电子教案-信号与系统第四版(含习题解答)-7.2
《信号与系统(第四版)》习题详解图文

故f(t)与{c0, c1, …, cN}一一对应。
7
3.3 设
第3章 连续信号与系统的频域分析
试问函数组{ξ1(t),ξ2(t),ξ3(t),ξ4(t)}在(0,4)区间上是否 为正交函数组,是否为归一化正交函数组,是否为完备正交函 数组,并用它们的线性组合精确地表示题图 3.2 所示函数f(t)。
题图 3.10
51
第3章 连续信号与系统的频域分析 52
第3章 连续信号与系统的频域分析 53
第3章 连续信号与系统的频域分析 54
第3章 连续信号与系统的频域分析 55
第3章 连续信号与系统的频域分析 56
第3章 连续信号与系统的频域分析 57
第3章 连续信号与系统的频域分析
题解图 3.19-1
8
第3章 连续信号与系统的频域分析
题图 3.2
9
第3章 连续信号与系统的频域分析
解 据ξi(t)的定义式可知ξ1(t)、ξ2(t)、ξ3(t)、ξ4(t)的波形如题 解图3.3-1所示。
题解图 3.3-1
10
不难得到:
第3章 连续信号与系统的频域分析
可知在(0,4)区间ξi(t)为归一化正交函数集,从而有
激励信号为f(t)。试证明系统的响应y(t)=-f(t)。
69
证 因为
第3章 连续信号与系统的频域分析
所以
即
70
系统函数
第3章 连续信号与系统的频域分析
故
因此
71
第3章 连续信号与系统的频域分析
3.23 设f(t)的傅里叶变换为F(jω),且 试在K≥ωm条件下化简下式:
72
第3章 连续信号与系统的频域分析 73
107
信号与系统(第四版)第四章课后答案

第5-3页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.1 拉普拉斯变换
一、从傅里叶变换到拉普拉斯变换
有些函数不满足绝对可积条件,求解傅里叶变换困难。 为此,可用一衰减因子e-t(为实常数)乘信号f(t) ,适当 选取的值,使乘积信号f(t) e-t当t∞时信号幅度趋近于 0 ,从而使f(t) e-t的傅里叶变换存在。
0
β
σ
第5-7页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.1 拉普拉斯变换
例3 双边信号求其拉普拉斯变换。
e t , t 0 f 3 (t ) f1 (t ) f 2 (t ) t e , t 0
求其拉普拉斯变换。
解 其双边拉普拉斯变换 F (s)=F (s)+F (s) b b1 b2
第5-10页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.1 拉普拉斯变换
四、常见函数的单边拉普拉斯变换
1. (t ) 1, 2.( t) 或1 3. ( t ) s, 4. 指数信号e
1
s
, 0
1 s s0
s0t
令s0 0
第5-12页
(t )
■
1
s
, 0
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.1 拉普拉斯变换
五、单边拉氏变换与傅里叶变换的关系
F ( s) f (t ) e st d t
0
Re[s]>0
F (j ) f (t ) e
信号与线性系统分析(吴大正第四版)第七章习题答案

7.3 如图7-5的RC 带通滤波电路,求其电压比函数)()()(12s U s U s H 及其零、极点。
7.7 连续系统a 和b ,其系统函数)(s H 的零点、极点分布如图7-12所示,且已知当∞→s 时,1)(=∞H 。
(1)求出系统函数)(s H 的表达式。
(2)写出幅频响应)(ωj H 的表达式。
7.10 图7-17所示电路的输入阻抗函数)()()(11s I s U s Z =的零点在-2,极点在31j ±-,且21)0(=Z ,求R 、L 、C 的值。
7.14 如图7-27所示的离散系统,已知其系统函数的零点在2,极点在-0.6,求各系数a,b。
7.18 图7-29所示连续系统的系数如下,判断该系统是否稳定。
(1)3,210==a a ; (2)3,210-=-=a a ; (3)3,210-==a a 。
7.19 图7-30所示离散系统的系数如下,判断该系统是否稳定。
(1)1,2110-==a a ; (2)1,2110==a a ;(3)1,2110=-=a a 。
7.20 图7-31所示为反馈系统,已知44)(2++=s s ss G ,K 为常数。
为使系统稳定,试确定K 值的范围。
7.26 已知某离散系统的差分方程为)1()2()1(5.1)(-=---+k f k y k y k y(1) 若该系统为因果系统,求系统的单位序列响应h(k)。
(2) 若该系统为稳定系统,求系统的单位序列响应h(k),并计算输入)()5.0()(k k f k ε-=时的零状态响应)(k y zs 。
7.28 求图7-36所示连续系统的系统函数)(sH。
7.30 画出图7-40所示的信号流图,求出其系统函数)(sH。
解(a)由s域系统框图可得系统的信号流图如图7-41(a)。
流图中有一个回路。
其增益为(b)由s 域系统框图可得系统的信号流图如图7-41(b)。
流图中有一个回路。
信号与线性系统分析第四版答案

专业课习题解析课程西安电子科技大学844信号与系统专业课习题解析课程第1讲第一章信号与系统(一)专业课习题解析课程第2讲第一章信号与系统(二)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))fεt=(sin)(t(5))trf=(sin)(t(7))t(kf kε=)(2(10))f kεk-=(k+(])1(1[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
信号答案第四版

专业课习题解析课程 西安电子科技大学 844信号与系统 专业课习题解析课程第2讲第一章 信号与系统(二) 1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f =(7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为(2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))(sin )(t r t f =(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
教案信号与系统

信号与系统授课教案一、授课内容:1.学科名称:信号与线性系统分析(第四版)2.授课题目:2.1 LTI连续系统的响应:微分方程经典解法和初始值0+的求法。
3.教学形式:讲授+课堂练习4.授课教师:X X X5.学时:1二、教学目的:1.掌握连续时间系统微分方程的建立与微分方程经典解法。
2.掌握系统起始点的跳变,0+和0-的求解。
三、教学重点:微分方程的求解,起始点状态的转换。
四、难点分析及对策:难点1:微分方程的建立难点在于有电路定理推导并建立微分方程,这一部分内容属于电路理论的基础知识,但是由于电路理论中对相对复杂电路的分析与计算过程比较繁琐,计算量较大,有的电路甚至会涉及到多变量方程组求解,多种电路定理的应用,因此学生大多觉得学习过程比较困难。
解决方法:主要进行举例分析。
难点2:连续时间系统中起始点的跳变,即从0-到0+的转换过程的求解是一个难点。
解决办法:以例题进行详细讲解并布置相关习题多加练习。
五、教学过程:(一)导课:对第一张内容简单回顾一下,以介绍本节课的教学目的和要求,以及主要知识点和重点的导课方式,进入这节课的教学内容。
(二)教学内容:LTI连续系统的时域分析过程可以理解为建立并求解线性微分方程,因其分析过程涉及的函数变量均为时间t,故称为时域分析法。
本章知识的前期预备知识为高等数学的线性微分方程的求解,后续内容是连续时间系统的频域分析——傅里叶变换,连续时间系统的S 域分析——拉氏变换。
因此,本章是知识的学习非常重要。
主要知识点如下:(1)经典法求解微分方程主要包括:a.微分方程的建立b.微分方程的经典法求解(2)关于0-与0+主要包括:从已知的初始状态y (j)(0-)设法求得y (j)(0+)LTI 连续系统的响应1.微分方程的经典解法LTI 连续系统可以由常系数线性微分方程来描述。
例如:u C (t ))()(d )(d d )(d 22t u t u tt u RC t t u LC S C C C =++ 22d ()d ()11()()d d C C C S u t u t R u t u t t L t LC LC ++=二阶常系数线性微分方程抽去具有的物理含义,可写成100''()'()()()y t a y t a y t b f t ++=一般LTI 连续系统常系数线性微分方程通式可写为:y (n)(t) + a n-1y(n-1)(t) + …+ a 1y (1)(t) + a 0y(t) = b m f (m)(t) + b m-1f(m-1)(t) + …+ b 1f (1)(t) + b 0f(t) 方程解的形式: y(t)(全解) =y h (t)(齐次解) +y p (t)(特解)(1)齐次解齐次解是齐次微分方程y(n)+a n-1y(n-1)+…+a1y(1)(t)+a0y(t)=0 的解。
电子教案《信号与系统》(第四版_燕庆明)(含习题解答)信号与系统第四版习题解答

也可以利用迟延性质计算该卷积。因为
(t) *(t)=t(t)
f1(tt1) *f2(tt2)=f(tt1t2)
故对本题,有
(t+ 3 ) *(t5 )=(t+ 35)(t+ 35)=(t2)(t2)
两种方法结果一致。
(c)tet(t)*(t)= [tet(t)]= (ettet)(t)
题2-1图
解由图示,有
又
故
从而得
2-2设有二阶系统方程
在某起始状态下的0+起始值为
试求零输入响应。
解由特征方程
2+ 4+ 4 =0
得1=2=2
则零输入响应形式为
由于
yzi( 0+) =A1= 1
2A1+A2= 2
所以
A2= 4
故有
2-3设有如下函数f(t),试分别画出它们的波形。
(a)f(t) = 2(t1 )2(t2 )
第5章
5-1求下列函数的单边拉氏变换。
(1)
(2)
(3)
解(1)
(2)
(3)
5-2求下列题5-2图示各信号的拉氏变换。
题5-2图
解(a)因为
而
故
(b)因为
又因为
故有
5-3利用微积分性质,求题5-3所示信号的拉氏变换。
题5-3图
解先对f(t)求导,则
故对应的变换
所以
5-4用部分分式法求下列象函数的拉氏反变换。
它们的频谱变化分别如图p4-8所示,设C>2。
图p4-8
4-9如题4-9图所示系统,设输入信号f(t)的频谱F()和系统特性H1()、H2()均给定,试画出y(t)的频谱。
电子教案-信号与系统第四版(含习题解答)-信号与系统电子教案

第7章 离散系统的时域分析 7.1 离散信号与离散系统 7.2 卷积和 Z变换的主要性质 8.3 系统的Z域分析 8.4 系统函数H(Z)与稳定性 8.5 数字滤波器的概念
← 返回总目录 ← 返回上一页 ← 返回本讲第一页 ← 结束本讲放映
目录
第1章 基础概念 1.1 历史的回顾 1.2 应用领域 1.3 信号的概念 1.4 基本信号和信号处理 1.5 系统的概念 1.6 线性时不变系统
第2章 连续系统的时域分析
2.1 系统的微分方程及其响应 2.2 阶跃信号与阶跃响应 2.3 冲激信号与冲激响应 2.4 卷积及其应用 2.5 二阶系统的分析
普通高等教育“十一五”国家级规划教材
(高职高专辅助教学媒体)
燕庆明 主编
高等教育出版社 高等教育电子音像出版社
2007年
前言
“信号与系统”课程是高职高专院校电子信息类各专业的必修课,是“电 路分析”课程后的又一门重要的主干课程。为了帮助教师组织教学,提高教 学效率,我们以教材《信号与系统》(第4版)(燕庆明主编,高等教育出版 社,2007.12)为蓝本,编制了信号与系统电子教案、全书习题解答、 MATLAB仿真和实验指导。参与本教案制作的有燕庆明、鲁纯熙和顾斌杰。
本教案采用PowerPoint制作,应用方便、灵活。其中共设置8章(可讲授 60学时左右)。各校教师可根据实际需要增减有关内容。使用中有何建议可 与我们联系。不当之处,请批评指正。
Tel: (0510)88392227 作者 2007.9
使用说明
运行环境:Office 2000以上。 请安装Office工具中的公式编辑器。 按钮使用: 下列按钮在单击时可超链接到相应幻灯片。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f( n ) ( n )
f( n )
h( n )
h( n k )
f( k ) h( n k )
n
f (k)h(n k)
k 0
(定义) (时不变性) (齐次性) (可加性)
f( n ) h( n )
y( n )
信号与系统 7.2-5
阶跃响应s( n )与单位响应h( n ) : 因
信号与系统 7.2-7
连续系统与离散系统的比较:
离散系统
系统由差分方程描述
响应 y (n) = yzi (n) + yzs(n) 卷积和
线性和位移不变性 以单位函数(n)为基本信号
yzs(n) = h(n) f(n)
➢ 阅读与思考:
阅读书例7-5、例7-6和例7-9。注意卷和的性质应用。
end
(卷积和,卷和)
信号与系统 7.2-2
一般情况, f1( n ) 和f2( n )的卷和(因果信号)
n
f1(n) f2 (n) f1(k) f2 (n k) k 0
卷积和的图解机理:
f1(k)f2(n1k)
图1
信号与系统 7.2-3
二、零状态响应
单位响应:在零状态条件下,由单位序列(n)引
起的响应称为单位响应,记为h( n )。 零状态响应:已知输入f( n )和h( n )时,则系统的
零状态响应为(k)h(n k) k 0
信号与系统 7.2-4
证明:
LTI
( n )
( n k )
f( k )( n k )
n
f (k) (n k)
7.2 卷积和及其应用
一、离散信号的分解与卷积和
信号与系统 7.2-1
由于离散信号
f( n ) = + f( 2 )( n + 2) + f( 1)( n + 1) + f( 0 )( n ) + f(1)( n 1) + f(2)( n 2) +
即
f (n) f (k) (n k) k
(n) (n) (n 1)
(n) (n m) m0
故
h(n) s(n) s(n 1)
s(n) h(n m) m0
信号与系统 7.2-6
三、卷积和的性质
交换律:f 1( n ) f 2( n ) = f 2( n ) f 1( n ) 结合律:f 1( n ) [ f 2( n ) f 3( n ) ] = [ f 1( n ) f 2( n ) ] f 3( n ) 分配律: f 1( n ) [ f 2( n ) + f 3( n ) ] = f 1( n ) f 2( n ) + f 1( n ) f 3( n ) 位移不变性: f 1( n m ) f 2( n r ) y( n m r )