高三02-03数学单元练习8 数列 极限 数学归纳法

合集下载

【新人教】高考数学总复习专题训练数列、极限和数学归纳法

【新人教】高考数学总复习专题训练数列、极限和数学归纳法

数列、极限和数学归纳法安徽理(11)如图所示,程序框图(算法流程图)的输出结果是____________ (11)15【命题意图】本题考查算法框图的识别,考查等差数列前n 项和. 【解析】由算法框图可知(1)1232k k T k +=++++=,若T =105,则K =14,继续执行循环体,这时k =15,T >105,所以输出的k 值为15. (18)(本小题满分12分)在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令,lg n n a T =1n ≥.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1tan tan ,n n n b a a += 求数列{}n b 的前n 项和n S .(本小题满分13分)本题考查等比和等差数列,指数和对数的运算,两角差的正切公式等基本知识,考查灵活运用知识解决问题的能力,综合运算能力和创新思维能力. 解:(I )设221,,,+n l l l 构成等比数列,其中,100,121==+n t t 则,2121++⋅⋅⋅⋅=n n n t t t t T ①, ,1221t t t t T n n n ⋅⋅⋅⋅=++ ②①×②并利用得),21(1022131+≤≤==+-+n i t t t t n i n.1,2lg ,10)()()()()2(2122112212≥+==∴=⋅⋅⋅⋅=+++++n n T a t t t t t t t t T n n n n n n n n(II )由题意和(I )中计算结果,知.1),3tan()2tan(≥+⋅+=n n n b n另一方面,利用,tan )1tan(1tan )1tan())1tan((1tan kk kk k k ⋅++-+=-+=得.11tan tan )1tan(tan )1tan(--+=⋅+kk k k 所以∑∑+==⋅+==231tan )1tan(n k n k k n k k b S23tan(1)tan tan(3)tan3(1)tan1tan1n k k k n n +=+-+-=-=-∑安徽文(7)若数列}{n a 的通项公式是()()n a n =-13-2g ,则a a a 1210++=L (A ) 15 (B) 12 (C ) -12 (D) -15(7)A 【命题意图】本题考查数列求和.属中等偏易题. 【解析】法一:分别求出前10项相加即可得出结论;法二:12349103a a a a a a +=+==+= ,故a a a 1210++=3⨯5=15L .故选A. 北京理11.在等比数列{}n a 中,若112a =,44a =-,则公比q =________;12||||||n a a a +++= ________.【解析】112a =,442a q =-⇒=-,{||}n a 是以12为首项,以2为公比的等比数列,1121||||||22n n a a a -+++=- 。

02高三二轮复习-数学归纳法、极限-教师版

02高三二轮复习-数学归纳法、极限-教师版

数学归纳法、数列极限1、知识点分布:1.用数学归纳法证明命题的步骤为:(1)验证当n 取第一个值0n 时命题成立,这是推理的基础;(2)假设当n=k ),(0*n k N k ≥∈时命题成立.在此假设下,证明当1+=k n 时命题也成立是推理的依据; (3)结论.2.探索性问题在数学归纳法中的应用(思维方式): 观察⇒归纳⇒猜想⇒推理⇒论证.3.注意:(1)用数学归纳法证明问题时首先要验证0n n =时成立,注意0n 不一定为1; (2)在第二步中,关键是要正确合理地运用归纳假设,尤其要弄清由k 到k+1时命题的变化2、考纲考点分析:理解水平:数列、项、通项、有穷、无穷、递增数列、递减数列、摆动数列、常数列 探究水平:通项、前N 项和公式,简单递推数列问题,数列四则运算,无穷等比数列求和,数学归纳法证明整除问题,猜想、推理能力1、用数学归纳法证明22>n n ,5n N n ∈≥,则第一步应验证n = . 【参考答案】n =5(注:跟学生说明0n 不一定都是1或2,要看题目)2、设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推出(1)f k +≥2)1(+k 成立”. 那么,下列命题总成立的是( )A .若1)1(<f 成立,则100)10(<f 成立;B .若4)2(<f 成立,则1)1(<f 成立;C .若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立;D .若(4)25f ≥成立,则当4k ≥时,均有2()f k k ≥成立. 【参考答案】B3、用数学归纳法证明命题:若n 是大于1的自然数,求证:n n <-++++12131211 ,从k 到+1k ,不等式左边添加的项的项数为 .【参考答案】当k n =时,左边为1214131211-+++++k . 当1+=k n 时,左边为1212211212112141312111-+++++++-++++++k k k k k .左边需要添的项为121221121211-+++++++k k kk ,项数为k k k 212121=+--+. 4、等式22222574123 (2)n n n -+++++=( ).A. n 为任何正整数时都成立B. 仅n =1,2,3时成立C. n =4时成立,n =5时不成立D. n =4时不成立,其他成立. 答案:B5、已知某个命题与正整数有关,如果当)(*N k k n ∈=时该命题成立,那么可以推得1+=k n 时该命题也成立.现已知5=n 时该命题不成立,则( ) A 4=n 时该命题成立 B 6=n 时该命题不成立C 4=n 时该命题不成立D 6=n 时该命题成立答案:C6、用数学归纳法证明2n >n 2(n ∈N,n ≥5),则第一步应验证n= ; 答案:57、(2015宝山一模理18文18)用数学归纳法证明等式1+3+5+…+(2n -1)=2n (n ∈*N )的过程中,第二步假设n =k 时等式成立,则当n =k +1时应得到( )A 、1+3+5+…+(2k +1)=2kB 、1+3+5+…+(2k +1)=2(1)k + C 、1+3+5+…+(2k +1)=2(2)k + D 、1+3+5+…+(2k +1)=2(3)k + 【答案】B8、用数学归纳法证明22111...(1)1n n a a a a a a++-++++=≠-,在验证1n =时,左端计算所得项为 . 答案:21a a ++9、若)(n f 为12+n 所表示的数字的各位数字之和,(n 为正整数),例如:因为1971142=+,17791=++,所以17)14(=f ,)()(1n f n f =,[])()(2n f f n f =, ,[])()(1n f f n f k k =+(k 为正整数),则)11(2010f =【参考答案】1110、利用数学归纳法证明“对任意偶数*()n n N ∈,n n a b -能被a b +整除”时,其第二步论证应该是 . 答案:若*2,n k k N =∈,有22k k a b -能被a b +整除,则22n k =+时,有2222k k a b ++-能被a b +整除11、用数学归纳法证明:*1111(,1)2321n n n N n +++⋅⋅⋅+<∈>-时, ,第一步验证不等式_________成立;在证明过程的第二步从n=k 到n=k+1成立时,左边增加的项数是 .答案:1122+<,k 212、数学归纳法证明:111111111......234212122n n n n n-+-++-=+++-++(*n N ∈)时,当n 从k 到1k +时等式左边增加的项为 ;等式右边增加的项为 . 答案:11111,212212122k k k k k --+++++++、13、凸n 边形内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+___________. 答案:180°14、观察下列式子:1+23212<,1+223121+<35,1+47413121222<++,…则可归纳出:___________. 答案:1+112)1(13121222++<++⋅⋅⋅++n n n15、观察以下等式:211=,22343++=,2345675++++=,……,将上述等式推广到一般情形:对n N *∈,有等式: . 【参考答案】2(1)(2)(32)(21)n n n n n ++++++-=-16、设*n N ∈,用()N n 表示n 的最大奇因数,如:()()33,105N N ==,设()()()()()123212n n n S N N N N N =++++-+,则数列{}()12n n S S n --≥的前n 项和的表达式为【参考答案】()()112112S N N =+=+=;()()()()2123411316S N N N N =+++=+++=;()()()312822S N N N =+++=;21324,16S S S S ∴-=-=,由归纳法可得:114n n n S S ---=,∴{}1n n S S --的前n 项和的表达式为:()()414441143n n-=-- 17、设f (n )=(1+)11()111)(1nn n n++⋅⋅⋅++,用数学归纳法证明f (n )≥3.在“假设n =k 时成立”后,f (k +1)与f (k )的关系是f (k +1)=f (k )·___________. 答案:(1+1)2211)(121+⋅+++k kk k18、若*111()1()2331f n n n =++++∈-N ,则对于*k ∈N ,(1)()f k f k +=+ 【分析】:分别代入n k =和1n k =+,规律看前面【解答】:令n k =,得111()12331f k k =++++-令1n k =+,得111111(1)1233133132f k k k k k +=+++++++-++111(1)()33132f k f k k k k ∴+-=++++ 答案:11133132k k k ++++ 19、用数学归纳法证明等式“123+++…()()(21)121n n n ++=++(n N *∈)”时,从1n k n k ==+到时,等式左边需要增加的是____________。

数列、数列的极限与数学归纳法

数列、数列的极限与数学归纳法

一、复习策略本章内容是中学数学的重点之一,它既具有相对的独立性,又具有一定的综合性和灵活性,也是初等数学与高等数学的一个重要的衔接点,因而历来是高考的重点.高考对本章考查比较全面,等差、等比数列,数列的极限的考查几乎每年都不会遗漏.就近五年高考试卷平均计算,本章内容在文史类中分数占13%,理工类卷中分数占11%,由此可以看出数列这一章的重要性.本章在高考中常见的试题类型及命题趋势:(1)数列中与的关系一直是高考的热点,求数列的通项公式是最为常见的题目,要切实注意与的关系.关于递推公式,在《考试说明》中的考试要求是:“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,近几年命题严格按照《考试说明》,不要求较复杂由递推公式求通项问题.(2)探索性问题在数列中考查较多,试题没有给出结论,需要考生猜出或自己找出结论,然后给以证明.探索性问题对分析问题解决问题的能力有较高的要求.(3)等差、等比数列的基本知识必考.这类考题既有选择题,填空题,又有解答题;有容易题、中等题,也有难题.(4)求和问题也是常见的试题,等差数列、等比数列及可以转化为等差、等比数列求和问题应掌握,还应该掌握一些特殊数列的求和.(5)将数列应用题转化为等差、等比数列问题也是高考中的重点和热点,从本章在高考中所占的分值来看,一年比一年多,而且多注重能力的考查.通过上述分析,在学习中应着眼于教材的基本知识和方法,不要盲目扩大,应着重做好以下几方面:理解概念,熟练运算巧用性质,灵活自如二、典例剖析考点一:数列的通项与它的前n项和例1、只能被1和它本身整除的自然数(不包括1)叫做质数.41,43,47,53,61,71,83,97是一个由8个质数组成的数列,小王正确地写出了它的一个通项公式,并根据通项公式得出数列的后几项,发现它们也是质数.试写出一个数P满足小王得出的通项公式,但它不是质数,则P=__________.解析:,.显然当时有因数41,此时.答案:1681点评:本题主要考查了根据数列的前n项写数列的通项的能力.体现了根据数列的前n项写通项只能是满足前n项但不一定满足其所有的性质的特点.例2、已知等差数列中,,前10项之和是15,又记.(1)求的通项公式;(2)求;(3)求的最大值.(参考数据:ln2=0.6931)解析:(1)由,得,.(2).(3)法一:,,由ln2=0.6931,计算>0,<0,所以极大值点满足,但,所以只需比较与的大小:,.法二:数列的通项,令,.点评:求时,也可先求出,这要正确理解“”,其中应处在的表达式中的位置.例3、已知数列的首项,前项和为,且.(1)证明数列是等比数列;(2)令,求函数在点处的导数,并比较与的大小.解析:(1)由已知时,.两式相减,得,即,从而.当时,.又.从而.故总有.又.从而.即是以为首项,2为公比的等比数列.(2)由(1)知,.当n=1时,(*)式=0,;当n=2时,(*)式=-12<0,;当n≥3时,n-1>0.又,,即(*)式>0,从而.考点二:等差数列与等比数列例4、有n2(n≥4)个正数,排成n×n矩阵(n行n列的数表,如下图).其中每一行的数成等差数列,每一列的数成等比数列,并且所有的公比都相等,且满足:a24=1,a42=,a43=,(1)求公比q;(2)用k表示a4k;(3)求a11+a22+a33+…+a nn的值.分析:解答本题的关键首先是阅读理解,熟悉矩阵的排列规律,其次是灵活应用等差、等比数列的相关知识求解.解:(1)∵每一行的数列成等差数列,∴a42,a43,a44成等差数列,∴2a43= a42+a44,a44=;又每一列的数成等比数列,a44=a24·q2,a24=1,∴q2=,且a n>0,∴q=.(2)a4k= a42+(k-2)d=+(k-2)( a43-a42)=.(3)∵第k列的数成等比数列,∴a kk= a4k·q k-4=·()k-4= k·()k (k=1,2,…,n).记a11+a22+a33+…+a nn=S n,则S n=+2·()2+3·()2+…+n·()n,S n=()2+2·()3+…+(n-1) ()n+n()n+1,两式相减,得S n=+()2+…+()n-n()n+1=1-,∴S n=2-,即a11+a22+a33+…+a nn=2-.例5、已知分别是轴,轴方向上的单位向量,且(n=2,3,4,…),在射线上从下到上依次有点,且=(n=2,3,4,…).(1)求;(2)求;(3)求四边形面积的最大值.解析:(1)由已知,得,(2)由(1)知,.且均在射线上,..(3)四边形的面积为.又的底边上的高为.又到直线的距离为.,而,.点评:本题将向量、解析几何与等差、等比数列有机的结合,体现了在知识交汇点设题的命题原则.其中割补法是解决四边形面积的常用方法.考点三:数列的极限例6、给定抛物线,过原点作斜率为1的直线交抛物线于点,其次过作斜率为的直线与抛物线交于.过作斜率为的直线与抛物线交于,由此方法确定:一般地说,过作斜率为的直线与抛物线交于点.设的坐标为,试求,再试问:点,…向哪一点无限接近?解析:∵、都位于抛物线上,从而它们的坐标分别为,∴直线的斜率为,于是,即,.因此,数列是首项为,公比的等比数列.又,,因此点列向点无限接近.点评:本例考查极限的计算在几何图形变化中的应用,求解问题的关键是要利用图形的变化发现点运动的规律,从而便于求出极限值来.例7、已知点满足:对任意的,.又已知.(1)求过点的直线的方程;(2)证明点在直线上;(3)求点的极限位置.解析:(1),,则.化简得,即直线的方程为.(2)已知在直线上,假设在直线上,则有,此时,也在直线上.∴点在直线上.(3),即构成等差数列,公差,首项,,故...故的极限位置为(0,1).考点四:数学归纳法例8、设是满足不等式的自然数的个数.(1)求的解析式;(2)设,求的解析式;(3),试比较与的大小.解析:先由条件解关于的不等式,从而求出.(1)即得.(2).(3).n=1时,21-12>0;=2时,22-22=0;n=3时,23-32<0;n=4时,24-42=0;n=5时,25-52>0;n=6时,26-62>0.猜想:n≥5时,,下面对n≥5时2n>n2用数学归纳法证明:(i)当n=5时,已证25>52.(ii)假设时,,那么..,即当时不等式也成立.根据(i)和(ii)时,对,n≥5,2n>n2,即.综上,n=1或n≥5时,n=2或n=4时时.点评:这是一道较好的难度不太大的题,它考查了对数、不等式的解法,数列求和及数学归纳法等知识.对培养学生综合分析问题的能力有一定作用.例9、已知数列中,,.(1)求的通项公式;(2)若数列中,,,证明:,.解:(1)由题设:,.所以,数列是首项为,公比为的等比数列,,即的通项公式为,.(2)用数学归纳法证明.(ⅰ)当时,因,,所以,结论成立.(ⅱ)假设当时,结论成立,即,也即.当时,,又,所以.也就是说,当时,结论成立.根据(ⅰ)和(ⅱ)知,.考点五:数列的应用例10、李先生因病到医院求医,医生给他开了处方药(片剂),要求每12小时服一片,已知该药片每片220毫克,他的肾脏每12小时排出这种药的60%,并且如果这种药在体内残留量超过386毫克,将会产生副作用,请问:李先生第一天上午8时第一次服药,则第二天早上8时服完药时,药在他体内的残留量是多少毫克?如果李先生坚持长期服用此药,会不会产生副作用?为什么?解:(1)设第次服药后,药在他体内残留量为毫克,依题意,故第二天早上8时第三次服完药时,药在他体内的残留量是343.2毫克.(2)由,,.故长期服用此药不会产生副作用.例11、(07安徽高考)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储务金数目a1,a2,…是一个公差为d的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r>0),那么,在第n 年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,……,以T n表示到第n年末所累计的储备金总额。

SXA277高考数学必修_数列、极限和数学归纳法

SXA277高考数学必修_数列、极限和数学归纳法

数列、极限和数学归纳法一、基础篇一、考试内容1.数列,等差数列及其通项公式,等差数列前n项和公式;等比数列及其通项公式,等比数列前n项和公式。

对数列的考查,客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式,对基本的计算技能要求比较高,解答题大多以考查数列,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目.数列推理题是新出现的命题热点.2.数列的极限及其四则运算。

数列极限是高等数学在高考中的应用,高考命题对其要求不高,仅要求会利用四则运算法则求得极限即可.3.数学归纳法及其应用。

数学归纳法作为一种重要的推理方法,是高考重点考查内容.极限的概念及其渗透的思想,在数学中占有重要的地位,它是人们研究许多问题的工具.二、考试要求1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项和。

2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能够应用这些知识解决一些问题。

3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能够运用这些知识解决一些问题。

4.了解数列极限的定义,掌握极限的四则运算法则,会求公比的绝对值小于1的无穷等比数列前n项和的极限。

5.了解数学归纳法的原理,并能用数学归纳法证明一些简单的问题。

三、考点简析1.数列及相关知识关系表2.内容与意义分析(1)数列是函数概念的继续和延伸,对于等差数列而言,可以把它看作自然数n的“一次函数”,前n 项和是自然数n 的“二次函数”。

等比数列可看作自然数n 的“指数函数”。

应用等差等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的.(2)数列的极限这部分知识的学习,教给了学生“求极限”这一数学思路,为学习高等数学作好准备。

(3)数学归纳法是一种数学论证方法,同时又是一种数学思想。

高等数学数列极限题型及解题方法

高等数学数列极限题型及解题方法

高等数学数列极限题型及解题方法摘要:1.数列极限的定义和性质2.常见数列极限题型分类3.解题方法及技巧4.典型例题解析5.总结与建议正文:高等数学中的数列极限是极限理论的重要部分,它在数学分析、工程数学、应用数学等课程中有着广泛的应用。

本文将对数列极限的题型进行分类,并介绍相应的解题方法和技巧。

一、数列极限的定义和性质1.定义:设{an}为无穷数列,若存在常数L,使得当n趋向于无穷时,|an - L|趋向于0,则称L为数列{an}的极限。

2.性质:具有有限项的数列必有极限;单调有界数列必有极限;无穷递增(或递减)数列必有极限;无穷乘积数列必有极限。

二、常见数列极限题型分类1.求和型:如求级数∑an的收敛值。

2.比较型:如比较级数∑an与级数∑bn的收敛性。

3.求极限型:如求极限lim(n→∞) an。

4.无穷乘积型:如求极限(a1 × a2 × a3 × ...× an)∞。

5.无穷递推型:如求递推数列{an}的极限。

三、解题方法及技巧1.判断收敛性:根据数列极限的定义,通过计算或性质判断数列是否收敛。

2.利用极限性质:如无穷乘积收敛的判定条件、无穷递推收敛的判定条件等。

3.化简变形:将复杂数列极限问题转化为简单的问题,如利用泰勒公式、洛必达法则等。

4.典型例题解析例1:判断级数∑(1/n)^2是否收敛。

解析:利用数列极限的定义,计算极限lim(n→∞) (1/n)^2 = 0,判断级数收敛。

例2:求极限lim(n→∞) (2^n - n^2)。

解析:利用化简变形,将原式变为lim(n→∞) (2^n / n^2),再利用极限性质判断收敛。

四、总结与建议数列极限是高等数学中的重要内容,掌握常见的题型和解题方法对学习极限理论有很大帮助。

在学习过程中,要注意理论知识与实际应用的结合,多做练习,提高解题能力。

高考数学数列的极限专题复习(专题训练最全版)

高考数学数列的极限专题复习(专题训练最全版)
n
n n 注意: lim a 存在与 lim a 0 ,实数 a 要满足的条件是不同的; n n
0 (s t ) a n a1 n at 1 n at a0 (4) lim 0 s (s t ) ; n b n b n s 1 b 0 1 s 1 n bs b0 不存在 ( s t ) 1 n (5) lim (1 ) e ,特别注意此式的变式情况,如: n n
解:数列{an}的通项公式为 ,

=
=
=
=
=
=﹣2.
2n 1, n 2015 2.已知 an ,Sn 是数列{ a n }的前 n 项和( A) 1 n 1 ( ) , n 2015 2
A. lim an 和 lim S n 都存在
n n
B. lim an 和 lim S n 都不存在
n
an 2 2n 1 a ) 1 ,则复数 a b i 的虚部为 ﹣2 bn 2 b
= ,
解:2n+

,∴
,解得
∴点(a,b)的坐标为(4,﹣2) ,故答案为(4,﹣2) . 4.数列{ a n }满足 lim[(2n 3) an ] 1 ,则 lim ( nan ) =__________1/2
=2,∴d1=2d2.
=
=
=
=
6.已知数列{ a n }同时满足下面两个条件:①不是常数列;②它的极限就是这个数列中的项;请 写出则此数列的一个通项公式 a n =____________
解:由于当 an=
时,数列{an}不是常数数列,它的极限
=
=1,
5

高三数学数列、极限、数学归纳法

学科:数学教学内容:数列、极限、数学归纳法一、考纲要求 1.掌握:①掌握等差数列、等比数列的概念、通项公式、前n 项和公式; ②能够运用这些知识解决一些实际问题; ③掌握极限的四则运算法则. 2.理解:①数列的有关概念;②能根据递推公式算出数列的前几项;③会求公比的绝对值小于1的无穷等比数列前n 项和的极限. 3.了解:①了解递推公式是给出数列的一种方法; ②了解数列极限的意义;③了解数学归纳法的原理;并能用数学归纳法证明一些简单问题.二、知识结构(一)数列的一般概念数列可以看作以自然数集(或它的子集)为其定义域的函数;因此可用函数的观点认识数列;用研究函数的方法来研究数列。

数列表示法有:列表法、图像法、解析法、递推法等。

列表法:就是把数列写成a 1,a 2,a 3……a n ……或简写成{a n };其中a n 表示数列第n 项的数值;n 就是它的项数;即a n 是n 的函数。

解析法:如果数列的第n 项能用项数n 的函数式表示为a n =f(n);这种表示法就是解析法;这个解析式叫做数列的通项公式。

图像法:在直角坐标系中;数列可以用一群分散的孤立的点来表示;其中每一个点(n,a n ) 的横坐标n 表示项数;纵坐标a n 表示该项的值。

用图像法可以直观的把数列a n 与n 的函数关系表示出来。

递推法:数列可以用两个条件结合起来的方法来表示:①给出数列的一项或几项。

②给出数列中用前面的项来表示后面的项的表达公式;这是数列的又一种解析法表示;称为递推法。

例如:数列2;4;5;529;145941…递推法表示为⎪⎩⎪⎨⎧∈+==+)(4211N n a a a a nn n ;其中a n+1=a n +n a 4又称为该数列的递推公式。

由数列项数的有限和无限来分数列包括穷数列和无穷数列。

由数列项与项之间的大小关系来分数列包括递增数列、递减数列、摆动数列以及常数列。

由数列各项绝对值的取值范围来分数列包括有界数列和无界数列。

数列极限和数学归纳法练习(有-答案)

数列极限和数学归纳法练习(有-答案)数列极限和数学归纳法一、 知识点整理:数列极限:数列极限的概念、数列极限的四则运算法则、常见数列的极限公式以及无穷等比数列各项的和要求:理解数列的概念,掌握数列极限的四则运算法则和常见数列的极限,掌握公比q 当01q <<时无穷等比数列前n 项和的极限公式及无穷等比数列各项和公式,并用于解决简单的问题。

1、理解数列极限的概念:21,(1),nn n-等数列的极限 2、极限的四则运算法则:使用的条件以及推广 3、常见数列的极限:1lim 0,lim 0(1),lim →+∞→+∞→+∞==<=nn n n q q C C n4、无穷等比数列的各项和:1lim (01)1→+∞==<<-nn a S Sq q数学归纳法:数学归纳法原理,会用数学归纳法证明恒等式和整除性问题,会利用“归纳、猜想和证明”处理数列问题 (1)、证明恒等式和整除问题(充分运用归纳、假设,拆项的技巧,如证明22389n n +--能被64整除,2438(1)9k k +-+-)229(389)64(1)k k k +=--++),证明的目标非常明确; (2)、“归纳-猜想-证明”,即归纳要准确、猜想要合理、证明要规范,这类题目也是高考考察数列的重点内容。

二、 填空题1、 计算:112323lim -+∞→+-n n nn n =_____3_____。

2、 有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为 ,,,,nV V V 21=+++∞→)(lim 21nn V V V 87. 3、20lim______313n n n →∞+=+134、 数列的通项公式,前项和为,则=______32_______. 5、 设{}n a 是公比为21的等比数列,且4)(lim 12531=+⋅⋅⋅+++-∞→n n a a a a ,则=1a 3 .6、 在等比数列{}na 中,已知123432,2a a a a ==,则()12lim nn a a a →∞+++=_16±______.7、数列{}na 的通项公式是13(2)--+=+-n n na,则)(lim 21nn a a a +++∞→ =___76____ . 8、已知数列{}na 是无穷等比数列,其前n 项和是nS ,若232aa +=,341a a +=,则lim nn S →∞的值为 163.9、设数列{}n a 满足当2na n >(*N n ∈)成立时,总可以推出21(1)n a n +>+成立.下列四个命题: (1)若93≤a ,则164≤a .(2)若310a =,则525a >.(3)若255≤a ,则164≤a . (4)若2(1)n a n ≥+,则21n a n +>.其中正确的命题是 (2)(3){}na *1 , 1()1 , 2(1)n n a n N n n n =⎧⎪=∈⎨≥⎪+⎩n nS lim nn S →∞(4) .(填写你认为正确的所有命题序号)10、将直线1l :01=-+y x ,2l :0=-+n y nx ,3l :0=-+n ny x (*N ∈n ,2≥n )围成的三角形面积记为nS ,则=∞→nn S lim ___12________. 11、 在无穷等比数列{}na 中,所有项和等于2,1则的取值范围是a ()()0,22,412、设无穷等比数列{}na 的公比为q ,若245lim()→∞=+++nn a a a a ,则15-+13、 已知点⎪⎭⎫ ⎝⎛+0,11n A ,⎪⎭⎫ ⎝⎛+n B 22,0,⎪⎭⎫ ⎝⎛++nn C 23,12,其中n 为正整数,设nS 表示△ABC 的面积,则=∞→nn S lim ___2.5________.14、下列关于极限的计算,错误..的序号___(2)___.(1)==(2)(++…+)=++…+=0+0+…+0=0 (3)(-n )===;(4)已知=(15)已知()f x 是定义在实数集R 上的不恒为零的函数,且对于任意,a b ∈R ,满足()22f =,()()()f ab af b bf a =+,记()()22,22nnnnnf f a b n==,其中*N n ∈.考察下列结论:①()()01f f =;②()f x 是R 上的偶函数;③数列{}na 为等比数列;④数列{}nb 为等差数列.其中正确结论的序号有 ① ③ ④ .二、选择题:16、已知,,若,则的值不可能...是… ………( (D ) )(A ) . (B ). (C ). (D ).17、若21lim 12n n r r+→∞⎛⎫⎪+⎝⎭存在,则r 的取值范围是 ( (A ) )(A )1r ≤-或13r ≥- ;(B )1r <-或13r >-;(C )1r ≤-或13r >- ;(D )113r -≤≤- 观察下列式子:,可以猜想结论为((C) ) .(A);(B)(C);(D)19、已知12120121()20122n n n n a n -- , <⎧⎪=⎨- , ≥⎪⎩,nS 是数列{}na 的前n 项和( (A ) )0>a 0>b 11lim 5n n nnn a ba b++→∞-=-b a +78910 ,474131211,3531211,23211222222<+++<++<+2221112n 1123n n++++⋅⋅⋅+<(n N*)∈2221112n 1123(n 1)n-+++⋅⋅⋅+<+(n N*)∈2221112n 1123(n 1)n 1++++⋅⋅⋅+<++(n N*)∈2221112n 1123n n 1++++⋅⋅⋅+<+(n N*)∈(A )lim nn a →∞和lim nn S →∞都存在 ; (B) lim nn a →∞和lim nn S →∞都不存在 。

高考数学复习专题八数列极限数学归纳法

专题八:数列 极限 数学归纳法一 能力培养1,归纳-猜想-证明 2,转化能力 3,运算能力 4,反思能力 二 问题探讨问题1数列{n a }满足112a =,212n n a a a n a ++⋅⋅⋅+=,(n N *∈). (I)求{n a }的通项公式; (II)求1100nn a -的最小值; (III)设函数()f n 是1100nn a -与n 的最大者,求()f n 的最小值.问题2已知定义在R 上的函数()f x 和数列{n a }满足下列条件:1a a =,1()n n a f a -= (n =2,3,4,⋅⋅⋅),21a a ≠,1()()n n f a f a --=1()n n k a a --(n =2,3,4,⋅⋅⋅),其中a 为常数,k 为非零常数.(I)令1n n n b a a +=-(n N *∈),证明数列{}n b 是等比数列;(II)求数列{n a }的通项公式; (III)当1k <时,求lim n n a →∞.问题3已知两点M (1,0)-,N (1,0),且点P 使MP MN ⋅,PM PN ⋅,NM NP ⋅成公差小 于零的等差数列.(I)点P 的轨迹是什么曲线? (II)若点P 坐标为00(,)x y ,记θ为PM 与PN 的夹角,求tan θ.三 习题探讨 选择题1数列{}n a 的通项公式2n a n kn =+,若此数列满足1n n a a +<(n N *∈),则k 的取值范围是A,2k >- B,2k ≥- C,3k ≥- D,3k >- 2等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n na b = A,23 B,2131n n -- C,2131n n ++ D,2134n n -+ 3已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是A,1(0,2+B,1(,1]2-C,1[1,2D,11(,22+ 4在等差数列{}n a 中,1125a =,第10项开始比1大,记21lim ()n n n a S t n →∞+=,则t 的取值范围是A,475t > B,837525t <≤ C,437550t << D,437550t <≤5设A 11(,)x y ,B 22(,)x y ,C 33(,)x y 是椭圆22221x y a b+=(0a b >>)上三个点,F 为焦点,若,,AF BF CF 成等差数列,则有A,2132x x x =+ B,2132y y y =+ C,213211x x x =+ D,2213x x x =⋅ 6在ABC ∆中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以13为 第三项,9为第六项的等比数列的公比,则这个三角形是A,钝角三角形 B,锐角三角形 C,等腰直角三角形 D,以上都不对 填空7等差数列{}n a 前n (6n >)项和324n S =,且前6项和为36,后6项和为180,则n = .8223323232323236666n nn nS ++++=+++⋅⋅⋅+,则lim n n S →∞= .9在等比数列{}n a 中,121lim()15n n a a a →∞++⋅⋅⋅+=,则1a 的取值范围是 . 10一个数列{}n a ,当n 为奇数时,51n a n =+;当n 为偶数时,22n n a =.则这个数列的前2m 项之和2m S = .11等差数列{}n a 中,n S 是它的前n 项和且67S S <,78S S >,则①此数列的公差0d <,②96S S <,③7a 是各项中最大的一项,④7S 一定是n S 中的最大项,其中正确的是 . 解答题12已知23123()nn f x a x a x a x a x =+++⋅⋅⋅+,且123,,n a a a a ⋅⋅⋅组成等差数列(n 为正偶数).又2(1)f n =,(1)f n -=,(I)求数列的通项n a ;(II)试比较1()2f 与3的大小,并说明理由.13已知函数2()31f x x bx =++是偶函数,()5g x x c =+是奇函数,正数数列{}n a 满足11a =,211()()1n n n n n f a a g a a a +++-+=.(I)若{}n a 前n 项的和为n S ,求lim n n S →∞;(II)若12()()n n n b f a g a +=-,求n b 中的项的最大值和最小值.14. 已知等比数列{}n x 的各项不为1的正数,数列{}n y 满足log 2n n x y a ⋅=(0a >且1a ≠),设417y =,711y =.(I)求数列{}n y 的前多少项和最大,最大值是多少? (II)设2n yn b =,123n n S b b b b =+++⋅⋅⋅+,求25lim2nn S →∞的值.(III)试判断,是否存在自然数M,使当n M >时1n x >恒成立,若存在求出相应的M;若不存 在,请说明理由.15设函数()f x 的定义域为全体实数,对于任意不相等的实数1x ,2x ,都有12()()f x f x -12x x <-,且存在0x ,使得00()f x x =,数列{}n a 中,10a x <,1()2()n n n f a a a n N +=-∈,求证:对于任意的自然数n ,有: (I)0n a x <; (II)1n n a x +<.参考答案:问题1解:(I)212n n a a a n a ++⋅⋅⋅+=,得n S =2n n a当2n ≥时,1n n n a S S -=-=2n n a 21(1)n n a ---,有221(1)(1)n n n a n a --=-,即111n n a n a n --=+. 于是3241123112313451n n n a a a a a n a a a a a n --=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅+=2(1)n n +.又112a =,得n a =1(1)n n +. 由于1a 也适合该式,故n a =1(1)n n +.(II)1100nn a -=299n n -=2(49.5)2450.25n -- 所以当49n =或50时,1100nn a -有最小值2450-. (III)因()f n 是1100nn a -与n 的最大者,有(1100)()1100(100)nn n f n n n a ≤≤⎧⎪=⎨-<⎪⎩,有min ()f n =(1)f =1.问题2(I)证明:由1210b a a =-≠,得2322121()()()0b a a f a f a k a a =-=-=-≠.由数学归纳法可证10n n n b a a +=-≠(n N *∈).而,当2n ≥时,1111111()()()n n n n n n n n n n n n n n b a a f a f a k a a k b a a a a a a +---------====--- 因此,数列{}n b 是一个公比为k 的等比数列.(II)解:由(I)知,11121()()n n n b k b k a a n N --*==-∈当1k ≠时,112211()(2)1n n k b b b a a n k--++⋅⋅⋅+=-≥- 当1k =时,12n b b b ++⋅⋅⋅+=21(1)()n a a --(2n ≥)而12213211()()()(2)n n n n b b b a a a a a a a a n -++⋅⋅⋅+=-+-+⋅⋅⋅+-=-≥,有当1k ≠时,1n a a -= 1211()(2)1n k a a n k---≥-;当1k =时,1n a a -=21(1)()n a a --(2)n ≥. 以上两式对1n =时也成立,于是当1k ≠时,11211()1n n k a a a a k --=+--= 11(())1n k a f a a k--=+--当1k =时,121(1)()n a a n a a =+--=(1)(())a n f a a +--.(III)解:当1k <时,11()lim lim[(())]11n n n n k f a aa a f a a a k k-→∞→∞--=+-=+--.问题3解:(I)设点P(,x y ),由M (1,0)-,N (1,0)得(1,)PM MP x y =-=---,(1,)PN NP x y =-=--,(2,0)MN NM =-=有2(1)MP MN x ⋅=+,221PM PN x y ⋅=+-,2(1)NM NP x ⋅=-.于是MP MN ⋅,PM PN ⋅,NM NP ⋅成公差小于零的等差数列等价于2211[2(1)2(1)]22(1)2(1)0x y x x x x ⎧+-=++-⎪⎨⎪--+<⎩,即2230x y x ⎧+=⎨>⎩ 所以点P 的轨迹是以原点为圆心C. (II)设P(00,x y ),则由点P 在半圆C 上知,22001PM PN x y ⋅=+-又(1PM PN⋅==得cos 4PM PN PM PNθ⋅==⋅, 又001x <≤,12≤<,有1cos 12θ<≤, 03πθ≤<,sin 1cos θ=-=,由此得0tan y θ==. 习题解答:1由1(21)0n n a a n k +-=++>,n N *∈恒成立,有30k +>,得3k >-,选D.21211212112112121(21)22(21)21223(21)131(21)2n n n n n n n n n n a a n a a a a Sn n b b b b b b T n n n ------+-+--======++-+--,选B. 3设三边长分别为2,,a aq aq ,且0,0a q >>①当1q ≥时,由2a aq aq +>,得1q ≤<②当01q <<时,由2aq aq a +>,得112q <<,于是得1122q <<,选D. 4由10191a a d =+>,且9181a a d =+≤,而21lim ()2n nn da S t n →∞+==, 又1125a =,于是737550t <≤,选D. 5由椭圆第2定义得222132()()22()a a a AF CF x x BF x c c c+=+++==+,选A.6由条件得31444tan ,9tan 3A B =-+=,有tan 2A =,tan 3B =. 得tan tan[()]tan()1C A B A B π=-+=-+=,于是ABC ∆为锐角三角形,选B. 7由12345636a a a a a a +++++=,12345180n n n n n n a a a a a a -----+++++=有12165()()()216n n n a a a a a a --++++⋅⋅⋅++=,即16()n a a +=216,得1n a a +=36,又13242na a n +⨯=,解得18n =. 822111111()()333222n n n S =++⋅⋅⋅++++⋅⋅⋅+,得11332lim 1121132n n S →∞=+=--.9由条件知,公比q 满足01q <<,且11115a q =-,当01q <<时,11015a <<; 当10q -<<时,1121515a <<.于是1a 的取值范围是112(0,)(,)151515. 10当n 为奇数时,相邻两项为n a 与2n a +,由51n a n =+得25(2)1(51)n n a a n n +-=++-+ =10,且16a =.所以{}n a 中的奇数项构成以16a =为首项,公差10d =的等差数列.当n 为偶数时,相邻两项为n a 与2n a +,由n a = 22n ,得2222222n n n na a ++==,且22a = 所以{}n a 中的偶数项构成以22a =为首项,公比2q =的等比数列. 由此得212(1)2(12)610522212m m mm m S m m m +--=+⨯+=++--.11由6778,S S S S <>,得780,0a a ><,有0d <;96S S <;7S 是n S 中的最大值,选①②④.12解:(I)由12(1)n f a a a =++⋅⋅⋅+=2n ,再依题意有1a +n a =2n ,即12(1)2a n d n +-=①又121(1)n n f a a a a n --=-+-⋅⋅⋅-+=,(n 为正偶数)得2d =,代入①有21n a n =-. (II)2311111()3()5()(21)()22222n f n =+++⋅⋅⋅+-,2341111111()()3()5()(21)()222222n f n +=+++⋅⋅⋅+- 得2311111111(1)()2()2()2()(21)()2222222n n f n +-=+++⋅⋅⋅+--于是2111()12()(21)3222n f n n-=+---⋅<.13解: (I)可得2()31f x x =+,()5g x x =,由已知211()()1n n n n n f a a g a a a +++-+=,得11(32)()0n n n n a a a a ++-⋅+=,而10n n a a ++≠,有123n n a a +=,于是1lim 3213n n S →∞==-.(II)215832()()6()1854n n n n b f a g a a +=-=-+, 由12()3n n a -=知n b 的最大值为1143b =,最小值为4374243b =.14解: (I)22log log n n a n x y x a==,设11n n x x q -=有1122log 2log 2log log n n n a n a n a x y y x x q a++-==-=,又{}n y 成等差数列.742log 74a y y q d -==-,得2d =-,17(71)(2)23,y y =--⨯-=252n y n =-.当0n y ≥时,即23(1)(2)0n +-⨯-≥,得252n ≤.于是前12项和最大,其最大值为144.(II)25222ny n n b -==,2312b =,得21124n n b b -+==,23112()4n n b -= 232522lim 1314n n S →∞==-,于是251lim 23n n S →∞= (III)由(I)知当12n >时,0n y <恒成立,由2log n a n y x =,得2n y n x a =.(i)当01a <<且12n >时,有2n y n x a =01a >=,(ii)当1a >且12n >时,1n x <,故当01a <<时,在12M =使n M >时,1n x >恒成立;当1a >时不存在自然数M,使当n M >时1n x >.15证明:用数学归纳法 (I)当1n =时,10a a <命题成立.假设当n k =(k N *∈)时,0k a a <成立,那么当1n k =+时,由1212()()f x f x x x -<-,得00()()k k f x f a x a -<-,又00()f x x =,有00()k k x f a x a -<-, 而0k a x <,得00()k k x f a x a -<-,于是000()k k k a x x f a x a -<-<-,即0()2()k k k ka f a x f a a +<⎧⎨>⎩,又1()2k k k f a a a +=-, 有10(2)2k k k a a a x ++-<,即10k a x +<,于是当1n k =+时,命题也成立.综上所述,对任意的k N *∈,0n a a <.(II)由1212()()f x f x x x -<-,得00()()n n f x f a x a -<-, 又00()f x x =,得00()n n x f a x a -<-,又0n a a <,得00()n n x f a x a -<-,即000()n n n a x x f a x a -<-<-, 有()n n f a a >,而1()2n n n f a a a +=-,得12n n n a a a +->, 故1n n a a +>.。

【高中数学】数列的应用问题数列的极限和数学归纳法

【高中数学】数列的应用问题数列的极限和数学归纳法【高中数学】数列的应用问题、数列的极限和数学归纳法一、课程内容:数列的应用问题、数列的极限和归纳法二、教学要求:1.了解数列的一般应用问题,理解“复制”的概念及相关的应用问题,能建立较典型问题的数学模型。

2.了解序列极限的概念,掌握极限的四种算法,能够找到某个序列的极限。

3.理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

三串通1.零存整取和按揭贷款问题(见例题选讲)2.序列极限的概念3.常用的极限4.序列极限算法:5.无穷递缩等比数列的各项和{an}是一个等距序列,如果Q<1,{an}是一个无限递归等距序列。

6.求数列极限的常用① 求分子和分母都包含关于n的代数公式或指数公式的数列的极限。

将分子和分母除以分母的最高幂(即无穷小除法),然后求极限。

②利用有理化因子变形;③ 求和的极限时,一般先求和,再求极限;⑤求含有参数的式子的极限时,注意对参数的值进行分类讨论,分别确定极限是否存在,若存在求出值。

7.数学归纳法数学归纳法是一种证明与自然数n有关的数学命题的证明方法。

(1)数学归纳的步骤:(三步)①验证n取第一个值n0时命题f(n0)正确。

(是递推基础);② 假设命题f(k)在n=k(k)时是正确的∈ n、K≥ 证明了当n=K+1时命题f(K+1)也是正确的。

(这是递归的基础);③由①、②可知对任意n≥n0命题f(n)都正确。

(结论)。

(2)当用数学归纳法证明命题f(n)时,困难在于第二步。

也就是说,假设n=k,f(k)为真。

当n=K+1时,f(K+1)也是真的。

推导中必须使用“归纳假设”,这一步证明“结构相同”。

如:用数学归纳法证明这个等式成立。

则n=k+1时(与K的结构相同)∴当n=k+1时,等式也成立。

解决方案:前几项通过递归公式计算再用数学归纳法证明:…[典型示例]例1.零存整取和按揭贷款问题(1)利息计算:①单利:每期都按初始本金计算利息,当期利息不计入下期本金。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元练习8 数列极限数学归纳法2002.11 班级:____________;姓名:______________; 成绩:___________.一. 选择题:(每小题4分,共4×14 = 56分)将答案填入下表中(A)是等差数列不是等比数列; (B)是等比数列不是等差数列;(C)既是等差数列又是等比数列; (D)既不是等差数列也不是等比数列;2. 已知数列{a n}的前n项和为S n = 3n + k (k为常数) ,那么下述结论正确的是(A)k为任意实数时{a n}为等比数列; (B)k=-1时{a n}是等比数列;(C)k=0时{a n}是等比数列; (D){a n}不可能成为等比数列;3. 已知a,b,c成等比数列,a,x,b和b,y,c都成等差数列,且xy ≠ 0 ,则axcy+的值为(A) 1 ; (B) 2 ; (C) 3 ; (D) 4 ;4. 在等差数列{a n}中,a n =22n npn q-+(其中p、q是非零常数),则p ,q应满足的关系式是(A) p-q = 0 ; (B) p + q = 0 ; (C) p-2q = 0 ; (D) p + 2q = 0 ;5. 若两个等差数列{a n},{b n}的前n项和A n和B n满足ABnnnn=++71427(n∈N) ,则ab1111=(A) 74; (B)32; (C)43; (D)7871;6. 等差数列{a n}中,a1 + a4 + a7 = 15 ,a3 + a6 + a9 = 3 ,则该数列前9项的和等于(A) 18 ; (B) 45 ; (C) 36 ; (D) 27 ;7. 等差数列{a n}中,a10 < 0 ,a11 > 0 ,且| a10 | < a11 ,S n为其前n项之和,则(A)S1,S2,…,S10都小于零 ,S11 ,S12 ,…都大于零;(B) S1,S2,…,S5都小于零 ,S6 ,S7 ,…都大于零;(C) S1,S2,…,S19都小于零 ,S20 ,S21 ,…都大于零;(D) S1,S2,…,S20都小于零 ,S21 ,S22 ,…都大于零;8. 已知数列a1 ,a2 ,…,a10的各项均为正数,条件甲:该数列不是等比数列;条件乙:a1 +a10 < a5 +a6 .则乙是甲的(A)充要条件;(B)必要不充分条件;(C)充分不必要条件;(D)既不充分也不必要条件;9. 在0和16间插入两个数, 使前三个数成等差数列, 后三个数成等比数列, 则这两个数的和等于(A) 8 ; (B) 10 ; (C) 12 ; (D) 16 ;10. 数列{a n}中, a1 ,a2,a3成等差数列, a2 ,a3 ,a4成等比数列, a3 ,a4 ,a5的倒数成等差数列, 则a1 ,a3 ,a5(A)成等差数列;(B)成等比数列;(C)倒数成等差数列;(D)对数成等比数列;11. 已知首项a1为正数,公比| q | < 1的无穷等比数列从第二项起各项之和不大于第一项的一半,则公比q的范围是(A) q <13; (B) q ≤13; (C) q ≤13且q ≠ 0 ; (D) -1< q ≤13且q ≠ 0 ;12. 等差数列{a n}的首项a1 =-5 ,它的前11项的平均值为5,若从中抽去一项,余下的10项的平均值为4,则抽去的是(A) a8 ; (B) a6 ; (C) a10 ; (D) a11 ;13. 已知1 + 2·3 + 3·32 + 4·33 + … + n·3n-1 = 3n (na-b) + c对一切n∈N 都成立,那么a ,b ,c的值为(A) a =12,b = c =14; (B)a = b = c =14; (C)a = 0,b = c =14; (D)不存在 ;14. 下列极限值: limn→∞1121+-=⎧⎨⎪⎩⎪()())n nn为奇数(为偶数; a>b>0 ,lim n→∞a a b a b ban n n nn++++--+1221=1a b-;lim n →∞(123n +223n +…+n n23)= 0 ; limn →∞n n n n 2222112121+--+--= 2.其中正确的有(A) 0个 ; (B) 1个 ; (C) 2个 ; (D) 3个 ; 二. 填空题:(每小题5分,共5×7 = 35分)15. 在数列{a n }中,已知a 1 = 1 ,a 2 = 5 ,a n+2 = a n+1-a n (n ∈N) ,则a 2002等于____________ .16. 若{a n }是等比数列,a 4a 7 =-512 ,a 3+a 8 = 124,且公比为整数,则a 10 = ________________ .17. 数列{a n } ,{b n }满足a n b n = 1, a n = n 2+ 3n + 2,则{b n }的前十项的和为__________________ .18. 若lim n →∞[ 1+(r + 1)n] = 1 ,则r 的取值范围是___________________________ .19. 已知数列{a n }满足S n = 4-a n -22-n(n ∈N), 则通项公式a n =________________________ .20. 若lim n →∞(3a n + b n ) = 8 , lim n →∞(6a n -b n ) = 1 ,则lim n →∞(4a n -b n )=_______________________ .21. 无穷等比数列中,所有奇数项之和等于36,所有偶数项之和为12,则此数列从第________项开始每一项都小于0.1 . 三. 解答题:(4小题共59分)22. 设{a n }是等差数列,a 1 = 1 ,S n 是它的前n 项和,{b n }是等比数列,其公比的绝对值小于1,T n是它的前n 项和,如果a 3 = b 2 ,S 5 =2T 2-6 ,lim n →∞T n = 9 ,求{a n } ,{b n }的通项公式 .23. 已知递增等比数列{a n }的前三项之积为512,且这三项分别减去1,3,9后又成等差数列. 求证:11a +22a +…+na n< 1 . 24. 已知等差数列{a n }的第三项a 3 = 8,其前20项的和为610. 今从该等差数列中依次取出第2项,第4项,第8项,…,第2n项,并按原来的顺序组成一个新的数列{b n},记数列{a n}和{b n}的前n项和分别为S n和T n. (1). 求数列{a n}和{b n}的通项公式;(2). 对一切自然数n,试比较2S n与T n的大小,并证明你的结论.25. 在XOY平面上有一点列P1 (a1, b1), P2 (a2, b2), …, P n (a n, b n), …,对每个自然数n,点P n位于函数y = 2000(a10)x (0 < a < 10)的图象上,且点P n、点(n, 0)与点(n + 1, 0)构成一个以P n为顶点的等腰三角形. (1) 求点P n的纵坐标b n的表达式;(2) 若对每个自然数n,以b n, b n+1, b n+2为边长能构成一个三角形,求a的取值范围;(3) 设B n= b1b2…b n(n∈N). 若a取(2)中规定的范围内的最小整数,求数列{B n}的最大项的项数.答案:15.-1;16. 512 ; 17. 5/12 ; 18. -2<r<0 ; 19. n/2n-1 ; 20. -1 ; 21.7 ; 22. 提示:a n=(n+1)/2; b n= 6(1 /3)n-1 ; 23. 提示:由条件推出a2 = 8 ,q= 2 ,∴a n = 2n+1 ,令S n=1/a1+2/a2+…+n/a n ,由1/2s n=S n-1/2S n = 1/22 + 1/23 +…+1/2n+1-n/2n+2 , ∴S n = 1-1/2n-n/2n+2 < 1 ; 24. 提示:(1).a n = 3n - 1, b n = 3×2n-1; (2). S n = (3n2+n)/2, ∴2S n = 3n2+n, T n = 3×2n+1-n-6, 分别计算n = 1, 2, 3时2S n与T n, 猜想T n > 2S n,用数学归纳法证明; 25. 提示:(1) a n = n+12, ∴b n=2000(a/10)n+1/2; (2) ∵函数y =2000(a10)x (0 < a < 10)递减∴对每个自然数n有b n>b n+1 > b n+2以b n, b n+1, b n+2为边长能构成一个三角形的充要条件是b n+2+ b n+1> b n.即(a/10)2+ (a/10)-1 > 0 解得5(√5- 1)<a<10; (3) ∵5(√5- 1)<a<10 ∴a =7 b n = 2000(7/10)n+1/2数列{b n}是一个递减的正数数列. 对每个自然数n > 2, B n = b n B n-1. 于是当b n > 1时, B n > B n-1,当b n < 1时, B n < B n-1,因此,数列{B n}的最大项的项数n满足b n> 1且b n+1< 1, 由b n= 2000(7/10)n+1/2> 1得n < 20.8 ∴n = 20*. 在等差数列{a n}中,若a3+a9+a15+a17 = 4 ,则a11 的值等于______________ . (1) *. 若一个凸多边形的内角度数成等差数列,最小的角是100︒,最大的角是140︒,这个多边形的边数为________________ . (6)*. 首项是125,第10项起开始比1大的等差数列的公差的范围是__________.(8/75<d≤3/25)*. 数列1, (1+2), (1+2+22), …,(1+2+22+…+2n-1)的前n项和的表达式为___________.(2n+1-n-2)*. 设f (n) = 1 +12+13+…+1n,是否存在g (n)使等式f (1) + f (2) +…+ f (n-1) = g (n)·f (n)-g (n)对n ≥2的一切自然数都成立?并证明你的结论 .提示:若n=2时满足条件的g (n)存在,则1=g(2)(1+1/2)-g(2) , g(2) = 2 ;若n = 3时g(n)存在,则g(3) = 3 ,猜想g (n)存在且g (n) = n (n≥2) .用数学归纳法证明g(n)=n时等式成立 .。

相关文档
最新文档