数列极限和数学归纳法练习(有-答案)
第6章 数列与数学归纳法(6.4-6.8)

6.4数学归纳法例题精讲【例1】用数学归纳法证明22>n n ,5n N n ∈≥,则第一步应验证n = . 【参考答案】n =5(注:跟学生说明0n 不一定都是1或2,要看题目)【例2】设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推出(1)f k +≥2)1(+k 成立”. 那么,下列命题总成立的是( )A .若1)1(<f 成立,则100)10(<f 成立;B .若4)2(<f 成立,则1)1(<f 成立;C .若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立;D .若(4)25f ≥成立,则当4k ≥时,均有2()f k k ≥成立. 【参考答案】B【例3】用数学归纳法证明命题:若n 是大于1的自然数,求证:n n <-++++12131211Λ,从k 到+1k ,不等式左边添加的项的项数为 .【参考答案】当k n =时,左边为1214131211-+++++k Λ. 当1+=k n 时,左边为1212211212112141312111-+++++++-++++++k k k k k ΛΛ.左边需要添的项为121221121211-+++++++k k k k Λ,项数为k k k 212121=+--+.【例4】用数学归纳法证明:422135n n +++能被14整除*n N ∈().【参考答案】当=1n 时,8545353361224=+=+++n n 能被14整除.假设当k n =时原命题成立,即422135n n +++能被14整除*n N ∈(). 当1+=k n 时,原式为4(1)22(1)1442221353355k k k k +++++++=⋅+⋅4422121423(35)5(35)k k k +++=+--44221213(35)565k k k +++=+-⋅.422135n n +++能被14整除,56也能被14整除,所以上式能被14整除,所以当1+=k n 时原命题成立. 综上所述,原命题成立.【例5】是否存在常数,a b 使得()()2112233413n n n an bn +⨯+⨯+⨯+++=+L 对一切正整数n 都成立?证明你的结论.【参考答案】先用1n =和2n =探求1,2a b ==,再用数学归纳法证明【例6】若*n N ∈,求证:23sin coscoscoscos 22222sin2n n nαααααα=L .【参考答案】① 1n =时,左=cos2α, 右=sin cos22sin2ααα=,左=右② 设n k =时, 23sin coscoscoscos 22222sin2k k kαααααα=L1n k =+时, 2311sin (coscoscoscos )cos cos2222222sin2k k k k kαααααααα++⋅=⋅L=111111sin sin cos22sincos2sin222k k k k k k αααααα++++++⋅=过关演练1. 等式22222574123 (2)n n n -+++++=( ).A . n 为任何正整数时都成立B . 仅n =1,2,3时成立C . n =4时成立,n =5时不成立D . n =4时不成立,其他成立. 2. 用数学归纳法证明22111...(1)1n n a a a a a a++-++++=≠-,在验证1n =时,左端计算所得项为 .3.利用数学归纳法证明“对任意偶数*()n n N ∈,nna b -能被a b +整除”时,其第二步论证应该是 .4. 若*1111...()23n S n N n =++++∈,用数学归纳法证明*21(2,)2n nS n n N >+≥∈,n 从k 到1k +时,不等式左边增加的项为 . 5. 若21*718,,n m m n N -+=∈,则21718n m ++=+ .6. 利用数学归纳法证明22nn >,第一步应该论证 . 7. 数学归纳法证明:111111111......234212122n n n n n-+-++-=+++-++(*n N ∈)时,当n 从k 到1k +时等式左边增加的项为 ;等式右边增加的项为 . 8. 用数学归纳法证明:221(1)n n a a ++++可以被21a a ++整除(*n N ∈).9. 用数学归纳法求证: (1)(1)123 (2)n nn +++++=; (2)222123+++ (2)1(1)(21)6n n n n +=++; (3)333123+++ (3)221(1)4n n n +=+. 10. 在数列{}n a 中,已知111,6(123...)1n a a n +==+++++,*n N ∈,若数列{}n a 前n项和为n S ,求证:3n S n =.6.5数学归纳法的运用例题精讲【例1】已知11=a ,)(*2N n a n S n n ∈=(1)求5432,,,a a a a ;(2)猜想它的通项公式n a ,并用数学归纳法加以证明【参考答案】 解:(1)151,101,61,315432====a a a a (2))1(2+=n n a n , 证明:(1)当n=1时,11=a 成立;(2)当n>1时,假设n=k 时,命题成立,即)1(2+=k k a k ,则当n=k+1时,⇒+=++121)1(k k a k S )2)(1(2222]1)1[(2221122++=+•+=+=⇒-+=++k k k k k k k k a k a a k a k k k k k 综上所述,对于所有自然数*N n ∈,)1(2+=n n a n 成立。
数列1

2 1 . 41421
(4)
(5)
(6)
定义:
按一定顺序排列的一列数叫数列。 数列中的每一个数叫做这个数列的项。 各项依次叫做这个数列的第1项(首项), 第2项,· · · · · · ,第n项, · · · · · · 。
根据数列的定义知数列是按一定顺序排列 的一列数,因此若数列中被排列的数相同,但 次序不同,则不是同一数列。
1 2 , 2 3 , 3 4 , 4 5 , 5 6 .
(2)在通项公式中依次取n=1,2, 3,4,5,得么数列a n 的前5项为
-1,2, - 3,4, - 5.
例2 写出数列的一个通项公式, 使它的前4项分别是下列各数: (1)1,3,5,7; 解:此数列的前四项1,3,5,7都 是序号的2倍减去1,所以通项公式 是:
作业:
P46 习题十七 1、2。
本节课到此结束
谢 谢 大 家!
返回
石器时代定义:使用磨制石器为主的时代叫做新石器时代 [1] ,属于石器时代的后期,年代大约从1.8万年前开始,结束时间从距今 5000多年至2000多年不等。在新石器时代的人类已经会使用陷阱捕捉猎物。 这个时期,人类开始从事农业和畜牧,将植物的果实加以播种,并把野生动物驯服以供食用。人类不再只依赖大自然提供食物,因此食 物的来源变得稳定。同时农业与畜牧的经营也使人类由逐水草而居变为定居下来,节省下更多的时间和精力。在这样的基础上,人类生 活得到了更进一步的改善,开始关注文化事业的发展,使人类开始出现文明。
第六章
数列、极限、数学归纳法
一 数 列
6、1 数列
1,2,3,4,5,· · ·n, · · · .(1)
1, , , , ,· · · ,· · ·. (2)
数列、极限、数学归纳法

数列、极限、数学归纳法考试内容数列.等差数列及其通项公式.等差数列前n 项和公式.等比数列及其通项公式.等比数列前n 项和公式. 数列的极限及其四则运算. 数学归纳法及其应用. 考试要求(1)理解数列的有关概念.了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. (2)理解等差数列的概念.掌握等差数列的通项公式与前n 项和公式,并能够运用这些知识解决一些问题. (3)理解等比数列的概念.掌握等比数列的通项公式与前n 项和公式,并能够运用这些知识解决一些问题.(4)了解数列极限的意义.掌握极限的四则运算法则,会求公比的绝对值小于1的无穷等比数列前n 项和的极限. (5)了解数学归纳法的原理,并能用数学归纳法证明一些简单的问题. 复习建议本讲内容包括数列、极限与数学归纳法三个部分 1.数列的知识要点:(1)理解数列的定义、表示法、数列的分类.理解数列是特殊的函数,数列是定义在自然数集N (或它的有限子集{1,2,3,…,n ,…})上的函数f (n ),当自变量从小到大依次取值时对应的一列函数值:f (1),f (2),f (3),…,f (n ),….数列的图象是由一群孤立的点构成的.(2)对于数列的通项公式要掌握:①已知数列的通项公式,就可以求出数列的各项;②根据数列的前几项,写出数列的一个通项公式,这是一个难点,在学习中要注意观察数列中各项与其序号的变化情况,分解所给数列的前几项,看看这几项的分解中.哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号的联系,从而归纳出构成数列的规律,写出通项公式;③一个数列还可以用递推公式来表示;④在数列{a n }中,前n 项和S n 与通项公式a n 的关系,是本章内容一个重点,要认真掌握之.即a n =⎩⎨⎧≥-=-)2()1(11n S S n S n n .特别要注意的是,若a 1 适合由a n =S n -S n -1(n ≥2)可得到的表达式,则a n 不必表达成分段形式,可化统一为一个式子.2.等差数列的知识要点:(1)掌握等差数列定义a n +1-a n =d (常数)(n ∈N ),这是证明一个数列是等差数列的依据,要防止仅由前若干项,如a 3-a 2=a 2-a 1=d (常数)就说{a n }是等差数列这样的错误,判断一个数列是否是等差数列.还可由a n +a n +2=2 a n +1 即a n +2-a n +1=a n +1-a n 来判断.(2)等差数列的通项为a n =a 1+(n -1)d .可整理成a n =a n +(a 1-d ),当d ≠0时,a n 是关于n 的一次式,它的图象是一条直线上,那么n 为自然数的点的集合.(3)对于A 是a 、b 的等差中项,可以表示成2 A =a +b .(4)等差数列的前n 项和公式S n =21n a a +·n -na 1+2)1(-n n d ,可以整理成 S n =2d n 2+n da )2(1-.当d ≠0时是n 的一个常数项为0的二次式.3.等比数列的知识要点:(可类比等差数列学习) (1)掌握等比数列定义nn a a 1+=q (常数)(n ∈N ),同样是证明一个数列是等比数列的依据.也可由a n ·a n +2=21+n a 来判断. (2)等比数列的通项公式为a n =a 1·q n -1.(3)对于G 是a 、b 的等差中项,则G 2=ab ,G =±ab .(4)特别要注意等比数列前n 项和公式应分为q =1与q ≠1两类.当q =1时,S n =na 1.当q ≠1时,S n =qq a n --⋅1)1(1,S n =q q a a n -⋅-11.(5)对于数列求和.主要掌握以下几种方法:① 直接运用公式求和法;② 折项分组求和法;③ 倒序相加求和法;④ 错项相减求和法;⑤ 折项相消求和法. 4.数列极限知识要点:(1)应掌握数列极限的定义:对于数列{a n },如果存在一个常数A ,无论预先指定多么小的正数,都能在数列找到一项a n ,使得n >N 时,|a n -A |<恒成立,则∞→n lim a n =A ,会用此定义证明简单数列的极限.(2)应掌握极限的运算法则.如果∞→n lim a n =A ,∞→n lim b n =B ,那么∞→n lim (a n ±b n )=A ±B ;∞→n lim (a n b n )=A ·B ;∞→n limnnb a =B A (B ≠0). (3)当|q |<1时,无穷等比数列多项和S =∞→n lim S n =qa -11. 5.数学归纳法知识要点:应理解数学归纳法是一种递推方法,它称两个步骤进行.第一步是递推的基础,第二步是递推的根据.二步缺一不可.关键是第二步推证必须合理使用归纳假设.应重点掌握猜证法,猜想是用不完全归纳法得出结论,再用数学归纳法给予证明,形成一个完整的创造过程.数列极限数学归纳法综合练习题一、选择题(1)设2a =3,2b =6,2c=12,则数列a ,b ,c ( )A .是等差数列而非等比数列B .是等比数列而非等差数列C .既是等差数列又等比数列D .既不是等差数列也不是等比数列(2)等比数列{a n },首项a 1=1,公比q ≠1.若其中a 1,a 2,a 3依次是某等差数列的第1,2,5项,则它的公比q =( ) A .2 B .3 C .-3 D .-2 (3){a n }是等差数列,则下列关系式中正确的是( )A .a 3·a 6≥a 4·a 5B .a 3·a 6>a 4·a 5C .a 3·a 6≤a 4·a 5D .a 3·a 6<a 4·a 5(4)一个等比数列共有3n 项,公比q ≠1,它的前n 项的和记为S ,第二个n 项的和记为P ,第三个n 项的和记为Q ,则S ,P ,Q 间的关系是( )A .P =SQB .2P =S +QC .P 2=SQ D .P =S +Q(5)在3和9之间插入两个数a ,b ,使前三个数成等比数列,后三个数成等差数列,则|a +b |的最小值是( )A .445B .6C .2D .0(6)∞→n limM a a n n=+-+111,当a >1时,M 的值是P ,当0<a <1时,M 的值为Q ,则P +Q 的值是( )3A .1+a 1B .1-a1 C .1+a D .1-a(7)∞→n lim )11)(1(2)12(4321+---++-+-nn nn 的值是( )A .0B .1C .-1D .不存在(8)若f (n )=1+21+31+41+…+n1(n ∈N ),则代数式f (2n +1)-f (2n)(在不合并的情况下)共有 A .1项 B .n 项 C .2n项 D .2n -1项(9)∞→n lim (1-221)(1-231)(1-241)…(1-21n )的值是( ) A .0B .21C .1D .非以上答案(10)等比数列{a n },a n >0,若a 3·a 9=2,则a 1·a 2·a 3·…·a 11的值是( ) A .322 B .32C .64D .非以上答案(11)若数列{a n }满足,a 1=5,a n +1=2221n n n aa a ++(n ∈N ),则其前10项的和S 10的值是( )A .50B .100C .150D .120(12)极限∞→n lim nn n )2()2(8421)2(11-+-++-+---+ 的值是( )A .-6B .6C .3D .-3二、填空题(13)等比数列{a n },公比q >1,a 1=b (b ≠0),则∞→n limnna a a a a a a a +++++++876321=____________.(14)等差数列{a n },公差d >0,首项a 1>0,若S =∑=+ni i i aa 111,则∞→n lim S =____________.(15)平面内有n (n ∈N )条直线,它们两两相交但无三条直线交于一点,若其中k 条(1≤k <n )直线将平面分为f (k )个区域,则f (k +1)-f (k )=__________________.(16)若f (n )=1+2+3+…+n (n ∈N ),则∞→n lim 22)]([)(n f n f =__________________.三、解答题(17)一个等差数列和一个等比数列,它们第一项之和等于-3,第三项之和等于1,第5项之和等于5,求等差数列的公差和等比数列的公比.(18)数列{a n }的前n 项和S n =a ·2n+b (n ∈N ),其中a 、b 是常数且a ≠0. (Ⅰ)若{a n }是等比数列,求a 、b 应满足的条件;(Ⅱ)当{a n }是等比数列时,求∞→n lim1+n nS S 的值. (19)数列{a n }的前n 项的和记为A n ,数列{b n }是首项b 1=9,公差d =-2的等差数列,其前n 项的和记为B n ,且有b n =4+n A n. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)比较A n 与B n 的大小并说明理由. (20)等比数列{a n },a n >0(n ∈N ),它的前n 项的和S n =80,a 1,a 2…,a n 中,最大的一项是54,且前2n 项的和S 2n =6 560, (Ⅰ)求数列的通项a n =f (n ); (Ⅱ)求∞→n limnnS a . (21){a n }是等差数列且它的公差d ≠0,S n =a 1+a 2+a 3+…+a n , (Ⅰ)求证点列:P 1(1,S 1),P 2(2,22S ),P 3(3,33S )…,P n (n ,nS n )都在直线l 1上; (Ⅱ)过点Q 1(1,a 1),Q 2 (2,a 2)作直线l 2,l 2与l 1的夹角为θ,求证ta n θ≤42. (22)已知f (n )=1+21+31+…+n1, (Ⅰ)若n ,m ∈N 且n >m ,求证f (n )-f (m )≥n mn -; (Ⅱ)用数学归纳法证明,当n ∈N 时,f (2n)>2n .5数列极限数学归纳法综合练习题答案一、(1)A (2)B (3)C (4)C (5)D (6)B (7)C (8)C (9)B (10)A (11)A (12)D 二、(13)1 (14)da 11(15)k +1 (16)2 三、(17)设等差数列的首项为a ,公差为d ;等比数列的首项为b 1,公比为q∴ ⎪⎩⎪⎨⎧=++=++-=+5412341121111q b d a q b d a b a∵12)3(5=-+ ∴ ①+③-2×②得b 1(q 4-2q 2+1)=0,即b 1(q 2-1)2=0∵ b 1≠0,则q 2=1 ∴ q ±1将q =±1代入方程②得a 1+2d +b 1=1 ④ ④-①得2d =4,则d =2 (18)(Ⅰ)a 1=S 1=2a +b∵ S n =a ·2n +b S n -1=a · 2n -1+b (n ≥2) a n =S n -S n -1=a ·2n -1∵ {a n }是等比数列,首项为a ,公比为2∴ a 1=a 21-1=2a +b即 a +b =0⇒b =-a ≠0(Ⅱ)∵ S n =a · 2n -a ,S n +1=a · 2n +1-a∴ 1212lim )12()12(lim lim 111--=--=+∞→+∞→+∞→n n n n n n n n n a a S S 21212211lim =⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛-=∞→n nn(19)(Ⅰ)b n =b 1+(n -1)d =9+(n -1)(-2) ∴ b n =-2n +11 ∵ 4+=n A b nn ,则A n =(n +4)b n∴ A n =(n +4)(-2n +11)=-2n 2+3n +44. ∵ a 1=A 1=-2×1+3×1+44=45 当n ≥2时,a n =A n -A n -1=(-2n 2+3n +44)-[-2(n -1)2+3(n -1)+44] =-4n +5 ∴ ⎩⎨⎧≥+-==)2(54)1(45时时n n n a n①② ③(Ⅱ)B 1=b 1=9,a 1=45,a 1>b 1 B n =b 1+b 2+…+b n =n n n n 102)1129(2+-=+-A n =a 1+a 2+a 3+…+a n=45+(-4)×2+5+(-4)×3+5+…+(-4)n +5 =45+(-4)(2+3+4+…+n )+5(n -1)=-2n 2+3n +44A n -B n =-2n 2+3n +44-(-n 2+10n )=-n 2-7n +44 =-(n -4)(n +11) ∵ n ∈N ,n +11>0∴ n <4时,A n -B n >0,A n >B n n =4时,A n -B n =0,A n =B n n >4时,A n -B n <0,A n <B n (20)(Ⅰ)∵ a n >0,∴ a 1>0且q >0,当0<q <1时,数列是递减数列,a 1,a 2,a 3,…,a n 中,a 1=54最大.∵ S 2n =a 1+a 2+…+a n +a n +1+a n +2+…+a 2n=S n +q n S n =80(1+q n)=6560∴ 1+q n =82,q n=81∴ q >1与0<q <1矛盾 ∴ q ≥1当q =1时,na 1=82,2na 1=160≠6560 ∴ q ≠1∴ q >1,a 1,a 2,…,a n 中最大项a n∴ a n =a 1q n -1=54.∵ ⎪⎪⎩⎪⎪⎨⎧=--==--=65601801211211q q a a S q q a a S nn nn ②÷①得,1+q n=82,q n=81 ∴ a 1q n=81a 1⇒54q =81a 1 ③∴ 801548011111=--⇒=-⋅--qq a q q q a a n ④③与④联立解得:q =3,a 1=2∴ a n =2 · 3n -1(Ⅱ)S n =a 1+a 2+a 3+…+a n=1331)31(2-=--n n ∴ 321332lim lim 1=-⨯=-∞→∞→n n n nn n S a① ②7(21)(Ⅰ)S 1=a 1,S 2=a 1+a 2=2a 1+d ∴ P 1(1,a 1),P 2⎪⎭⎫⎝⎛+222,21d a ,021221121≠=--+=d a d a k p p则l 1的方程为y -a 1=)1(2-x d任取3≤k ≤n ,则⎪⎭⎫ ⎝⎛kS k P k k ,∴ ⎪⎭⎫ ⎝⎛-+=d k k ka S k 2)1(1,则⎪⎭⎫ ⎝⎛-+d k a k P k 21,1 代入l 1的方程,左d k a d k a 212111-=--+= 右=-=-=d k k d 21)1(2左 ∴ 点⎪⎭⎫⎝⎛k S k P k k ,(3≤k ≤n )在直线l 1上. ∴ 点列P 1,P 2,…,P n 都在直线l 1上. (Ⅱ)设2,1211222121dk k d a a k k P P Q Q ===--== ∵ l 1与l 2的夹角是∴ d dd d d d d d d dd k k k k +=+=+=+=+-=+-=212222121tan 22222112θ∵22222=⋅≥+d dd d (等号在2=d 时成立) ∴ 42221tan =≤θ (22)(Ⅰ)f (n )-f (m ) ⎪⎭⎫⎝⎛++++-++++++=m n m 1312111131211 nm m 12111+++++=(共n -m 项)≥nm n n n n -=+++111 (等号在n =m +1时成立) (Ⅱ)证明:①n =1时,f (21)=1+2321=>21∴ n =1时,f (21) >21不等式成立. ②设n =k 时不等式成立,即f (2k) >2k ∵ 11211212131211)2(++++++++++=k kk k f ,比f (2k ) 多2k 项 ∴ 上述不等式两边加上kk k k 221221121++++++ ≥++++++++++++1121121221221121)2(k k k k kkk f项k k k k k 21112121212+++++++∴ 2121222221121)2(11+=+=+++++++k k k f k k k k k∴ 1211212131211+++++++++k k k >21+k 即 )2(1+k f >21+k∴ n =k +1时不等式也成立.由①②可知对任何自然数n ,f (2n)>2n 说明:这个命题说明,数列⎭⎬⎫⎩⎨⎧n 1的极限是0,但其前n 项的和S n =1+n 13121+++ 都没有极限,因为n →∞时,2n→∞,n S n 2lim ∞→≥nn 2lim∞→→∞。
数列与数学归纳法专项训练(含答案)(新)

数列与数学归纳法专项训练1.如图,曲线2(0)y x y =≥上的点i P 与x 轴的正半轴上的点i Q 及原点O 构成一系列正三角形△OP 1Q 1,△Q 1P 2Q 2,…△Q n-1P n Q n …设正三角形1n n n Q P Q -的边长为n a ,n ∈N ﹡(记0Q 为O ),(),0n n Q S .(1)求1a 的值; (2)求数列{n a }的通项公式n a 。
w.w.w.k.s.5.u.c.o.m2. 设{}{},n n a b 都是各项为正数的数列,对任意的正整数n ,都有21,,n n n a b a +成等差数列,2211,,n n n b a b ++成等比数列.(1)试问{}n b 是否成等差数列?为什么?(2)如果111,2a b ==,求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .3. 已知等差数列{n a }中,2a =8,6S =66.(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n n a n b )1(2+=,n n b b b T +++= 21,求证:n T ≥16.4. 已知数列{n a }中531=a ,112--=n n a a (n ≥2,+∈N n ),数列}{nb ,满足11-=n n a b (+∈N n ) (1)求证数列{n b }是等差数列;(2)求数列{n a }中的最大项与最小项,并说明理由;(3)记++=21b b S n …n b +,求)1(lim -∞→n b n n .5. (Ⅰ (Ⅱ (Ⅲn 项的6. (1(27. 已知数列{}n a 各项均不为0,其前n 项和为n S ,且对任意*∈N n ,都有n n pa p S p -=⋅-)1((p 为大于1的常数),并记nn n n n n n S a C a C a C n f ⋅⋅++⋅+⋅+=21)(2211 .(1)求n a ; (2)比较)1(+n f 与)(21n f pp ⋅+的大小*∈N n ; (3)求证:⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-⋅-+≤≤⋅---=∑1212111111)()()12(n n i p p p p i f n f n (*∈N n ).8. 已知n N *∈,各项为正的等差数列{}n a 满足263521,10a a a a ⋅=+=,又数列{}lg n b 的前n 项和是()()11lg312n S n n n n =+--。
数列、极限、数学归纳法(下)

【例题解析】例1 完成下列各选择题(1)“公差为0的等差数列是等比数列”;“公比为21的等比数列一定是递减数列”;“a,b,c三数成等比数列的充要条件是b 2=ac ”;“a,b,c 三数成等差数列的充要条件是2b=a+c ”,以上四个命题中,正确的有( ) A.1个 B.2个C.3个D.4个(2)命题1:若数列{a n }的前n 项和S n =a n +b(a ≠1),则数列{a n }是等比数列; 命题2:若数列{a n }的前n 项和S n =an 2+bn+c(a ≠0),则数列{a n }是等差数列; 命题3:若数列{a n }的前n 项和S n =na -n ,则数列{a n }既是等差数列,又是等比数列;上述三个命题中,真命题有( ) A.0个 B.1个C.2个D.3个(3)设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A.1 B.2 C.4 D.6 解析 (1)四个命题中只有最后一个是真命题。
命题1中未考虑各项都为0的等差数列不是等比数列; 命题2中可知a n+1=a n ×21,a n+1<a n 未必成立,当首项a 1<0时,a n <0,则21a n >a n ,即a n+1>a n ,此时该数列为递增数列;命题3中,若a=b=0,c ∈R ,此时有ac b =2,但数列a,b,c 不是等比数列,所以应是必要而不充分条件,若将条件改为b=ac ,则成为不必要也不充分条件。
(2)上述三个命题均涉及到S n 与a n 的关系,它们是a n =⎩⎨⎧--,11n nS S a 时当时当21≥=n n正确判断数列{a n }是等差数列或等比数列,都必须用上述关系式,尤其注意首项与其他各项的关系。
上述三个命题都不是真命题,选择A 。
由命题1得,a 1=a+b ,当n ≥2时,a n =S n -S n -1=(a -1)·a n -1。
10312数学归纳法与数列的极限(答案)

an c 充分接近于零,如果这个任意小的正数用 来表示,那么当 n 充分大时,总有 an c 。
3)极限值只有一个值,如趋近于两个值一定没有极限。 5.极限的运算性质性质:
1)如果 lim an A, lim bn B, 则
n x
(1) lim(an bn ) lim an lim bn A B.
q 1 0 C n q 1 2)几个重要极限: lim C C ; lim 0; lim q 1 n n n n 不存在 q 1或q 1
1
ak b lk l k k 1 ak n ak 1n a1n a0 lim 0 lk n b n l b n l 1 b l b l l 1 1 0 不存在 lk 6.无穷等比数列各项和的和的概念:我们把 q 1 的无穷等比数列前 n 项和 Sn ,当 n 无穷增大时的极限叫做无
4.数列的极限:一般地,在无限增大的变化过程中,如果无穷数列 an 中的项无限趋近于一个常数 A,那么 A 叫做数列 an 的极限,或叫做数列 an 收敛于 A,记作 lim an A 。
n
注意点:1)只有无穷数列,当 n 趋近于无穷大时, an 无限趋近于某一常数;
2)对于数列 an ,当 n 无穷增大时, an 无限趋近于某一定值时 c ,是通过 an c 无限趋近于零来描述的。这 里 an c 无限趋近于零,是指不论取一个值多么小的正数(可以任意给定) ,总可以通过取 n 充分大以后,使
提示:| q | 1, 则 lim | q |n 0.极限问题的解题思路,很多时候就是想方设法拼凑出q值。
n
n
3 2n 1 1 (2)求 lim 2 2 2 . n n 1 n 1 n 1 解 : 原式 lim 1 3 (2n 1) n2 1 lim lim 1. 2 2 n n n 1 n 1 n 1 1 2 n 注意:和的极限要转化成极限和,和式的项数必须是有限的。
数列专题复习及答案

数列、数列极限、数学归纳法综合复习一、填空题1、已知)(1562*∈+=N n n na n ,则数列{}n a 的最大项是 2、在等差数列{}n a 中,若46101290a a a a +++=,则101413a a -= 3、已知等比数列{}n a ,若151,4a a ==,则3a 的值为 4、数列{}n a 中,23=a ,15=a ,则数列1{}1n a +是等差数列,则=11a 5、在数列{}n a 和{}n b 中,n b 是n a 与1n a +的等差中项,12a =且对任意n N *∈都有031=-+n n a a ,则数列{}n b 的通项公式为 ___ _______6、设等差数列{}n a 的公差d 不为0,19a d =,k a 是1a 与2k a 的等比中项,则k =7、等差数列{}n a 的前n 项和为n S ,若4510,15S S ≥≤,则4a 的最大值为8、正数数列{}n a 中,已知12a =,且对任意的,s t N *∈,都有s t s t a a a ++=成立,则12231111n n a a a a a a ++++9、等差数列{}n a 的前n 项和为n S ,且42358,26a a a a -=+=,记2nn S T n =,如果存在正 整数M ,使得对一切正整数n ,n T M ≤都成立.则M 的最小值是__________ 10、已知无穷等比数列12{},lim[3()]4,n n n a S a a a S →∞+++-=中,各项的和为且 则实数1a 的范围11、设正数数列{}n a 的前n项和为n S ,且存在正数t ,使得对于所有自然数n ,有2n a t+=成立,若n nt →∞<,则实数t 的取值范围为12、数列{n a }的通项公式为12(12)1()(3,)3n n nn a n n N -*⎧≤≤⎪=⎨≥∈⎪⎩,则=∞→n n S lim13、已知数列{}n a 的通项公式为121n n a -=+,则0121231nn n n n n a C a C a C a C ++++=14、数列{}n a 满足112(0)2121(1)2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩,若761=a ,则2007a 的值为____15、在数列{}n a 中,如果对任意n N *∈都有211()n n n na a k k a a +++-=-为常数,则称{}n a 为等 差比数列,k 称为公差比. 现给出下列命题:⑴等差比数列的公差比一定不为0; ⑵等差数列一定是等差比数列;⑶若32nn a =-+,则数列{}n a 是等差比数列;⑷若等比数列是等差比数列,则其公比等于公差比. 其中正确的命题的序号为二、选择题16、等差数列}{n a 的公差为d ,前n 项的和为n S ,当首项1a 和d 变化时1182a a a ++是一个定值,则下列各数中也为定值的是 ( )7.A S 8.B S 13.C S15.D S17、在等差数列}{n a 中,15100,517a a a >=,则数列}{n a 前n 项和n S 取最大值时,n的值为( ).12A .11B .10C .9D18、设}{n a 为等差数列,若11101a a <-,且它的前n 项和n S 有最小值,那么当n S 取得最小正值时,n =( ).11A .17B .19C .20D19、等差数列}{n a 的前n 项和为n S ,且56S S <,678S S S =>,则下列结论中错误的是( ) .0A d < 7.0B a =95.C S S > 67.n D S S S 和均为的最大值20、已知数列{}n a 、{}n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且511=+b a ,*11,N b a ∈.设n b n a c =(*N n ∈),则数列{}n c 的前10项和等于( ).A 55 .70B .85C .100D21、已知等差数列{}n a 的前n 项和为n S ,若OB =1200a OA a OC +,且,,A B C 三点共线 (该直线不过原点O ),则200S =( ).A 100 .B 101 .C 200 .D 20122、已知两个等差数列{}n a 和{}n b 的前n 项和分别为n A 和n B ,且7453n n A n B n +=+,则使得n nab 为整数的正整数n 的个数是( ) .2A .3B .4C .5D三、解答题23、设数列{}n a 的前n 项和为n S ,已知1a a =,13n n n a S +=+,*n N ∈.(1)设3nn n b S =-,求{}n b 的通项公式;(2)若1n n a a +≥,*n N ∈,求a 的取值范围.24、数列{}n a 满足a a =1,a a -=2(0>a ),且{}n a 从第二项起是公差为6的等差数列,n S 是{}n a 的前n 项和.(1)当2≥n 时,用a 与n 表示n a 与n S ;(2)若在6S 与7S 两项中至少有一项是n S 的最小值,试求a 的取值范围;25、数列{}n a 中,112a =,点1(,2)n n n a a +-在直线y x =上,其中n N *∈; (1)设11,n n n b a a +=--{}n b 求证:数列是等比数列;(2)求数列{}n a 的通项; (3)设分别为数列、n n T S {}n a 、{}n b 的前n 项和,是否存在实数λ,使得数列n n S T n λ+⎧⎫⎨⎬⎩⎭为等差数列?若存在,试求出λ;若不存在,则说明理由。
最新-数学归纳法题库解答[整理][特约] 精品
![最新-数学归纳法题库解答[整理][特约] 精品](https://img.taocdn.com/s3/m/1ed607dc5fbfc77da269b151.png)
数学归纳法题库解答编号: 年级:高二、高三 知识点:数列、极限、数学归纳法 分知识点:数学归纳法题型:选择题 难度:中等题目:1.用数学归纳法证明1+a +a 2+……+an +1=a1a 12n --+ (n ∈N ,a ≠1),在验证n =1成立时,左边所得的项为( )。
(A )1 (B )1+a (C )1+a +a 2 (D )1+a +a 2+a 3 答案:C编号: 年级:高二、高三 知识点:数列、极限、数学归纳法 分知识点:数学归纳法题型:选择题 难度:中等题目:2. 用数学归纳法证明(n +1)(n +2)……(n +n )=2n ·1·3·5·……·(2n -1)时,从k 变到k +1时,左边应增添的因式是( )。
(A )2k +1 (B )1k 1k 2++ (C )1k 3k 2++ (D ) 2(2k +1)答案:D提示:当n =k 时,左边是(k +1)(k +2)……(k +k ), 当n =k +1时, 左边应是(k +1)(k +2)……(k +k )(k +1+k )(k +1+k +1), ∴应增添的因式是1k )2k 2)(1k 2(+++=2(2k +1)编号: 年级:高二、高三 知识点:数列、极限、数学归纳法 分知识点:数学归纳法题型:选择题 难度:中等题目:3. 用数学归纳法证明某命题时,左边为121413121n -++++ 从k 变到k +1时,左边应增添的代数式是( )。
(A )1211k -+ (B )k 21+1211k -+(C )k 21+121k ++1211k -+ (D )k 21+121k ++……+1211k -+答案:D编号: 年级:高二、高三 知识点:数列、极限、数学归纳法 分知识点:数学归纳法题型:选择题 难度:中等题目:4. 用数学归纳法证明“当n 为奇数时,x n +y n 能被x +y 整除”时,第二步的归纳假设应写成( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列极限和数学归纳法一、知识点整理:数列极限:数列极限的概念、数列极限的四则运算法则、常见数列的极限公式以及无穷等比数列各项的和要求:理解数列的概念,掌握数列极限的四则运算法则和常见数列的极限,掌握公比q 当01q <<时无穷等比数列前n 项和的极限公式及无穷等比数列各项和公式,并用于解决简单的问题。
1、理解数列极限的概念:21,(1),n nn-等数列的极限2、极限的四则运算法则:使用的条件以及推广3、常见数列的极限:1lim0,lim 0(1),lim →+∞→+∞→+∞==<=n n n n q q C C n 4、无穷等比数列的各项和:1lim (01)1→+∞==<<-n n aS S q q数学归纳法:数学归纳法原理,会用数学归纳法证明恒等式和整除性问题,会利用“归纳、猜想和证明”处理数列问题 (1)、证明恒等式和整除问题(充分运用归纳、假设,拆项的技巧,如证明22389n n +--能被64整除,2438(1)9k k +-+-)229(389)64(1)k k k +=--++),证明的目标非常明确; (2)、“归纳-猜想-证明”,即归纳要准确、猜想要合理、证明要规范,这类题目也是高考考察数列的重点内容。
二、填空题1、 计算:112323lim -+∞→+-n n nn n =_____3_____。
2、 有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为ΛΛ,,,,n V V V 21 =+++∞→)(lim 21n n V V V Λ87.3、 20lim______313n n n →∞+=+134、 数列的通项公式,前项和为,则 =______32_______.5、 设{}n a 是公比为21的等比数列,且4)(lim 12531=+⋅⋅⋅+++-∞→n n a a a a ,则=1a 3.6、 在等比数列{}n a 中,已知123432,2a a a a ==,则()12lim n n a a a →∞+++=L _16±______.7、 数列{}n a 的通项公式是13(2)--+=+-n n n a ,则)(lim 21n n a a a +++∞→Λ=___76____ .8、已知数列{}n a 是无穷等比数列,其前n 项和是n S ,若232a a +=,341a a +=,则lim n n S →∞的值为163. {}n a *1 , 1()1, 2(1)n n a n N n n n =⎧⎪=∈⎨≥⎪+⎩n n S lim n n S →∞9、设数列{}n a 满足当2n a n >(*N n ∈)成立时,总可以推出21(1)n a n +>+成立.下列四个命题: (1)若93≤a ,则164≤a .(2)若310a =,则525a >.(3)若255≤a ,则164≤a . (4)若2(1)n a n ≥+,则21n a n +>.其中正确的命题是(2)(3)(4).(填写你认为正确的所有命题序号)10、将直线1l :01=-+y x ,2l :0=-+n y nx ,3l :0=-+n ny x (*N ∈n ,2≥n )围成的三角形面积记为n S ,则=∞→n n S lim ___12________.11、在无穷等比数列{}n a 中,所有项和等于2,1则的取值范围是a ()()0,22,4U 12、设无穷等比数列{}n a 的公比为q ,若245lim()→∞=+++L n n a a a a ,则13、已知点⎪⎭⎫ ⎝⎛+0,11n A ,⎪⎭⎫ ⎝⎛+n B 22,0,⎪⎭⎫ ⎝⎛++n n C 23,12,其中n 为正整数,设n S 表示△ABC 的面积,则=∞→n n S lim ___2.5________.14、下列关于极限的计算,错误..的序号___(2)___.(1)==(2)(++…+)=++…+=0+0+…+0=0 (3)(-n )===;(4)已知=(15)已知()f x 是定义在实数集R 上的不恒为零的函数,且对于任意,a b ∈R ,满足()22f =,()()()f ab af b bf a =+,记()()22,22n n n n nf f a b n==,其中*N n ∈.考察下列结论:①()()01f f =;②()f x 是R 上的偶函数;③数列{}n a 为等比数列;④数列{}n b 为等差数列.其中正确结论的序号有①③④.二、选择题:16、已知,,若,则的值不可能...是…………((D )) (A ) . (B ). (C ). (D ).17、若21lim 12n n r r +→∞⎛⎫⎪+⎝⎭存在,则r 的取值范围是((A ))0>a 0>b 11lim 5n n n nn a b a b ++→∞-=-b a +78910(A )1r ≤-或13r ≥-;(B )1r <-或13r >-;(C )1r ≤-或13r >-;(D )113r -≤≤- 观察下列式子:,可以猜想结论为((C) ) .(A);(B) (C) ;(D)19、已知12120121()20122n n n n a n -- , <⎧⎪=⎨- , ≥⎪⎩,n S 是数列{}n a 的前n 项和( (A ) )(A )lim n n a →∞和lim n n S →∞都存在; (B) lim n n a →∞和lim n n S →∞都不存在。
(C) lim n n a →∞存在,lim n n S →∞不存在; (D)lim n n a →∞不存在,lim n n S →∞存在。
20、设双曲线22*(1)1()nx n y n N -+=∈上动点P 到定点(1,0)Q 的距离的最小值为n d ,则lim nn d →+∞的为( (A ) ) (A)2 (B )12(C ) 0 (D )1 三、综合题:Λ,474131211,3531211,23211222222<+++<++<+2221112n 1123n n++++⋅⋅⋅+<(n N*)∈2221112n 1123(n 1)n -+++⋅⋅⋅+<+(n N*)∈2221112n 1123(n 1)n 1++++⋅⋅⋅+<++(n N*)∈2221112n 1123n n 1++++⋅⋅⋅+<+(n N*)∈22、已知数列{}n a 满足0n a >,双曲线221:1()n n n x y C n N a a *+-=∈。
(1)若121,2a a ==,双曲线n C 的焦距为2n c ,41n c n =-, 求{}n a 的通项公式;(2)如图,在双曲线n C 的右支上取点(,)n n P P x n ,过n P 作y 轴的 垂线,在第一象限内交n C 的渐近线于点n Q ,联结n OP ,记n n OP Q ∆ 的面积为n S 。
若lim 2n n a →∞=,求lim n n S →∞。
(关于数列极限的运算,还可参考如下性质:若lim (0)n n n u A u →∞=≥,则lim n n u A →∞=。
)29.(1)21,22,n n n is odd a n n is even-⎧=⎨-⎩;(2)12数列综合题1. 定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为“三角形” 数列.对于“三角形”数列,如果函数使得仍为一个“三角形”数列,则称是数列的“保三角形函数”,.(1)已知是首项为2,公差为1的等差数列,若是数列{}n a 的“保三角形函数”,求k 的取值范围;(2)已知数列的首项为2010,n S 是数列的前n 项和,且满足,证明是“三角形”数列。
解:(1)显然,对任意正整数都成立,即是三角形数列.因为k>1,显然有,由得,解得.{}n a {}n a {}n a ()=y f x ()n n b f a =()=y f x {}n a (n N*)∈{}n a (),(1)xf x k k =>{}n c {}n c 1438040+-=n n S S {}n c所以当时,是数列的“保三角形函数”.(2) 由得,两式相减得所以,,经检验,此通项公式满足显然,因为,所以是“三角形”数列.2. 已知数列{}n a 的前n 项和为n S ,11=a ,n 1n 3a 4S 3++=(n 为正整数).(1)求数列{}n a 的通项公式;(2)记ΛΛ++++=n a a a S 21,若对任意正整数n ,n kS S <恒成立,求k 的取值范围? (3)已知集合{}0,)1(2>+≤+=a x a a x x A ,若以a 为首项,a 为公比的等比数列前n 项和记为n T ,问是否存在实数a 使得对于任意的n n N ,T A *∈∈均有.若存在,求出a 的取值范围;若不存在,说明理由.23.(1) 由题意知,当2≥n 时,n 1n n n 13a 4S 33a 4S 3+-+=⎧⎨+=⎩两式相减变形得:n 1n a 1(n 2)a 3+=-≥又1=n 时,21a 3=-,于是21a 1a 3=-………………1分故}{n a 是以11=a 为首项,公比1q 3=-的等比数列*n n 11a ,(n N )(3)-∴=∈-…………………4分 (2) 由13S 1413==+得n n 41k S 13(3)<=--=)(n f …………5分当n 是偶数时,)(n f 是n 的增函数,于是98)2()(min ==f n f ,故98<k ……7分当n 是奇数时,)(n f 是n 的减函数,因为n lim f (n)1→∞=,故k≤1.……………………9分综上所述,k 的取值范围是)98,(-∞…………10分(3)①当a 1,A {x |1x a}≥=≤≤时,22T a a =+,若22T A,1a a a.∈≤+≤则⎪⎩⎪⎨⎧≥≤≥-+1,0,0122a a a a 得此不等式组的解集为空集.即当a 1,≥时不存在满足条件的实数a. ……13分 ②当}.1|{,10≤≤=<<x a x A a 时而2n n n aT a a a (1a )1a =+++=--L 是关于n 的增函数.且n n n a alim T ,T [a,).1a 1a →∞=∈--故…………15分因此对任意的,*∈N n 要使n 0a 1,T A,a 1.1a <<⎧⎪∈⎨≤⎪-⎩只需解得.210≤<a ……………18分3. 已知抛物线,过原点作斜率为1的直线交抛物线于第一象限内一点,又过点作斜率为的直线交抛物线于点,再过作斜率为的直线交抛物线于点,,如此继续。