππ-⎰⎰(C )1arcsin 02d (,)d yy f x y x ππ+⎰⎰ (D )1arcsin 02d (,)d yy f x y x ππ-⎰⎰(5)设某商品的需求函数为1602Q P =-,其中,Q P 分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是(A) 10. (B) 20 (C) 30. (D) 40. [ ] (6)曲线()1ln 1e x y x=++的渐近线的条数为 (A )0. (B )1. (C )2. (D )3. [ ] (7)设向量组123,,ααα线性无关,则下列向量组线性相关的是线性相关,则 (A) 122331,,αααααα---(B)122331,,αααααα+++(C)1223312,2,2αααααα---. (D) 1223312,2,2αααααα+++. [ ](8)设矩阵211100121,010112000A B --⎛⎫⎛⎫ ⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,则A 与B(A) 合同且相似(B )合同,但不相似.(C) 不合同,但相似. (D) 既不合同也不相似 [ ] (9)某人向同一目标独立重复射击,每次射击命中目标的概率为(01)p p <<,则此人第4次射击恰好第2次击中目标的概率为(A )23(1)p p -. (B )26(1)p p -.(C )223(1)p p -. (D )226(1)p p - [ ](10)设随机变量(),X Y 服从二维正态分布,且X 与Y 不相关,(),()X Y f x f y 分别表示,X Y 的概率密度,则在Y y =的条件下,X 的条件概率密度|(|)X Y f x y 为 (A) ()X f x . (B) ()Y f y . (C) ()()X Y f x f y . (D)()()X Y f x f y . [ ] 二、填空题:11~16小题,每小题4分,共24分. 把答案填在题中横线上.(11) 3231lim(sin cos )2x x x x x x x →+∞+++=+ __________. (12)设函数123y x =+,则()(0)n y =________. (13) 设(,)f u v 是二元可微函数,,y x z f x y ⎛⎫=⎪⎝⎭,则z zx y x y ∂∂-=∂∂ __________.(14)微分方程3d 1d 2y y y x x x ⎛⎫=- ⎪⎝⎭满足11x y==的特解为y =________.(15)设矩阵0100001000010000A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则3A 的秩为 . (16)在区间()0,1中随机地取两个数,则这两个数之差的绝对值小于12的概率为 . 三、解答题:17~24小题,共86分. 解答应写出文字说明、证明过程或演算步骤. (17) (本题满分10分)设函数()y y x =由方程ln 0y y x y -+=确定,试判断曲线()y y x =在点(1,1)附近的凹凸性. (18) (本题满分11分)设二元函数222,||||11(,),1||||2x x y f x y x y x y ⎧+≤⎪=⎨<+≤⎪+⎩,计算二重积分D(,)d f x y σ⎰⎰,其中(){},||||2D x y x y =+≤.(19) (本题满分11分)设函数(),()f x g x 在[],a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==,证明:存在(,)a b ξ∈,使得()()f g ξξ''''=.(20) (本题满分10分)将函数21()34f x x x =--展开成1x -的幂级数,并指出其收敛区间. (21) (本题满分11分)设线性方程组123123212302040x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩与方程12321x x x a ++=-有公共解,求a 的值及所有公共解.(22) (本题满分11分)设三阶对称矩阵A 的特征向量值1231,2,2λλλ===-,T 1(1,1,1)α=-是A 的属于1λ的一个特征向量,记534B A A E =-+,其中E 为3阶单位矩阵.(I )验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (II )求矩阵B . (23) (本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,01(,)0,x y x y f x y --<<<<⎧=⎨⎩其他.(I )求{}2P X Y >; (II) 求Z X Y =+的概率密度.2007答案1….【分析】本题为等价无穷小的判定,利用定义或等价无穷小代换即可. 【详解】当0x +→时,1exx --,1112x x +-,()2111cos 22x xx -=, 故用排除法可得正确选项为(B ).事实上,0001111lnln(1)ln(1)1112lim lim lim 112x x x x x x x x x x x xx+++→→→++⋅+--+--==,或1lnln(1)ln(1)()()()1xx x x o x x o x x o x x x+=+--=+++=+-.所以应选(B )【评注】本题为关于无穷小量比较的基本题型,利用等价无穷小代换可简化计算. 类似例题见《数学复习指南》(经济类)第一篇【例1.54】 【例1.55】.2…….【分析】本题考查可导的极限定义及连续与可导的关系. 由于题设条件含有抽象函数,本题最简便的方法是用赋值法求解,即取符合题设条件的特殊函数()f x 去进行判断,然后选择正确选项.【详解】取()||f x x =,则0()()lim0x f x f x x→--=,但()f x 在0x =不可导,故选(D ).事实上,在(A),(B)两项中,因为分母的极限为0,所以分子的极限也必须为0,则可推得(0)0f =.在(C )中,0()limx f x x →存在,则00()(0)()(0)0,(0)limlim 00x x f x f f x f f x x→→-'====-,所以(C)项正确,故选(D)【评注】对于题设条件含抽象函数或备选项为抽象函数形式结果以及数值型结果的选择题,用赋值法求解往往能收到奇效.类似例题见文登强化班笔记《高等数学》第2讲【例2】,文登07考研模拟试题数学二第一套(2).3…….【分析】本题实质上是求分段函数的定积分. 【详解】利用定积分的几何意义,可得221113(3)12228F πππ⎛⎫=-= ⎪⎝⎭,211(2)222F ππ==,202202011(2)()d ()d ()d 122F f x x f x x f x x ππ---==-===⎰⎰⎰.所以 33(3)(2)(2)44F F F ==-,故选(C ). 【评注】本题属基本题型. 本题利用定积分的几何意义比较简便.类似例题见文登强化班笔记《高等数学》第5讲【例17】和【例18】,《数学复习指南》(经济类)第一篇【例3.38】【例3.40】.4…….【分析】本题更换二次积分的积分次序,先根据二次积分确定积分区域,然后写出新的二次积分. 【详解】由题设可知,,sin 12x x y ππ≤≤≤≤,则01,arcsin y y x ππ≤≤-≤≤,故应选(B ).【评注】本题为基础题型. 画图更易看出.类似例题见文登强化班笔记《高等数学》第10讲【例5】,《数学复习指南》(经济类)第一篇【例7.5】,【例7.6】.5…….【分析】本题考查需求弹性的概念. 【详解】选(D ).商品需求弹性的绝对值等于d 2140d 1602Q P P P P Q P-⋅==⇒=-, 故选(D ).【评注】需掌握微积分在经济中的应用中的边际,弹性等概念.相关公式及例题见《数学复习指南》(经济类)第一篇【例11.2】.6…….【分析】利用曲线的渐近线的求解公式求出水平渐近线,垂直渐近线和斜渐近线,然后判断. 【详解】()()11lim lim ln 1e ,lim lim ln 1e 0xxx x x x y y x x →+∞→+∞→-∞→-∞⎡⎤⎡⎤=++=+∞=++=⎢⎥⎢⎥⎣⎦⎣⎦,所以 0y =是曲线的水平渐近线;()001lim lim ln 1e xx x y x→→⎡⎤=++=∞⎢⎥⎣⎦,所以0x =是曲线的垂直渐近线; ()()1e ln 1e ln 1e 1e lim lim 0lim lim 11xxx x x x x x y x x x x →+∞→+∞→+∞→+∞++++==+==,[]()1l i m l i m l n 1e 0xx x b y x x x →+∞→+∞⎡⎤=-=++-=⎢⎥⎣⎦,所以y x =是曲线的斜渐近线.故选(D ).【评注】本题为基本题型,应熟练掌握曲线的水平渐近线,垂直渐近线和斜渐近线的求法.注意当曲线存在水平渐近线时,斜渐近线不存在. 本题要注意e x当,x x →+∞→-∞时的极限不同.类似例题见文登强化班笔记《高等数学》第6讲第4节【例12】,《数学复习指南》(经济类)第一篇【例5.30】,【例5.31】.7……..【分析】本题考查由线性无关的向量组123,,ααα构造的另一向量组123,,βββ的线性相关性. 一般令()()123123,,,,A βββααα=,若0A =,则123,,βββ线性相关;若0A ≠,则123,,βββ线性无关. 但考虑到本题备选项的特征,可通过简单的线性运算得到正确选项.【详解】由()()()1223310αααααα-+-+-=可知应选(A ).或者因为()()122331123101,,,,110011ααααααααα-⎛⎫ ⎪---=- ⎪ ⎪-⎝⎭,而1011100011--=-, 所以122331,,αααααα---线性相关,故选(A ).【评注】本题也可用赋值法求解,如取()()()TTT1231,0,0,0,1,0,0,0,1ααα===,以此求出(A ),(B ),(C ),(D )中的向量并分别组成一个矩阵,然后利用矩阵的秩或行列式是否为零可立即得到正确选项.完全类似例题见文登强化班笔记《线性代数》第3讲【例3】,《数学复习指南》(经济类)《线性代数》【例3.3】.8……【分析】本题考查矩阵的合同关系与相似关系及其之间的联系,只要求得A 的特征值,并考虑到实对称矩阵A 必可经正交变换使之相似于对角阵,便可得到答案.【详解】 由2211121(3)112E A λλλλλλ--=-=--可得1233,0λλλ===,所以A 的特征值为3,3,0;而B 的特征值为1,1,0.所以A 与B 不相似,但是A 与B 的秩均为2,且正惯性指数都为2,所以A 与B 合同,故选(B ). 【评注】若矩阵A 与B 相似,则A 与B 具有相同的行列式,相同的秩和相同的特征值. 所以通过计算A 与B 的特征值可立即排除(A )(C ). 完全类似例题见《数学复习指南》(经济类)第二篇【例5.17】.9……..【分析】本题计算贝努里概型,即二项分布的概率. 关键要搞清所求事件中的成功次数. 【详解】p ={前三次仅有一次击中目标,第4次击中目标}12223(1)3(1)C p p p p p =-=-,故选(C ).【评注】本题属基本题型.类似例题见《数学复习指南》(经济类)第三篇【例1.29】【例1.30】10…….【分析】本题求随机变量的条件概率密度,利用X 与Y 的独立性和公式|(,)(|)()X Y Y f x y f x y f y =可求解.【详解】因为(),X Y 服从二维正态分布,且X 与Y 不相关,所以X 与Y 独立,所以(,)()()X Y f x y f x f y =.故|()()(,)(|)()()()X Y X Y X Y Y f x f y f x y f x y f x f y f y ===,应选(A ).【评注】若(),X Y 服从二维正态分布,则X 与Y 不相关与X 与Y 独立是等价的.完全类似例题和求法见文登强化班笔记《概率论与数理统计》第3讲【例3】,《数学复习指南》(经济类)第三篇第二章知识点精讲中的一(4),二(3)和【例2.38】11….【分析】本题求类未定式,可利用“抓大头法”和无穷小乘以有界量仍为无穷小的结论.【详解】因为323233110222lim lim0,|sin cos |22112x x x x x x xx x x x x x x x →+∞→+∞++++===+<++, 所以3231lim (sin cos )02x x x x x x x →+∞+++=+.【评注】无穷小的相关性质:(1) 有限个无穷小的代数和为无穷小; (2) 有限个无穷小的乘积为无穷小; (3) 无穷小与有界变量的乘积为无穷小.完全类似例题和求法见文登强化班笔记《高等数学》第1讲【例1】,《数学复习指南》(经济类)第一篇【例1.43】12,……..【分析】本题求函数的高阶导数,利用递推法或函数的麦克老林展开式.【详解】()212,2323y y x x '==-++,则()1(1)2!()(23)n n n n n y x x +-=+,故()1(1)2!(0)3n n n n n y +-=. 【评注】本题为基础题型.完全类似例题见文登强化班笔记《高等数学》第2讲【例21】,《数学复习指南》(经济类)第一篇【2.20】,【例2.21】.13…….【分析】本题为二元复合函数求偏导,直接利用公式即可. 【详解】利用求导公式可得1221z y f f x x y ∂''=-+∂, 1221z x f f y x y∂''=-∂, 所以122z z y x xy f f x y xy ⎛⎫∂∂''-=-- ⎪∂∂⎝⎭. 【评注】二元复合函数求偏导时,最好设出中间变量,注意计算的正确性.完全类似例题见文登强化班笔记《高等数学》第9讲【例8】, 【例9】,《数学复习指南》(经济类)第一篇【例6.16】,【例6.17】,【例6.18】.14…..【分析】本题为齐次方程的求解,可令y u x=. 【详解】令yu x=,则原方程变为 33d 1d d d 22u u x u x u u x u x+=-⇒=-.两边积分得 2111ln ln 222x C u -=--, 即222111e e y u x x x C C=⇒=,将11x y ==代入左式得 e C =,故满足条件的方程的特解为 22e e x y x =,即ln 1x y x =+,1e x ->.【评注】本题为基础题型.完全类似例题见文登强化班笔记《高等数学》第7讲【例2】, 【例3】,《数学复习指南》(经济类)第一篇【例9.3】.15……….【分析】先将3A 求出,然后利用定义判断其秩.【详解】30100000100100000()1000100000000000A A r A ⎛⎫⎛⎫ ⎪ ⎪⎪⎪=⇒=⇒= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. 【评注】本题为基础题型.矩阵相关运算公式见《数学复习指南》(经济类)第二篇第二章第1节中的知识点精讲.16……….【分析】根据题意可得两个随机变量服从区间()0,1上的均匀分布,利用几何概型计算较为简便. 【详解】利用几何概型计算. 图如下:A1/2 11 /2Oyx所求概率2113214A D S S ⎛⎫- ⎪⎝⎭===. 【评注】本题也可先写出两个随机变量的概率密度,然后利用它们的独立性求得所求概率.完全类似例题见文登强化班笔记《概率论与数理统计》第3讲【例11】,《数学复习指南》(经济类)第三篇【例2.29】,【例2.47】.17……..【分析】由凹凸性判别方法和隐函数的求导可得.【详解】 方程 ln 0y y x y -+=两边对x 求导得ln 10y y y yy y'''+-+=, 即(2ln )1y y '+=,则1(1)2y '=. 上式两边再对x 求导得()2(2ln )0y y y y'''++=则1(1)8y ''=-,所以曲线()y y x =在点(1,1)附近是凸的.【评注】本题为基础题型.类似例题见文登强化班笔记《高等数学》第6讲【例10】,《数学复习指南》(经济类)第一篇【例5.29】.18…….【分析】由于积分区域关于,x y 轴均对称,所以利用二重积分的对称性结论简化所求积分. 【详解】因为被积函数关于,x y 均为偶函数,且积分区域关于,x y 轴均对称,所以1DD (,)d (,)d f x y f x y σσ=⎰⎰⎰⎰,其中1D 为D 在第一象限内的部分.而1222D 1,0,012,0,01(,)d d d x y x y x y x y f x y x x yσσσ+≤≥≥≤+≤≥≥=++⎰⎰⎰⎰⎰⎰11222222220011011d d d d d d xx x x x x y x y x y x y x y ---⎛⎫ ⎪=++ ⎪++⎝⎭⎰⎰⎰⎰⎰⎰()12ln 1212=++. 所以()D1(,)d 42ln 123f x y σ=++⎰⎰.【评注】被积函数包含22y x +时, 可考虑用极坐标,解答如下:2212120,00,01(,)d d x y x y x y x y f x y x yσσ≤+≤≤+≤>>>>=+⎰⎰⎰⎰22sin cos 10sin cos d d r πθθθθθ++=⎰⎰2ln(12)=+.类似例题见文登强化班笔记《高等数学》第10讲【例1】,《数学复习指南》(经济类)第一篇【例7.3-例7.4】.19…….【分析】由所证结论()()f g ξξ''''=可联想到构造辅助函数()()()F x f x g x =-,然后根据题设条件利用罗尔定理证明.【详解】令()()()F x f x g x =-,则()F x 在[],a b 上连续,在(,)a b 内具有二阶导数且()()0F a F b ==.(1)若(),()f x g x 在(,)a b 内同一点c 取得最大值,则()()()0f c g c F c =⇒=, 于是由罗尔定理可得,存在12(,),(,)a c c b ξξ∈∈,使得12()()0F F ξξ''==.再利用罗尔定理,可得 存在12(,)ξξξ∈,使得()0F ξ''=,即()()f g ξξ''''=. (2)若(),()f x g x 在(,)a b 内不同点12,c c 取得最大值,则12()()f c g c M ==,于是 111222()()()0,()()()0F c f c g c F c f c g c =->=-<, 于是由零值定理可得,存在312(,)c c c ∈,使得3()0F c = 于是由罗尔定理可得,存在1323(,),(,)a c c b ξξ∈∈,使得12()()0F F ξξ''==.再利用罗尔定理,可得 ,存在12(,)ξξξ∈,使得()0F ξ''=,即()()f g ξξ''''=. 【评注】对命题为()()0n fξ=的证明,一般利用以下两种方法:方法一:验证ξ为(1)()n fx -的最值或极值点,利用极值存在的必要条件或费尔马定理可得证;方法二:验证(1)()n fx -在包含x ξ=于其内的区间上满足罗尔定理条件.类似例题见文登强化班笔记《高等数学》第4讲【例7】,《数学复习指南》(经济类)第一篇【例4.5】,【例4.6】.20….【分析】本题考查函数的幂级数展开,利用间接法.【详解】211111()34(4)(1)541f x x x x x x x ⎛⎫===- ⎪---+-+⎝⎭,而 10011111(1),2414333313n nn n n x x x x x ∞∞+==--⎛⎫=-⋅=-=--<< ⎪--⎝⎭-∑∑, 10011111(1)(1),1311222212nn nn n n x x x x x ∞∞+==---⎛⎫=⋅=-=-<< ⎪-+⎝⎭+∑∑ , 所以 1111000(1)(1)(1)1(1)()(1)3232n n n n n n n n n n n n x x f x x ∞∞∞++++===⎡⎤----=-+=-+-⎢⎥⎣⎦∑∑∑, 收敛区间为 13x -<<.【评注】请记住常见函数的幂级数展开.完全类似例题见文登强化班笔记《高等数学》第11讲【例13】,《数学复习指南》(经济类)第一篇【例8.15】.21…..【分析】将方程组和方程合并,然后利用非齐次线性方程有解的判定条件求得a .【详解】将方程组和方程合并,后可得线性方程组12312321231230204021x x x x x ax x x a x x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩ 其系数矩阵22111011101200110140031012110101a a A a a a a ⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=→ ⎪ ⎪- ⎪ ⎪--⎝⎭⎝⎭. 21110111001100110003200011001100(1)(2)0a a a a a a a a a a ⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪-+-- ⎪ ⎪----⎝⎭⎝⎭. 显然,当1,2a a ≠≠时无公共解.当1a =时,可求得公共解为 ()T1,0,1k ξ=-,k 为任意常数; 当2a =时,可求得公共解为 ()T 0,1,1ξ=-. 【评注】本题为基础题型,考查非齐次线性方程组解的判定和结构.完全类似例题见文登强化班笔记《线性代数》第4讲【例8】,《数学复习指南》(经济类)第二篇【例4.12】,【例4.15】.22……【分析】本题考查实对称矩阵特征值和特征向量的概念和性质.【详解】(I )()()5353531111111111144412B A A E ααλαλααλλαα=-+=-+=-+=-, 则1α是矩阵B 的属于-2的特征向量.同理可得()532222241B αλλαα=-+=,()533333341B αλλαα=-+=. 所以B 的全部特征值为2,1,1设B 的属于1的特征向量为T 2123(,,)x x x α=,显然B 为对称矩阵,所以根据不同特征值所对应的特征向量正交,可得T 120αα=.即 1230x x x -+=,解方程组可得B 的属于1的特征向量T T 212(1,0,1)(0,1,0)k k α=-+,其中12,k k 为不全为零的任意常数.由前可知B 的属于-2的特征向量为 T 3(1,1,1)k -,其中3k 不为零.(II )令101011101P ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,由(Ⅰ)可得-1100010002P BP ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则011101110B -⎛⎫ ⎪= ⎪ ⎪-⎝⎭.【评注】本题主要考查求抽象矩阵的特征值和特征向量,此类问题一般用定义求解,要想方设法将题设条件转化为Ax x λ=的形式. 请记住以下结论:(1)设λ是方阵A 的特征值,则21*,,,(),,kA aA bE A f A A A -+分别有特征值21,,,(),,(A k a b f A λλλλλλ+可逆),且对应的特征向量是相同的.(2)对实对称矩阵来讲,不同特征值所对应的特征向量一定是正交的完全类似例题见文登强化班笔记《线性代数》第5讲【例12】,《数学复习指南》(经济类) 第二篇【例5.24】23…….【分析】(I )可化为二重积分计算;(II) 利用卷积公式可得.【详解】(I ){}()()12002722d d d 2d 24xx y P X Y x y x y x x y y >>=--=--=⎰⎰⎰⎰. (II) 利用卷积公式可得()(,)d Z f z f x z x x +∞-∞=-⎰20121(2)d ,01201(2)d ,12(2)120,0,z z x x z z z z x x z z z -⎧-<<⎪⎧-<<⎪⎪=-<<=-≤<⎨⎨⎪⎪⎩⎪⎩⎰⎰其他其他. 【评注】 (II)也可先求出分布函数,然后求导得概率密度.完全类似例题见文登强化班笔记《概率论与数理统计》第3讲【例10】,【例11】,《数学复习指南》(经济类)第三篇【例2.38】,【例2.44】.(24) (本题满分11分)设总体X 的概率密度为1,021(),12(1)0,x f x x θθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他 12(,,X X …,)n X 为来自总体X 的简单随机样本,X 是样本均值.(I )求参数θ的矩估计量θ;(II )判断24X 是否为2θ的无偏估计量,并说明理由.【分析】利用EX X =求(I );判断()?224E Xθ=. 【详解】(I )()101()d d d 22124x x EX xf x x x x θθθθθ+∞-∞==+=+-⎰⎰⎰, 令112242X X θθ=+⇒=-. (II )()()()()222214444E X E X DX EX DX EX n ⎡⎤⎡⎤==+=+⎢⎥⎣⎦⎣⎦, 而()22212201()d d d 221336x x EX x f x x x x θθθθθθ+∞-∞==+=++-⎰⎰⎰, 所以 ()2225121248DX EX EX θθ=-=-+,所以()()222211115441133412E X DX EX n n n n θθθ⎡⎤⎛⎫⎛⎫⎛⎫=+=++-++≠ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭, 故24X 不是2θ的无偏估计量.【评注】要熟练掌握总体未知参数点估计的矩估计法,最大似然估计法和区间估计法.完全类似例题见文登强化班笔记《概率论与数理统计》第5讲【例3】,《数学复习指南》(经济类)第三篇【例6.3,例6.6,例6.9】,。
2007年全国硕士研究生入学统一考试数学三试题

2007年全国硕士研究生入学统一考试数学三试题一、选择题:110:小题,每小题4分,共40分,下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)当0x +→等价的无穷小量是( )A.1-.ln(1B +1C.1D -(2)设函数()f x 在0x =处连续,下列命题错误的是( )A .若0()limx f x x →存在,则(0)0f = .B 若0()()lim x f x f x x→+-存在,则(0)0f =.C 若0()limx f x x →存在,则'(0)f 存在 .D 若0()()lim x f x f x x→--存在,则'(0)f 存在 (3)如图,连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上的图形分别是直径为2的上、下半圆周.设0()(),xF x f t dt =⎰则下列结论正确的是( ).A (3)F 3(2)4F =-- .B (3)F 5(2)4F = .C (3)F - 3(2)4F = .D (3)F -5(2)4F =--(4)设函数(,)f x y 连续,则二次积分1sin 2(,)xdx f x y dy ππ⎰⎰等于( ).A 1arcsin (,)ydy f x y dx ππ+⎰⎰.B 10arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰(5)设某商品的需求函数为1602Q p =-,其中Q ,p 分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是( ).A 10 .B 20 .C 30 .D 40(6)曲线1ln(1),x y e x=++渐近线的条数为( ) .A 0 .B 1 .C 2 .D 3(7)设向量组123,,ααα线性无关,则下列向量组线性相关的是 ( ).A 12αα-2331,,αααα-- .B 21αα+2331,,αααα++ .C 1223312,2,2αααααα--- .D 1223312,2,2αααααα+++(8)设矩阵211121112A --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦,100010000B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦则A 与B ( ) .A 合同,且相似 .B 合同,但不相似.C 不合同,但相似 .D 既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为(01)p p <<,则此人第4次射击恰好第2次命中目标的概率为 ( )A .23(1)p p -B . 26(1)p p -C .223(1)p p -D .226(1)p p -(10)设随机变量(,)X Y 服从二维正态分布,且X 与Y 不相关,(),()X Y f x f y 分别表示表示,X Y 的概率密度,则在Y y =条件下,X 的条件概率密度()X Y f x y 为( )A .()X f xB .()Y f yC .()()X Y f x f yD .()()X Y f x f y二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)3231lim(sin cos )____________2x x x x x x x →+∞+++=+ (12)设函数123y x =+,则()(0)___________n y = (13)设(,)f u v 是二元可微函数,(,),y x z f x y=则z zxy x y∂∂-=∂∂_________ (14)微分方程31()2dy y y dx x x=-满足11x y ==的特解为y=_____________(15)设距阵01000010,00010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭则3A 的秩为_____________(16)在区间(0,1)中随机地取两个数,则两数之差的绝对值小于12的概率为_____________. 三、解答题:17-24小题,共86分。
2007-2009年考研数学真题及答案解析(三)

证明:
(Ⅰ)存在 (a, b), 使得 f () g() ;
(Ⅱ)存在 (a, b), 使得 f ''( ) g ''( ).
(20)(本题满分 10 ห้องสมุดไป่ตู้)
将函数
f
(x)
x2
1 3x 4
展开成 x 1的幂级数,并指出其收敛区间.
(21)(本题满分11分)
设线性方程组
x1 x1
x2 x3 2x2 ax3
(24)(本题满分 11 分)
-3-
设总体 X 的概率密度为
1 2
,
0
x
,
f
( x;
)
1
2(1
)
,
x
1,
.
0, 其他
其中参数 (0 1) 未知, X1, X 2 ,...X n 是来自总体 X 的简单随机样本, X 是样本均值.
(Ⅰ)求参数 的矩估计量 ;
(Ⅱ)判断 4 X 2 是否为 2 的无偏估计量,并说明理由.
演算步骤.
(17)(本题满分 10 分)
设函数 y y(x) 由方程 y ln y x y 0 确定,试判断曲线 y y(x) 在点(1,1)附近的凹凸性.
【详解】:
-6-
对方程两边求导得y' ln y 2 y' 1 0 y' 1 2 ln y
从而有y'
x 1
2
1 ln1
1 2
利用被积函数 f (x, y) 无论关于 x 轴还是关于 y 轴对称,从而按二重积分的简化计算法则可得
f (x, y)d 4 f (x, y)d
D
D1
设 D1 D11 D12 ,其中 D11 (x, y) x y 1, x 0, y 0 , D12 (x, y) 1 x y 2, x 0, y 0
2007年全国硕士研究生入学统一考试数学(三)试题及答案解析

的绝对值等于 1,则商品的价格是(D)
A. 10
B. 20
C. 30
D. 40
(6) 曲线 y 1 ln(1 e x ), 渐近线的条数为(D) x
A. 0
B. 1
C. 2
D. 3
(7)设向量组线性 无关,则下列向量组线相关的是
(A)
(A)1 2 ,2 1,3 1
(B)2 1 ,2 3,3 1
sin x
2
1
A. dy
f (x, y)dx
0
arcsin x
1
B. dy
f (x, y)dx
0
arcsin y
1
arcsin y
C. dy
f (x, y)dx
0
2
1
arcsin y
D. dy
f (x, y)dx
0
2
(5) 设某商品的需求函数为 Q 160 2 ,其中 Q , 分别表示需要量和价格,如果该商品需求弹性
(2)
有公共解,求a的值及所有公共解
(22)(本题满分 11 分)
设 3 阶实对称矩阵 A 的特征值 1 1, 2 2, 3 2,1 (1, 1,1) T 是 A 的属于 1 的一个特征向量.记
B A5 4A3 E ,其中 E 为 3 阶单位矩阵.
(Ⅰ)验证1 是矩阵 B 的特征向量,并求 B 的全部特征值与特征向量;
(Ⅱ)求矩阵 B. (23)(本题满分 11 分)
设二维随机变量 ( X ,Y ) 的概率密度为
(Ⅰ)求 PX 2Y ;
f
(x,
y)
2 x y,0 0, 其他
2007年全国硕士研究生入学统一考试数学三真题及答案

2007年全国硕士研究生入学统一考试数学三试题一、选择题:110:小题,每小题4分,共40分,下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1) 当0x +→ )A .1- .ln(1B + 1C .1D -【答案】(B)【考点】等价无穷小 【难易度】★★【详解】解析:方法1:排斥法:由几个常见的等价无穷小,当0x +→0→,所以1(1-::211,2-:可以排除A 、C 、D ,所以选(B ).方法2:==ln 1⎛⎫+ ⎝当0x +→时,11→0→,又因为0x →时,()ln 1x x +:,所以)ln 1~~1~x ⎛= ⎝B ).(2) 设函数()f x 在0x =处连续,下列命题错误的是( )A .若0()limx f x x →存在,则(0)0f = .B 若0()()lim x f x f x x→+-存在,则(0)0f =.C 若0()limx f x x →存在,则'(0)f 存在 .D 若0()()lim x f x f x x→--存在,则'(0)f 存在 【答案】( D)【考点】极限的四则运算,函数连续的概念,导数的概念 【难易度】★★【详解】解析:方法1:论证法,证明..A B C 都正确,从而只有.D 不正确。
由0()limx f x x→存在及()f x 在0x =处连续,所以0(0)lim ()x f f x →=0000()()()lim()lim lim 0lim x x x x f x f x f x x x x x x→→→→==⋅=⋅0=,所以(A )正确; 由选项(A )知,(0)0f =,所以00()(0)()lim lim0x x f x f f x x x→→-=-存在,根据导数定义,()(0)'(0)limx f x f f x →-=-存在,所以(C )也正确;由()f x 在0x =处连续,所以()f x -在0x =处连续,从而[]0lim ()()lim ()lim ()(0)(0)2(0)x x x f x f x f x f x f f f →→→+-=+-=+=0000()()()()()()2(0)lim lim lim 0lim 0x x x x f x f x f x f x f x f x f x x x x x →→→→+-+-+-⎡⎤=⋅=⋅=⋅=⎢⎥⎣⎦,即有(0)0f =.所以(B )正确,故此题选择(D ).方法2:举例法,举例说明(D )不正确,例如取()f x x =,有0()()limlim 00x x x x f x f x x x→→----==-存在 而()()0000lim lim 100x x f x f x x x --→→---==---,()()0000lim lim 100x x f x f x x x +-→→--==--,左右极限存在但不相等,所以()f x x =在0x =的导数()0f '不存在. (D )不正确,选(D ).(3) 如图,连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上的图形分别是直径为2的上、下半圆周.设()(),xF x f t dt =⎰则下列结论正确的是( ).A (3)F 3(2)4F =-- .B (3)F 5(2)4F = .C (3)F - 3(2)4F = .D (3)F -5(2)4F =--【答案】( C)【考点】定积分的概念、定积分的基本性质,积分上限的函数及其导数【难易度】★★★【详解】解析:由题给条件知,()f x 为x 的奇函数,则()()f x f x -=-,由()(),xF x f t dt =⎰知()()()()()()()()xx xF x f t dt t u f u d u f u f u f u du F x --= =- -- -=- =⎰⎰⎰,故()F x 为x 的偶函数,所以(3)(3).F F -=而20(2)()F f t dt =⎰表示半径1R =的半圆的面积,所以22(2)()22R F f t dt ππ===⎰,32302(3)()()()F f t dt f t dt f t dt ==+⎰⎰⎰,其中32()f t dt ⎰表示半径12r =的半圆的面积的负值,所以22321()2228r f t dt πππ⎛⎫=-=-⋅=- ⎪⎝⎭⎰所以3232333(3)()()()(2)288424F f t dt f t dt f t dt F ππππ==+=-==⋅=⎰⎰⎰ 所以3(3)(3)(2)4F F F -==,选择( C)(4) 设函数(,)f x y 连续,则二次积分1sin 2(,)xdx f x y dy ππ⎰⎰等于( ).A 1arcsin (,)ydy f x y dx ππ+⎰⎰.B 10arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰【答案】( B)【考点】交换累次积分的次序与坐标系的转换 【难易度】★★【详解】解析:画出该二次积分所对应的积分区域D ,:2sin 1x D x y ππ⎧≤≤⎪⎨⎪≤≤⎩交换为先x 后y ,则积分区域可化为:arcsin 01y x y ππ-≤≤⎧⎨≤≤⎩所以11sin 0sin 2(,)(,)xarc ydx f x y dy dy f x y dx ππππ-=⎰⎰⎰⎰, 所以选择(B).(5) 设某商品的需求函数为1602Q p =-,其中Q ,p 分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是( ).A 10 .B 20 .C 30 .D 40【答案】(D)【考点】导数的经济意义 【难易度】★★【解析】解析:|需求弹性|'()2 1.()160280Q P PP P Q P P P-====-- 若180PP =-,80P P =-,无意义;若180P P=-,解得:40.P =所以选(D) (6) 曲线1ln(1),xy e x=++渐近线的条数为( ).A 0 .B 1 .C 2 .D 3【答案】( D)【考点】函数图形的渐近线 【难易度】★★★【详解】解析:001lim lim ln(1)x x x y e x →→⎛⎫=++⎪⎝⎭=∞,所以0x =是一条铅直渐近线;1lim lim ln(1)x x x y e x →-∞→-∞⎛⎫=++ ⎪⎝⎭1lim lim ln(1)000x x x e x →-∞→-∞=++=+=,所以0y =是沿x →-∞方向的一条水平渐近线;令21ln(1)1ln(1)lim lim lim x x x x x e y e x a x x x x →+∞→+∞→+∞++⎛⎫+===+ ⎪⎝⎭21ln(1)lim lim x x x e x x →+∞→+∞+=+ln(1)0lim x x e x →+∞+=+1lim 11xx x e e →+∞+ =洛必达法则令()1lim lim ln(1)x x x b y a x e x x →+∞→+∞⎛⎫=-⋅=++- ⎪⎝⎭()()1limlim ln(1)0lim ln(1)x x x x x e x e x x →+∞→+∞→+∞=++-=++- ()1ln lim ln(1)ln lim ln()xxxxx x x e x e e e e→+∞→+∞+ = +-=lim ln(1)ln10x x e -→+∞=+==所以y ax b x =+=是曲线的斜渐近线,所以共有3条,选择(D ) (7) 设向量组123,,ααα线性无关,则下列向量组线性相关的是( )A .12αα-2331,,αααα--B .12αα+2331,,αααα++C .1223312,2,2αααααα---D .1223312,2,2αααααα+++【答案】(A)【考点】向量组线性相关的判别法 【难易度】★★★【详解】解析:方法1:根据线性相关的定义,若存在不全为零的数123,,k k k ,使得1122330k k k ααα++=成立,则称123,,ααα线性相关.因 1223310αααααα-+-+-=,故122331αααααα---,,线性相关,所以选择(A ). 方法2:排除法因 [][][]1223311231232101,,,,110,,,011C αααααααααααα⎡⎤⎢⎥+++==⎢⎥⎢⎥⎣⎦ 其中2101110011C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 2101110011C =11101111(1)20111111111011+-⨯-+-=-=⨯-⨯-行行()()20=≠.故2C 是可逆矩阵,由可逆矩阵可以表示为若干个初等矩阵的乘积, 2C 右乘[]123,,ααα时,等于作若干次初等变换,初等变换不改变矩阵的秩,故有122331123(,,)(,,)3r r ααααααααα+++==故122331,,αααααα+++线性无关,排除(B ).因 [][][]12233112312331022,2,2,,210,,,021C αααααααααααα-⎡⎤⎢⎥---=-=⎢⎥⎢⎥-⎣⎦其中3102210021C -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,3102210021C -=--111021410141112421021+--⨯-=-=⨯--⨯---行2+2行()()()≠=-70.故3C 是可逆矩阵,故有122331123(2,2,2)(,,)3r r ααααααααα---==故1223312,2,2αααααα---线性无关,排除(C ).因[][][]12233112312341022,2,2,,210,,,021C αααααααααααα⎡⎤⎢⎥+++==⎢⎥⎢⎥⎣⎦ 其中4102210021C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 4102210021C =11102141(2)20141112421021+-⨯-+-=-=⨯-⨯-行行()()90.=≠故4C 是可逆矩阵,故有122331123(2,2,2)(,,)3r r ααααααααα+++==故1223312,2,2αααααα+++线性无关,排除(D ). 综上知应选(A ).(8) 设矩阵211121112A --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦,100010000B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则A 与B ( ) A . 合同,且相似 B . 合同,但不相似C . 不合同,但相似D . 既不合同,也不相似【答案】(B )【考点】相似矩阵的概念,矩阵合同的判定 【难易度】★★ 【详解】解析:211121112E A λλλλ--=--112312112λλλλλ--、列分别加到列 111121112λλλλ--提出1111103112λλλ⨯---行()+2行11111033λλλ⨯---行()+3行113103λλλ+-=--()()230λλ=-=则的A 特征值为3,3,0;B 是对角阵,对角元素即是其特征值,则B 的特征值为1,1,0.,A B 的特征值不相同,由相似矩阵的特征值相同知,A B 与不相似.由,A B 的特征值可知,,A B 的正惯性指数都是2,又秩都等于2可知负惯性指数也相同,则由实对称矩阵合同的充要条件是有相同的正惯性指数和相同的负惯性指数,知A 与B合同,应选(B ).(9) 某人向同一目标独立重复射击,每次射击命中目标的概率为(01),p p <<则此人第4次射击恰好第2次命中目标的概率为 ( )A .23(1)p p -B . 26(1)p p -C .223(1)p p -D .226(1)p p -【答案】()C【考点】事件独立性的性质,独立重复试验 【难易度】★★【详解】解析:把独立重复射击看成独立重复试验.射中目标看成试验成功. 第4次射击恰好是第2次命中目标可以理解为:第4次试验成功而前三次试验中必有1次成功,2次失败.根据独立重复的伯努利试验,前3次试验中有1次成功2次失败.其概率必为123(1).C p p -再加上第4次是成功的,其概率为p . 根据独立性原理,若事件1,,n A A L 独立,则{}{}{}{}1212n n P A A A P A P A P A =I I L I L 所以,第4次射击为第二次命中目标的概率为12223(1)3(1).C p p p p p -⋅=-所以应选(C )(10) 设随机变量(,)X Y 服从二维正态分布,且X 与Y 不相关,(),()X Y f x f y 分别表示,X Y 的概率密度,则在Y y =条件下,X 的条件概率密度()X Y f x y 为( )A .()X f xB .()Y f yC .()()X Y f x f yD .()()X Y f x f y 【答案】()A【考点】二维正态分布的性质、二维连续型随机变量的条件密度 【难易度】★★★【详解】解析:二维正态随机变量(,)X Y 中,X 与Y 的独立等价于X 与Y 不相关.而对任意两随机变量X 与Y ,如果它们相互独立,则有(,)()()X Y f x y f x f y =.由于二维正态随机变量(,)X Y 中X 与Y 不相关,故X 与Y 独立,且(,)()()X Y f x y f x f y =.根据条件概率密度的定义,当在Y y =条件下,如果()0,Y f y ≠则(,)(|)()X Y Y f x y f x y f y =()()()()X Y X Y f x f y f x f y ==.现()Y f y 显然不为0,因此(|)().X X Y f x y f x = 所以应选(A).二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)3231lim(sin cos )____________2x x x x x x x →+∞+++=+ 【答案】0【考点】洛必达法则,无穷小量的性质 【难易度】★★【解析】解析:由洛必达法则,3231lim 2x x x x x →+∞+++()2223262lim lim 2ln 232ln 26x x x x x x x x x→+∞→+∞∞+∞+ ∞+∞+ ()36lim 0,2ln 26x x →+∞∞ =∞+ 而1sin 1x -≤≤,1cos 1x -≤≤,所以(sin cos )x x +是有界变量,根据无穷小量乘以有界量仍是无穷小量,所以3231lim (sin cos )0.2x x x x x x x →∞+++=+ (12)设函数123y x =+,则()(0)___________n y = 【答案】1(1)2!3n n n n +- 【考点】高阶导数 【难易度】★★ 【详解】解析:()112323y x x -==++,()()()111111'(1)232(1)1!223y x x x ----'=-⋅+⋅=-⋅⋅⋅+,()()321222''(1)(2)223(1)2!223,,y x x ---=-⋅-⋅⋅+=-⋅⋅+L由数学归纳法可知()1()(1)2!23,n n nnyn x --=-+把0x =代入得:()1(1)2!(0)3n n n n n y +-= (13)设(,)f u v 是二元可微函数,(,),y xz f x y=则z zxy x y∂∂-=∂∂_________ 【答案】''122()y x f f x y-+ 【考点】多元复合函数一阶偏导数的求法【难易度】★★【详解】121221''''x y y z y x f f f f x x x x y ⎛⎫⎛⎫∂∂ ⎪⎪∂⎛⎫⎝⎭⎝⎭=⋅+⋅=⋅-+⋅ ⎪∂∂∂⎝⎭,12'x y y z x f f y y y ⎛⎫⎛⎫∂∂ ⎪⎪∂⎝⎭⎝⎭'=⋅+⋅=∂∂∂1221''x f f x y ⎛⎫⋅+⋅- ⎪⎝⎭把z x ∂∂,zy∂∂代入z z x y x y ∂∂-∂∂,则: 12122211''''z z y x x y x f f y f f x y x y x y ⎡⎤⎡⎤⎛⎫∂∂⎛⎫-=⋅⋅-+⋅-⋅+⋅-⎢⎥ ⎪ ⎪⎢⎥∂∂⎝⎭⎣⎦⎝⎭⎣⎦ 1212''''y x y x f f f f x y x y ⎛⎫=-⋅+⋅-⋅+⋅ ⎪⎝⎭''122()y x f f x y =-+(14)微分方程31()2dy y y dx x x=-满足11x y ==的特解为y=_____________【考点】变量可分离的微分方程 【难易度】★★ 【解析】令,y ux =有(),d ux dy du du ux x u x dx dx dx dx'==+=+ 原方程化为31,2du u xu u dx +=- 即 32,du dxu x=- 此式为变量可分离的微分方程,两边积分,32du dx u x =-⎰⎰121ln x C u⇒-=-+得 21ln x C u =+把y u x=代入上式得:22ln x y x C =+再把(1,1)代入上式得:1,C =所以得特解y =(其中因为11x y ==,所以y ≠.(15)设距阵01000010,00010000A ⎛⎫⎪ ⎪= ⎪⎪⎝⎭则3A 的秩为_____【答案】1【考点】矩阵的秩 【难易度】★★ 【详解】解析:2010001000010*********001000100010000000000000000A ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭32001001000001000100100000000000010000000000000000A A A ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⋅== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭由阶梯矩阵的行秩等于列秩,其值等于阶梯形矩阵的非零行的行数,知()3 1.r A = (16)在区间(0,1)中随机地取两个数,则两数之差的绝对值小于12的概率为______. 【答案】3.4【考点】几何型概率 【难易度】★★【详解】解析:不妨假定随机地抽出两个数分别为X Y 和,它们应是相互独立的.如果把,X Y ()看成平面上一个点的坐标,则由于01,01,X Y <<<<所以,X Y ()为平面上正方形: 01,01X Y <<<<中的一个点. X Y 和两个数之差的绝对值小于12对应于正方形中12X Y -<的区域.所有可能随机在区间(0,1)中随机取的两个数,X Y ,可以被看成上图中单位正方形里的点.12X Y -<的区域就是正方形中阴影的面积D .根据几何概率的定义: 211132.214D P X Y ⎛⎫- ⎪⎛⎫⎝⎭-<=== ⎪⎝⎭的面积单位正方形面积三、解答题:17-24小题,共86分。
【7A版】2007年考研数学三真题及完整解析

20GG 年研究生入学考试数学三试题一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)当0x +→时,与x 等价的无穷小量是(A )1e x -(B )ln1x-(C )11x +-(D )1cos x -[] (2)设函数()f x 在0x =处连续,下列命题错误的是:(A )若0()limx f x x →存在,则(0)0f =(B )若0()()lim x f x f x x→+-存在,则(0)0f =.(B )若0()lim x f x x →存在,则(0)0f '=(D )若0()()lim x f x f x x→--存在,则(0)0f '=.[](3)如图,连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-的图形分别是直径为2的下、上半圆周,设0()()d xF x f t t =⎰,则下列结论正确的是:(A )3(3)(2)4F F =--(B)5(3)(2)4F F =(C )3(3)(2)4F F =(D )5(3)(2)4F F =--[](4)设函数(,)f x y 连续,则二次积分1sin 2d (,)d xx f x y y ππ⎰⎰等于(A )10arcsin d (,)d yy f x y x ππ+⎰⎰(B )10arcsin d (,)d yy f x y x ππ-⎰⎰(C )1arcsin 02d (,)d yy f x y x ππ+⎰⎰(D )1arcsin 02d (,)d yy f x y x ππ-⎰⎰(5)设某商品的需求函数为1602Q P =-,其中,Q P 分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是(A)10.(B)20(C)30.(D)40.[] (6)曲线()1ln 1e x y x=++的渐近线的条数为 (A )0.(B )1.(C )2.(D )3.[](7)设向量组123,,ααα线性无关,则下列向量组线性相关的是线性相关,则 (A)122331,,αααααα---(B)122331,,αααααα+++(C)1223312,2,2αααααα---. (D)1223312,2,2αααααα+++.[](8)设矩阵211100121,010112000A B --⎛⎫⎛⎫ ⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,则A 与B(A)合同且相似(B )合同,但不相似.(C)不合同,但相似.(D)既不合同也不相似[](9)某人向同一目标独立重复射击,每次射击命中目标的概率为(01)p p <<,则此人第4次射击恰好第2次击中目标的概率为 (A )23(1)p p -.(B )26(1)p p -. (C )223(1)p p -.(D )226(1)p p -[](10)设随机变量(),X Y 服从二维正态分布,且X 与Y 不相关,(),()X Y f x f y 分别表示,X Y 的概率密度,则在Y y =的条件下,X 的条件概率密度|(|)X Y f x y 为 (A)()X f x .(B)()Y f y .(C)()()X Y f x f y .(D)()()X Y f x f y .[] 二、填空题:11~16小题,每小题4分,共24分.把答案填在题中横线上.(11)3231lim (sin cos )2x x x x x x x →+∞+++=+__________.(12)设函数123y x =+,则()(0)n y =________.(13)设(,)f u v 是二元可微函数,,y x z f x y ⎛⎫= ⎪⎝⎭,则z zx y x y ∂∂-=∂∂__________.(14)微分方程3d 1d 2y y y x x x ⎛⎫=- ⎪⎝⎭满足11x y ==的特解为y =________.(15)设矩阵0100001000010000A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,则3A 的秩为 .(16)在区间()0,1中随机地取两个数,则这两个数之差的绝对值小于12的概率为 .三、解答题:17~24小题,共86分.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设函数()y y x =由方程ln 0y y x y -+=确定,试判断曲线()y y x =在点(1,1)附近的凹凸性.(18)(本题满分11分)设二元函数2,||||1(,)1||||2x x y f x y x y ⎧+≤⎪=<+≤,计算二重积分D (,)d f x y σ⎰⎰,其中(){,||||D x y x y =+(19)(本题满分11分)设函数(),()f x g x 在[],a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==,证明:存在(,)a b ξ∈,使得()()f g ξξ''''=. (20)(本题满分10分)将函数21()34f x x x =--展开成1x -的幂级数,并指出其收敛区间.(21)(本题满分11分)设线性方程组123123212302040x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩与方程12321x x x a ++=-有公共解,求a的值及所有公共解. (22)(本题满分11分)设三阶对称矩阵A 的特征向量值1231,2,2λλλ===-,T 1(1,1,1)α=-是A 的属于1λ的一个特征向量,记534B A A E =-+,其中E 为3阶单位矩阵. (I )验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (II )求矩阵B . (23)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,01(,)0,x y x y f x y --<<<<⎧=⎨⎩其他. (I )求{}2P X Y >; (II)求Z X Y =+的概率密度.20GG答案1….【分析】本题为等价无穷小的判定,利用定义或等价无穷小代换即可.【详解】当0x+→时,1x--,112x,()211122x x-=,故用排除法可得正确选项为(B).事实上,000lim lim lim1x xx+++→→→==,或ln(1)ln(1()x x o x o o x =+-=++.所以应选(B)【评注】本题为关于无穷小量比较的基本题型,利用等价无穷小代换可简化计算. 类似例题见《数学复习指南》(经济类)第一篇【例1.54】【例1.55】. 2…….【分析】本题考查可导的极限定义及连续与可导的关系.由于题设条件含有抽象函数,本题最简便的方法是用赋值法求解,即取符合题设条件的特殊函数()f x去进行判断,然后选择正确选项.【详解】取()||f x x=,则()()l i m0xf x f xx→--=,但()f x在0x=不可导,故选(D). 事实上,在(A),(B)两项中,因为分母的极限为0,所以分子的极限也必须为0,则可推得(0)0f=.在(C)中,()limxf xx→存在,则00()(0)()(0)0,(0)lim lim0x xf x f f xf fx x→→-'====-,所以(C)项正确,故选(D)【评注】对于题设条件含抽象函数或备选项为抽象函数形式结果以及数值型结果的选择题,用赋值法求解往往能收到奇效.类似例题见文登强化班笔记《高等数学》第2讲【例2】,文登07考研模拟试题数学二第一套(2).3…….【分析】本题实质上是求分段函数的定积分.【详解】利用定积分的几何意义,可得221113(3)12228F πππ⎛⎫=-= ⎪⎝⎭,211(2)222F ππ==,202202011(2)()d ()d ()d 122F f x x f x x f x x ππ---==-===⎰⎰⎰.所以33(3)(2)(2)44F F F ==-,故选(C ).【评注】本题属基本题型.本题利用定积分的几何意义比较简便.类似例题见文登强化班笔记《高等数学》第5讲【例17】和【例18】,《数学复习指南》(经济类)第一篇【例3.38】【例3.40】.4…….【分析】本题更换二次积分的积分次序,先根据二次积分确定积分区域,然后写出新的二次积分. 【详解】由题设可知,,sin 12x x y ππ≤≤≤≤,则01,arcsin y y x ππ≤≤-≤≤,故应选(B ).【评注】本题为基础题型.画图更易看出.类似例题见文登强化班笔记《高等数学》第10讲【例5】,《数学复习指南》(经济类)第一篇【例7.5】,【例7.6】. 5…….【分析】本题考查需求弹性的概念. 【详解】选(D ). 商品需求弹性的绝对值等于d 2140d 1602Q P P P P Q P-⋅==⇒=-, 故选(D ).【评注】需掌握微积分在经济中的应用中的边际,弹性等概念.相关公式及例题见《数学复习指南》(经济类)第一篇【例11.2】.6…….【分析】利用曲线的渐近线的求解公式求出水平渐近线,垂直渐近线和斜渐近线,然后判断.【详解】()()11lim lim ln 1e ,lim lim ln 1e 0x x x x x x y y x x →+∞→+∞→-∞→-∞⎡⎤⎡⎤=++=+∞=++=⎢⎥⎢⎥⎣⎦⎣⎦,所以0y =是曲线的水平渐近线;()001lim lim ln 1e x x x y x →→⎡⎤=++=∞⎢⎥⎣⎦,所以0x =是曲线的垂直渐近线; ()()1e ln 1e ln 1e 1e lim lim 0lim lim 11xx x x x x x x y x x x x →+∞→+∞→+∞→+∞++++==+==,[]()1lim lim ln 1e 0x x x b y x x x →+∞→+∞⎡⎤=-=++-=⎢⎥⎣⎦,所以y x =是曲线的斜渐近线.故选(D ).【评注】本题为基本题型,应熟练掌握曲线的水平渐近线,垂直渐近线和斜渐近线的求法.注意当曲线存在水平渐近线时,斜渐近线不存在.本题要注意e x 当,x x →+∞→-∞时的极限不同.类似例题见文登强化班笔记《高等数学》第6讲第4节【例12】,《数学复习指南》(经济类)第一篇【例5.30】,【例5.31】.7……..【分析】本题考查由线性无关的向量组123,,ααα构造的另一向量组123,,βββ的线性相关性.一般令()()123123,,,,A βββααα=,若0A =,则123,,βββ线性相关;若0A ≠,则123,,βββ线性无关.但考虑到本题备选项的特征,可通过简单的线性运算得到正确选项.【详解】由()()()1223310αααααα-+-+-=可知应选(A ).或者因为()()122331123101,,,,110011ααααααααα-⎛⎫⎪---=- ⎪ ⎪-⎝⎭,而1011100011--=-, 所以122331,,αααααα---线性相关,故选(A ).【评注】本题也可用赋值法求解,如取()()()TTT1231,0,0,0,1,0,0,0,1ααα===,以此求出(A ),(B ),(C ),(D )中的向量并分别组成一个矩阵,然后利用矩阵的秩或行列式是否为零可立即得到正确选项.完全类似例题见文登强化班笔记《线性代数》第3讲【例3】,《数学复习指南》(经济类)《线性代数》【例3.3】.8……【分析】本题考查矩阵的合同关系与相似关系及其之间的联系,只要求得A 的特征值,并考虑到实对称矩阵A 必可经正交变换使之相似于对角阵,便可得到答案.【详解】由2211121(3)112E A λλλλλλ--=-=--可得1233,0λλλ===,所以A 的特征值为3,3,0;而B 的特征值为1,1,0.所以A 与B 不相似,但是A 与B 的秩均为2,且正惯性指数都为2,所以A 与B合同,故选(B ).【评注】若矩阵A 与B 相似,则A 与B 具有相同的行列式,相同的秩和相同的特征值.所以通过计算A 与B 的特征值可立即排除(A )(C ).完全类似例题见《数学复习指南》(经济类)第二篇【例5.17】.9……..【分析】本题计算贝努里概型,即二项分布的概率.关键要搞清所求事件中的成功次数.【详解】p ={前三次仅有一次击中目标,第4次击中目标}12223(1)3(1)C p p p p p =-=-,故选(C ).【评注】本题属基本题型.类似例题见《数学复习指南》(经济类)第三篇【例1.29】【例1.30】 10…….【分析】本题求随机变量的条件概率密度,利用X 与Y 的独立性和公式|(,)(|)()X Y Y f x y f x y f y =可求解. 【详解】因为(),X Y 服从二维正态分布,且X 与Y 不相关,所以X 与Y 独立,所以(,)()()X Y f x y f x f y =.故|()()(,)(|)()()()X Y X Y X Y Y f x f y f x y f x y f x f y f y ===,应选(A ). 【评注】若(),X Y 服从二维正态分布,则X 与Y 不相关与X 与Y 独立是等价的. 完全类似例题和求法见文登强化班笔记《概率论与数理统计》第3讲【例3】,《数学复习指南》(经济类)第三篇第二章知识点精讲中的一(4),二(3)和【例2.38】11….【分析】本题求类未定式,可利用“抓大头法”和无穷小乘以有界量仍为无穷小的结论.【详解】因为323233110222lim lim 0,|sin cos |22112x x x x x x xx x x x x x x x →+∞→+∞++++===+<++, 所以3231lim (sin cos )02x x x x x x x →+∞+++=+.【评注】无穷小的相关性质:(1)有限个无穷小的代数和为无穷小; (2)有限个无穷小的乘积为无穷小; (3)无穷小与有界变量的乘积为无穷小.完全类似例题和求法见文登强化班笔记《高等数学》第1讲【例1】,《数学复习指南》(经济类)第一篇【例1.43】12,……..【分析】本题求函数的高阶导数,利用递推法或函数的麦克老林展开式.【详解】()212,2323y y x x '==-++,则()1(1)2!()(23)n n n n n y x x +-=+,故()1(1)2!(0)3n n n n n y +-=. 【评注】本题为基础题型.完全类似例题见文登强化班笔记《高等数学》第2讲【例21】,《数学复习指南》(经济类)第一篇【2.20】,【例2.21】.13…….【分析】本题为二元复合函数求偏导,直接利用公式即可. 【详解】利用求导公式可得1221z y f f x x y ∂''=-+∂, 1221z x f f y x y ∂''=-∂, 所以122z zy x xy f f x y x y ⎛⎫∂∂''-=-- ⎪∂∂⎝⎭. 【评注】二元复合函数求偏导时,最好设出中间变量,注意计算的正确性. 完全类似例题见文登强化班笔记《高等数学》第9讲【例8】,【例9】,《数学复习指南》(经济类)第一篇【例6.16】,【例6.17】,【例6.18】.14…..【分析】本题为齐次方程的求解,可令yu x=. 【详解】令yu x=,则原方程变为 33d 1d d d 22u u x u x u u x u x+=-⇒=-.两边积分得2111ln ln 222x C u -=--, 即222111e e y u x x x C C =⇒=,将11x y==代入左式得e C =,故满足条件的方程的特解为22e e x y x =,即y =,1e x ->. 【评注】本题为基础题型.完全类似例题见文登强化班笔记《高等数学》第7讲【例2】,【例3】,《数学复习指南》(经济类)第一篇【例9.3】.15……….【分析】先将3A 求出,然后利用定义判断其秩. 【详解】30100000100100000()10001000000000000A A r A ⎛⎫⎛⎫⎪ ⎪⎪ ⎪=⇒=⇒= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 【评注】本题为基础题型. 矩阵相关运算公式见《数学复习指南》(经济类)第二篇第二章第1节中的知识点精讲.16……….【分析】根据题意可得两个随机变量服从区间()0,1上的均匀分布,利用几何概型计算较为简便.【详解】利用几何概型计算.图如下:【评注然后利用它们的独立性求得3讲【例11】,《数学】,【例2.47】.17……..【分析】由凹凸性判别方法和隐函数的求导可得. 【详解】方程ln 0y y x y -+=两边对x 求导得ln 10y y y yy y'''+-+=, 即(2ln )1y y '+=,则1(1)2y '=. 上式两边再对x 求导得()2(2ln )0y y y y '''++=则1(1)8y ''=-,所以曲线()y y x =在点(1,1)附近是凸的.【评注】本题为基础题型.类似例题见文登强化班笔记《高等数学》第6讲【例10】,《数学复习指南》(经济类)第一篇【例5.29】.18…….【分析】由于积分区域关于,x y 轴均对称,所以利用二重积分的对称性结论简化所求积分.【详解】因为被积函数关于,x y 均为偶函数,且积分区域关于,x y 轴均对称,所以1DD (,)d (,)d f x y f x y σσ=⎰⎰⎰⎰,其中1D 为D 在第一象限内的部分.而12D 1,0,012,0,(,)d d x y x y x y x y f x y x σσσ+≤≥≥≤+≤≥≥=+⎰⎰⎰⎰⎰⎰11222000110d d d d xx x x x y x y x y --⎛⎫ ⎪=++ ⎪⎭⎰⎰⎰⎰⎰(1112=++. 所以(D1(,)d 13f x y σ=+⎰⎰.【评注】被积函数包含22y x +时,可考虑用极坐标,解答如下:1210,00,0(,)d x y x y x y x y f x yσσ≤+≤≤+≤>>>>=⎰⎰⎰⎰210r π=⎰⎰=.类似例题见文登强化班笔记《高等数学》第10讲【例1】,《数学复习指南》(经济类)第一篇【例7.3-例7.4】.19…….【分析】由所证结论()()f g ξξ''''=可联想到构造辅助函数()()()F x f x g x =-,然后根据题设条件利用罗尔定理证明.【详解】令()()()F x f x g x =-,则()F x 在[],a b 上连续,在(,)a b 内具有二阶导数且()()0F a F b ==.(1)若(),()f x g x 在(,)a b 内同一点c 取得最大值,则()()()0f c g c F c =⇒=,于是由罗尔定理可得,存在12(,),(,)a c c b ξξ∈∈,使得12()()0F F ξξ''==.再利用罗尔定理,可得存在12(,)ξξξ∈,使得()0F ξ''=,即()()f g ξξ''''=.(2)若(),()f x g x 在(,)a b 内不同点12,c c 取得最大值,则12()()f c g c M ==,于是111222()()()0,()()()0F c f c g c F c f c g c =->=-<,于是由零值定理可得,存在312(,)c c c ∈,使得3()0F c =于是由罗尔定理可得,存在1323(,),(,)a c c b ξξ∈∈,使得12()()0F F ξξ''==.再利用罗尔定理,可得,存在12(,)ξξξ∈,使得()0F ξ''=,即()()f g ξξ''''=.【评注】对命题为()()0n f ξ=的证明,一般利用以下两种方法:方法一:验证ξ为(1)()n f x -的最值或极值点,利用极值存在的必要条件或费尔马定理可得证;方法二:验证(1)()n f x -在包含x ξ=于其内的区间上满足罗尔定理条件.类似例题见文登强化班笔记《高等数学》第4讲【例7】,《数学复习指南》(经济类)第一篇【例4.5】,【例4.6】.20….【分析】本题考查函数的幂级数展开,利用间接法.【详解】211111()34(4)(1)541f x x x x x x x ⎛⎫===- ⎪---+-+⎝⎭,而10011111(1),2414333313nnn n n x x x x x ∞∞+==--⎛⎫=-⋅=-=--<< ⎪--⎝⎭-∑∑, 10011111(1)(1),1311222212n n nn n n x x x x x ∞∞+==---⎛⎫=⋅=-=-<< ⎪-+⎝⎭+∑∑, 所以1111000(1)(1)(1)1(1)()(1)3232n n n n n n n n n n n n x x f x x ∞∞∞++++===⎡⎤----=-+=-+-⎢⎥⎣⎦∑∑∑, 收敛区间为13x -<<.【评注】请记住常见函数的幂级数展开.完全类似例题见文登强化班笔记《高等数学》第11讲【例13】,《数学复习指南》(经济类)第一篇【例8.15】.21…..【分析】将方程组和方程合并,然后利用非齐次线性方程有解的判定条件求得a .【详解】将方程组和方程合并,后可得线性方程组 123123************21x x x x x ax x x a x xx x a ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩ 其系数矩阵 22111011101200110140031012110101a a A a a a a ⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=→ ⎪ ⎪- ⎪ ⎪--⎝⎭⎝⎭. 21110111001100110003200011001100(1)(2)0a a a a a a a a a a ⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪-+-- ⎪ ⎪----⎝⎭⎝⎭. 显然,当1,2a a ≠≠时无公共解. 当1a =时,可求得公共解为()T1,0,1k ξ=-,k 为任意常数; 当2a =时,可求得公共解为()T0,1,1ξ=-. 【评注】本题为基础题型,考查非齐次线性方程组解的判定和结构.完全类似例题见文登强化班笔记《线性代数》第4讲【例8】,《数学复习指南》(经济类)第二篇【例4.12】,【例4.15】.22……【分析】本题考查实对称矩阵特征值和特征向量的概念和性质.【详解】(I )()()5353531111111111144412B A A E ααλαλααλλαα=-+=-+=-+=-, 则1α是矩阵B 的属于-2的特征向量.同理可得()532222241B αλλαα=-+=,()533333341B αλλαα=-+=.所以B 的全部特征值为2,1,1设B 的属于1的特征向量为T 2123(,,)x x x α=,显然B 为对称矩阵,所以根据不同特征值所对应的特征向量正交,可得T 120αα=.即1230x x x -+=,解方程组可得B 的属于1的特征向量T T 212(1,0,1)(0,1,0)k k α=-+,其中12,k k 为不全为零的任意常数.由前可知B 的属于-2的特征向量为T 3(1,1,1)k -,其中3k 不为零. (II )令101011101P ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,由(Ⅰ)可得-1100010002P BP ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则 011101110B -⎛⎫ ⎪= ⎪ ⎪-⎝⎭. 【评注】本题主要考查求抽象矩阵的特征值和特征向量,此类问题一般用定义求解,要想方设法将题设条件转化为Ax x λ=的形式.请记住以下结论:(1)设λ是方阵A 的特征值,则21*,,,(),,kA aA bE A f A A A -+分别有特征值21,,,(),,(A k a b f A λλλλλλ+可逆),且对应的特征向量是相同的. (2)对实对称矩阵来讲,不同特征值所对应的特征向量一定是正交的完全类似例题见文登强化班笔记《线性代数》第5讲【例12】,《数学复习指南》(经济类)第二篇【例5.24】23…….【分析】(I )可化为二重积分计算;(II)利用卷积公式可得.【详解】(I ){}()()12002722d d d 2d 24x x y P X Y x y x y x x y y >>=--=--=⎰⎰⎰⎰. (II)利用卷积公式可得()(,)d Z f z f x z x x +∞-∞=-⎰ 20121(2)d ,01201(2)d ,12(2)120,0,z z x x z z z z x x z z z -⎧-<<⎪⎧-<<⎪⎪=-<<=-≤<⎨⎨⎪⎪⎩⎪⎩⎰⎰其他其他. 【评注】(II)也可先求出分布函数,然后求导得概率密度.完全类似例题见文登强化班笔记《概率论与数理统计》第3讲【例10】,【例11】,《数学复习指南》(经济类)第三篇【例2.38】,【例2.44】.(24)(本题满分11分)设总体X 的概率密度为 1,021(),12(1)0,x f x x θθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他 12(,,X X …,)n X 为来自总体X 的简单随机样本,X 是样本均值. (I )求参数θ的矩估计量θ;(II )判断24X 是否为2θ的无偏估计量,并说明理由.【分析】利用EX X =求(I );判断()?224E Xθ=. 【详解】(I )()101()d d d 22124x x EX xf x x x x θθθθθ+∞-∞==+=+-⎰⎰⎰, 令112242X X θθ=+⇒=-. (II )()()()()222214444E X E X DX EX DX EX n ⎡⎤⎡⎤==+=+⎢⎥⎣⎦⎣⎦, 而()22212201()d d d 221336x x EX x f x x x x θθθθθθ+∞-∞==+=++-⎰⎰⎰, 所以()2225121248DX EX EX θθ=-=-+, 所以()()222211115441133412E X DX EX n n n n θθθ⎡⎤⎛⎫⎛⎫⎛⎫=+=++-++≠ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭, 故24X 不是2θ的无偏估计量.【评注】要熟练掌握总体未知参数点估计的矩估计法,最大似然估计法和区间估计法.完全类似例题见文登强化班笔记《概率论与数理统计》第5讲【例3】,《数学复习指南》(经济类)第三篇【例6.3,例6.6,例6.9】,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国硕士研究生入学统一考试数学三试题答案答案速查: 一、选择题二、填空题三、解答题(17)曲线()y y x =在点(1,1)附近是凸的. (18)11)3+ (19)略(20)11011(1)()()(1),(1,3)532n nn n n f x x x ∞++=-=-+-∈-∑(21)1a =,此时所有公共解为[1,0,1]Tx k =-,其中k 为任意常数;2a =,此时唯一公共解为[0,1,1]Tx =-(22)(Ⅰ)B 的特征值为-2,1,1;B 的属于特征值-2的全部特征向量为11k α(1k 为非零的任意常数),B 的属于特征值1的全部特征向量为2233k k αα+(23,k k 为不全为零的任意常数)(Ⅱ)011101110B -⎛⎫ ⎪= ⎪ ⎪-⎝⎭(23)(Ⅰ){}7224P X Y >=;(Ⅱ)2(2),01,()(2),12,0,Z z z z f z z z -<<⎧⎪=-≤<⎨⎪⎩其他(24)(Ⅰ)1ˆ=22X θ-;(Ⅱ)24()X 不是2θ的无偏估计量 一、选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内) (1)【答案】(B ) 【解析】利用当0x →时的等价无穷小关系ln(1)x x +:,即知当0x +→时ln(1:故选B..(2)【答案】 (D)【解析】方法1:论证法,由0()limx f x x→存在及()f x 在0x =处连续,所以00()(0)lim ()lim()0,x x f x f f x x x→→===(A )正确;由于00()(0)()lim lim0x x f x f f x x x→→-=-存在,所以'(0)f 存在.(C )也正确; 由()f x 在0x =处连续,所以()f x -在0x =处连续,从而()()f x f x +-在0x =处连续,将它看成(A )中的()f x ,从而推知(0)(0)0,f f +-=即有2(0)0,(0)0f f ==.所以(B )正确,此题选择(D ).方法2:举例法,举例说明(D )不正确.例如取()f x x =,有00()()lim lim 00x x x x f x f x x x→→----==- 而'(0)f 并不存在. (D )不正确,选(D ). (3)【答案】(C )【解析】由题给条件知,()f x 为x 的奇函数,故()F x 为x 的偶函数,所以(3)(3).F F -=而323223(3)()()(),288(2)(),2F f t dt f t dt f t dt F f t dt ππππ==+=-===⎰⎰⎰⎰所以(3)F - 3(2)4F =,选择C (4)【答案】(B )【解析】画出该二次积分所对应的积分区域D ,交换为先x 后y11sin 0sin 2(,)(,)xarc ydx f x y dy dy f x y dx ππππ-=⎰⎰⎰⎰, 所以选择(B).(5)【答案】(D ) 【解析】'()22.()16021602Q P PP P Q P P P-===--需求弹性 由题知,它等于1,解之,40.P =所以选(D)(6)【答案】(D ) 【解析】001lim lim ln(1),x x x y e x →→⎛⎫=++=∞⎪⎝⎭所以0x =是一条垂直渐近线;1lim lim ln(1)0,x x x y e x →-∞→-∞⎛⎫=++= ⎪⎝⎭所以0y =是沿x →-∞方向的一条水平渐近线; 又 21ln(1)ln(1)1lim lim lim lim 1,xx x x x x x x e y e e e x x x x x →+∞→+∞→+∞→+∞⎛⎫+++=+== ⎪⎝⎭洛 ()()1lim lim ln(1)lim ln(1)x x x x x y x e x e x x →+∞→+∞→+∞⎛⎫-=++-=+- ⎪⎝⎭ 1lim ln()lim ln(1)0,xx x x x e e e-→+∞→+∞+=+== 所以y x =也是一条渐近线,所以共有3条,选择(D ) (7)【答案】(A)【解析】根据线性相关的定义,若存在不全为零的数123,,k k k ,使得1122330k k k ααα++=成立.则称123,,ααα线性相关.因1223310αααααα-+-+-=, 故122331αααααα---,,线性相关,所以选择(A ). (8)【答案】(B )【解析】2111111111211210311211203E A λλλλλλλλλλ--=-=-=----()230λλ=-=因为A 的特征值是3,3,0,B 的特征值1,1,0,因为特征值不等,故不相似. A 与B 有相同的正惯性指数2,秩都等于2,所以A 与B 合同,应选(B ).(9)【答案】(C)【解析】根据独立重复的贝努利试验,前3次试验中有1次成功2次失败.其概率必为123(1).C p p -再加上第4次是成功的,其概率为p .根据独立性,第4次射击为第二次命中目标的概率为12223(1)3(1).C p p p p p -=-g 所以应选(C ).(10)【答案】(A)【解析】由于二维正态的(,)X Y 中X 与Y 不相关,故X 与Y 独立,且(,)()()X Y f x y f x f y =.根据条件概率密度的定义,当在Y y =条件下,如果()0,Y f y ≠则(,)()()X Y Y f x y f x y f y =()()()()X Y X Y f x f y f x f y ==.现()Y f y 显然不为0,因此()().X X Y f x y f x = 应选(A).二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上 (11)【答案】 0【解析】方法1:由洛必达法则,()32223213262lim lim lim 22ln 232ln 26x x xx x x x x x x x x x x→+∞→+∞→+∞++++==+++ ()36lim0,2ln 26xx →+∞==+而(sin cos )x x +是有界变量,所以3231lim (sin cos )0.2x x x x x x x →∞+++=+ 方法2:32133311lim(sin cos )lim (sin cos )221x x x x x x x x x x x x x x ---→+∞→+∞+++++=+++ 而 233222ln 22(ln 2)lim 2lim lim lim 36x x x xx x x x x x x x-→+∞→+∞→+∞→+∞===32(ln 2)lim 6x x →+∞==+∞, 所以 3231lim(sin cos )0.2x x x x x x x →∞+++=+(12)【答案】1(1)2!3n n n n +-【解析】()()()1232123,'(1)223,''(1)(2)223,,23y x y x y x x ---==+=-+=--++L由数学归纳法知()1()(1)2!23,n n nnyn x --=-+()1(1)2!(0)3n n n n n y +-= (13)【答案】''122()y x f f x y-+【解析】12122211'';'',z y z x f f f f x x y y x y ⎛⎫∂∂⎛⎫=⋅-+⋅=⋅+⋅- ⎪ ⎪∂∂⎝⎭⎝⎭''122()z z y xxy f f x y x y∂∂-=-+∂∂ (14)【解析】典型类型按标准解法.命,y ux =有,dy duu x dx dx=+原方程化为 31,2du u x u u dx +=- 即 32,du dx u x =-积分,得 21ln x C u=+化为y ,得 22ln x y x C=+解出y =再以(1,1)代入,1,C =所以得特解y =.(15)【答案】 1 【解析】2010001000010*********001000100010000000000000000A ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪== ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭32001001000001000100100000000000010000000000000000A A A ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⋅==⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭显然()31.r A=(16) 【答案】34【解析】所有可能随机在区间(0,1)中随机取的两个数,X Y ,12X Y -<。
在坐标轴上画出图形,所求概率为211132.214D P X Y ⎛⎫- ⎪⎛⎫⎝⎭-<=== ⎪⎝⎭的面积单位正方形面积其中D 是由12y x -=±,1x =,1y =以及x 、y 轴围成的图形.三、解答题:17-24小题,共86分。
请将解答写在答题纸指定的位置上。
解答应写出文字说明、证明过程或演算步骤。
(17)【解析】对方程两边求导得'''1ln 2102ln y y y y y+-=⇒=+再两边求导得'2''''''1()(2ln )0(2ln )y y y y y y y y y ++=⇒=-+ 求在(1,1)点的值'21''1()101(2ln1)8x x y y ===-=-<+所以()y y x =在点(1,1)处是凸的.(18)【解析】由区域对称性和被积函数的奇偶性有(,)Df x y d σ⎰⎰14(,)D f x y d σ=⎰⎰其中1D 为D 在第一象限的部分,而11112(,)(,)(,)D D D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰其中{}{}1112(,)01,01(,)12,0,0D x y y x x D x y x y x y =≤≤-≤≤=≤+≤≤≥因为111121(,)12D D f x y d x d σσ==⎰⎰⎰⎰1212(,)3)D D f x y d σσ==⎰⎰所以原式11)3=+.(19)【解析】(Ⅰ)因()f x 与()g x 在(,)a b 内存在相等的最大值,若两个函数能够在同一点(,)c a b ∈取得最大值,则()()f c g c =,取c 作为η即可.否则两个函数必在两个不同的点x c =与x d =处分别取得最大值.为确定起见,设()f c 是()f x 在[,]a b 上的最大值,()g d是()g x 在[,]a b 上的最大值,且a c d b <<<,不难得出()()f c g c >且()()f d g d <.设()()()F x f x g x =-,则()F x 在[,]a b 上连续,且()0()F c F d >>成立.由闭区间上连续函数取中间值性质知存在(,)(,)c d a b η∈⊂,使()0F η=,即()()f g ηη=当()f d 是()f x 在[,]a b 上的最大值且()g c 是()g x 在[,]a b 上的最大值时可类似证明存在(,)(,)c d a b η∈⊂使得()0F η=,即()()f g ηη=(Ⅱ)设()()()F x f x g x =-.由题设与(Ⅰ)的结论知,()F x 在[,]a b 上连续,(,)a b 内二次可导,且存在(,)a b η∈使()()()0F a F F b η===.分别在[,]a η与[,]b η上对()F x 应用罗尔定理可得,存在(,)a αη∈,(,)b βη∈使()()0F F αβ''==.由于()F x '在[,]αβ上满足罗尔定理的全部条件,按罗尔定理知存在(,)(,)a b ξαβ∈⊂,使()0F ξ''=,即()()f g ξξ''''=(20)【解析】1111()()(4)(1)51312f x x x x x ==--+---+记 10111111()()(),131********()3nn x f x x x x ∞=-==-=--<---∑20111111()()(1)(),12151101021()2n nn x f x x x x ∞=-===--<-++∑则11000111111(1)()()(1)()()(1),(1,3)153102532n n n nn n n n n n x x f x x x ∞∞∞++===---=---=-+-∈-∑∑∑(21)【解析】方法1:因为方程组(1)、(2)有公共解,将方程组联立1231232123123020(3)4021x x x x x ax x x a x x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩并对联立方程组的增广矩阵作初等行变换2211101110111012001100101()00111400310000(1)(2)12110101a a a A b a aa a a a a a ⎛⎫⎛⎫⎡⎤⎪ ⎪⎢⎥--⎪ ⎪⎢⎥=→→ ⎪ ⎪⎢⎥--- ⎪ ⎪⎢⎥⎪ ⎪----⎣⎦⎝⎭⎝⎭ 当1a =时,联立方程组(3)的同解方程组为12320x x x x ++=⎧⎨=⎩解得两方程组的公共解为[1,0,1]Tk -,其中k 是任意常数.当2a =时, 联立方程组(3)的同解方程组为12323011x x x x x ++=⎧⎪=⎨⎪=-⎩解得两方程的公共解为[0,1,1]T-.方法2:将方程组(1)的系数矩阵A 作初等行变换221111111111201101103100(1)(2)14A a a a a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=→-→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦ 当1a =时,方程组(1)的同解方程组为12320x x x x ++=⎧⎨=⎩解得(1)的通解为[1,0,1]Tk -,其中k 是任意常数.将通解[1,0,1]Tk -代入方程(2) 0()0k k ++-=.对任意的k 成立,故当1a =时,[1,0,1]T k -是(1)、(2)的公共解. 当2a =时,方程组(1)的同解方程组为1232300x x x x x ++=⎧⎨+=⎩解得(1)的通解为[0,1,1]Tμ-,其中μ是任意常数. 将通解[0,1,1]Tμ-代入方程(2)21μμ-=.得1μ=,故当2a =时,(1)和(2)的公共解为[0,1,1]T-.(22)【解析】(Ⅰ)可以很容易验证111(1,2,3...)n nA n αλα==,于是 5353111111(4)(41)2B A A E ααλλαα=-+=-+=-于是1α是矩阵B 的特征向量.B 的特征值可以由A 的特征值以及B 与A 的关系得到,53()()4()1B A A λλλ=-+所以B 的全部特征值为-2,1,1.前面已经求得1α为B 的属于-2的特征值,而A 为实对称矩阵,于是根据B 与A 的关系可以知道B 也是实对称矩阵,于是属于不同的特征值的特征向量正交,设B 的属于1的特征向量为123(,,)Tx x x ,所以有方程如下:1230x x x -+=于是求得B 的属于1的特征向量为23(1,0,1),(1,1,0)T Tαα=-=(Ⅱ)令矩阵[]123111,,101110P ααα-⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦,则1(2,1,1)P BP diag -=-,所以1111333111112(2,1,1)101(2,1,1)333110121333B P diag P diag -⎡⎤-⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=⋅-⋅=---⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦011101110-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦(23)(本题满分11分) 【解析】(Ⅰ){}2(2)DP X Y x y dxdy >=--⎰⎰,其中D 为01,01x y <<<<中2x y >的那部分区域;求此二重积分可得{}112002(2)x P X Y dx x y dy >=--⎰⎰1205()8x x dx =-⎰724= (Ⅱ){}{}()Z F z P Z z P X Y z =≤=+≤ 当0z ≤时,()0Z F z =; 当2z ≥时,()1Z F z =;当01z <<时,32001()(2)3zz xZ F z dx x y dy z z -=--=-+⎰⎰当12z <<时,1132115()1(2)2433Z z z x F z dx x y dy z z z --=---=-+-⎰⎰所以 222,01()44,120,Z z z z f z z z z ⎧-<<⎪=-+≤<⎨⎪⎩其他(24)(本题满分11分) 【解析】(Ⅰ)记EX μ=,则1022(1)x x EX dx dx θθμθθ==+-⎰⎰1142θ=+解出122θμ=-,因此参数θ的矩估计量为$122X θ=-; (Ⅱ)只须验证2(4)E X 是否为2θ即可,而22221(4)4()4(())4(())E X E X DX E X DX EX n==+=+,而 1142EX θ=+,221(12)6EX θθ=++, 22251()481212DX EX EX θθ=-=-+,于是222533131(4)1233n n n E X n n nθθθ+-+=++≠因此24X 不是为2θ的无偏估计量.。