静力触探

合集下载

静力触探

静力触探

Cu=0.071qc+1.28
Qc<700kPa
同济大学
Cu=0.039qc+2.7
Qc<800kPa
铁道部
Cu=0.0308ps+4.0
Ps=100 ~ 1500kPa 新 .0696ps-2.7
Ps=300~1200饱和软 粘土
武汉静探联合组
Cu=0.1qc
Ψ=0纯粘土
Qu = α b q cb Ab + U P ∑ f si l i β f
i =1

n
确定地基土承载力基本值f 用ps(kPa)或qc值(kPa)确定地基土承载力基本值 o (kPa) 或 确定地基土承载力基本值
实用公式
f0
适用条件 上海硬壳层 上海淤泥质粘性土 上海灰色粘性土 上海粉土 1500≦ 一般粘性土 1500≦ps≦6000 淤泥质土、一般粘性土、 淤泥质土、一般粘性土、老粘土 300≦ 300≦ps≦6000 淤泥质土、 300≦ 淤泥质土、一般粘性土 300≦ps≦3000 老粘性土 中、粗砂 粉、细砂 3000≦ 3000≦ps≦6000 1000≦ 1000≦ps≦10000 1000≦ps≦15000 1000≦
软 土 , 0.3≦ps<5 软 土 , 0.3≦ps<3 老粘性土
Es
和 变 形 模 量
3≦ps<6 ps<1.6 建设部综勘院 ps>4
软土,一般粘性土 粉土
Eo
2)砂土 砂土的压缩模量E、变形模量E0和初始切线模量Ei与静力触 探的锥尖阻力qc和贯入阻力qs均有一定的关系。如我国铁道 部《静力触探技术规则》提出估算砂土Es的经验值见下表
摩阻比-深度(Rfh)关系曲线

静力触探

静力触探

静力触探(Cone Penetration Test)是用静力将探头以一定的速率压入土中,利用探头内的力传感器,通过电子量测仪器将探头受到的贯入阻力记录下来。

由于贯入阻力的大小与土层的性质有关,因此通过贯入阻力的变化情况,可以达到了解土层的工程性质的目的。

《岩土工程勘察规范》)(GB50021-2001)规定:静力触探试验适用于软土、一般黏性土、粉土、砂土和含少量碎石的土。

静力触探可根据工程需要采用单桥探头、双桥探头或带孔隙水压力量测的单、双桥探头,可测定比贯入阻力(Ps)、锥尖阻力(qc)、侧壁阻力(fs)和贯入时的孔隙水压力(u)一、试验前的准备工作试验前的准备工作有:1)设置反力装置(或利用车装重量)。

2)安装好压人和量测设备,并用水准尺将底板调平。

3)检查电源电压是否符合要求。

4)检查仪表是否正常。

5)检查探头外套筒及锥头的活动情况,并接通仪器,利用电阻档调节度盘指如调节比较灵活,说明探头正常。

二、现场试验现场试验步骤如下:1)将仪表与探头接通电源,打开仪表和稳压电源开关,使仪器预热15min。

2)根据土层软硬情况,确定工作电压,由于记录纸幅宽有限,所选择的工作电压,应使其曲线不会超过记录纸的幅宽范围。

将笔头调零,并在记录纸的开头写明孔号、探头号、标定系数、工作电压及日期。

3)先压入0.5m,稍停后提升10cm,使探头与地温相适应,将笔头重新调零以后每3~5m,要提升5~10cm,以检查记录笔回零情况。

4)贯入速度控制在0.5~ 1.0m/min。

5)接卸钻杆时,切勿使入土钻杆转动,以防止接头处电缆被扭断,同时应严防电缆受拉,以免拉断或破坏密封装置。

6)防止探头在阳光下暴晒,每结束一孔,应将探头锥头部分卸下,将泥沙擦洗干净,以保持顶柱及外套筒能自由活动。

三、静力触探试验的技术要求《岩土工程勘察规范》(GB50021-2001)规定,静力触探试验的技术要求应符合下列规定:1)探头圆锥锥底底截面积应采用10cm2或15cm2,单桥探头侧壁高度应分别采用57mm或70mm,双桥探头侧壁面积应采用150~ 300cm2,锥尖锥角应为60o 。

静力触探试验

静力触探试验

05
CATALOGUE
静力触探试验的优缺点
优点
无损检测 连续测试 快速简便 适用范围广
静力触探试验是一种无损检测方法,不会对土体造成破坏,能 够保证土体的完整性和原状结构。
静力触探试验可以连续进行,能够获取土体中不同深度的物理 性质参数,如锥尖阻力、侧摩阻力等。
静力触探试验操作简便,测试速度快,能够提高工程勘察的效 率。
地层参数的确定
土层厚度
通过静力触探试验结果,确定各土层 的厚度和分布范围。
土层承载力
根据静力触探数据计算各土层的承载 力,为工程设计提供依据。
土层压缩性
分析土层的压缩性指标,判断土层的 稳定性及沉降量。
土层抗剪强度
通过静力触探试验结果,确定土层的 抗剪强度参数,评估边坡稳定性。
地层评价与工程建议
地层评价
根据静力触探试验结果,对各土层进行 评价,确定其工程性质和适用性。
风险评估
结合地层评价结果,对工程中可能存 在的风险进行评估,并提出相应的防
范措施。
工程建议
根据地层评价结果,提出针对性的工 程措施和建议,如地基处理、边坡防 护等。
监测方案
根据工程需求和地层特点,制定合理 的监测方案,对工程实施过程中的土 层变化进行实时监测。
对硬土和岩石不适用
静力触探试验不适用于硬土和岩石地层,因为锥尖阻力可能会非常大 ,导致无法进行测试。
需要经验丰富的操作员
静力触探试验需要经验丰富的操作员进行操作,以确保测试结果的准 确性和可靠性。
06
CATALOGUE
静力触探试验的案例分析
案例一:某地区软土层的静力触探试验
总结词
了解软土层的物理性质
目的

静力触探试验

静力触探试验
当贯入到达预定深度或出现下列情况之一时, 应停止贯入:(1)触探主机达到最大容许贯入能力; (2)探头阻力达到最大容许压力;(3)探杆出现明显弯 曲;(4)反力装置失效。
§6.4静力触探资料整理
《 岩 土 工 程 勘 察 规 范 》(GB-50021-2001) 的 第 10.3.3条:
“静力触探试验成果分析应包括下列内容: 1.绘制各种贯入曲线:单桥和双桥探头应绘制
§6.1静力触探试验概念
6.1.2静力触探试验特点
静力触探试验具有快速、精确、经济和节省人 力等特点。特别是对于地层变化较大的复杂场地以及 不易取得原状土样的饱和砂土和高灵敏度的软粘土地 层的勘察。
另外,静力触探试验还能够准确地确定桩尖持 力层,这是其余勘探手段难以比拟的。
§6.2静力触探试验设备
2
式中 △hi——第i段深度修正值;
θ,θi ——第i次和第i-1次实测的倾斜角。
触探结束时的总修正量为∑△hi,则实际的贯入
深度应为:
h hi
§6.4静力触探资料整理
6.4.1单孔资料整理
二.贯入阻力的计算
单桥探头的比贯入阻力、双桥探头的锥头阻力
及侧壁摩阻力按下列公式计算:
ps=Kp·εp
§6.4静力触探资料整理
6.4.1单孔资料整理 三.摩阻比的计算
摩阻比α是以百分率表示的各对应深度的锥头阻 力和侧壁摩擦力的比值:
α=fs/qc×100%
式中α——双桥探头的摩阻比。
§6.4静力触探资料整理
6.4.1单孔资料整理 四.绘制单孔静探曲线
使用微机触探时,可由微机自动完成需要的单 孔静探曲线。
§6.3静力触探试验要点
6.3.2现场试验工作
孔深超过6m后,可根据不归零数大小,放宽归 零检查的深度间隔。

静力触探试验

静力触探试验
目录
1 概述 2 试验设备 3 试验技术要求 4 成果应用
1 概述
静力触探(CPT),是用静力将探头 以以一定的速率压入土中,利用探头 内的力传感器,通过电子量测器将探 头收到的贯入阻力记录下来,可以达 到了解图层工程性质的目的。
CPT主要适合于黏性土、粉土和中等密实度以下的砂土等土质情况。由于目前尚无 法提供足够大的稳固压入反力,对于含较多碎石、砾石的土和很密实的砂土一般不 适合采用。此外总的测试深度不能超过80m。
2.3 量测记录仪器
电阻应变仪
自动记录仪
3 静力触探试验技术要求
触探头应匀速垂直压入土中,贯入速率为1.2m/min; 触探头的测力传感器连同仪器、电缆应进行定期标定,室内探头标定测力传感 器的非线性误差、重复性误差、滞后误差、温度零漂、归零误差均应小于1%FS (full scale),现场试验归零误差应小于3% ,绝缘电阻不小于500MΩ 深度记录误差不应大于触探深度的±1% ; 当贯入深度大于30m,或穿过厚层软土层再贯入硬土层时,应防止孔斜或触探 杆断裂,也可配置测斜探头量测触探孔偏斜角,以修正土层界线深度。 孔压探头在贯入前,应在室内保证探头应变腔为已排除气泡的液体所充满,并 在现场保持探头应变腔的饱和状态,直至探头进入地下水位以下土层。在孔压静 探试验中不得上提探头,以免出现真空负压,破坏应变腔的饱和状态。 当进行孔压消散试验时,应量测停止贯入后不同时间的孔压值,其计时间隔应 由密而疏。试验过程中不得松动探杆。
2 试验设备
贯入装置 探头 量测系统
静力触探试验设备
静力加压装置
探 头
电 测


qsia qpa
静力触探试验
2.1 贯入设备
一、加压装置

静力触探试验在工程勘察技术中的实用意义

静力触探试验在工程勘察技术中的实用意义

静力触探试验在工程勘察技术中的实用意义摘要:一、静力触探试验的概述二、工程勘察技术中静力触探试验的作用三、静力触探试验在工程勘察中的应用实例四、静力触探试验的优势与局限性五、未来发展展望正文:一、静力触探试验的概述静力触探试验(Static Cone Penetration Test,简称SCPT)是一种在地面或地下进行的岩土工程勘察方法。

通过该试验,可以获得地基土层的力学性质、工程特性等关键信息,为工程建设提供重要依据。

静力触探试验在我国工程勘察领域得到了广泛的应用,具有很高的实用价值。

二、工程勘察技术中静力触探试验的作用1.地基土层性质的判定:静力触探试验通过测量钻头在土层中的贯入阻力,可以判断土层的性质、均匀性及变化趋势,为地基设计和基础选型提供依据。

2.土层参数的获取:静力触探试验可测定土层的厚度、密度、剪切波速等物理力学参数,为工程设计提供详细的数据。

3.地下水位及土层液限的确定:静力触探试验可在钻孔中安装压力计和流量计,测定地下水位及其变化,判断土层的液限。

4.地基承载力的评估:静力触探试验可通过计算钻头贯入过程中的阻力与深度关系,评估地基承载力。

三、静力触探试验在工程勘察中的应用实例1.高速公路建设:在高速公路工程勘察中,静力触探试验可用于评估路基土壤的承载力、均匀性等特性,为设计提供依据。

2.桥梁基础工程:在桥梁基础工程中,静力触探试验可用于调查河床、两岸边坡等地基土层的性质,为基础设计提供数据支持。

3.港口与航道工程:静力触探试验在港口与航道工程中,可帮助了解海底土层的承载力、稳定性等特性,为海底基础工程设计提供参考。

四、静力触探试验的优势与局限性1.优势:静力触探试验设备轻便、操作简便、成本较低,适用于各种地质条件和场地。

试验结果可靠,对地基土层的评价具有较高的准确性。

2.局限性:静力触探试验的深度有限,对于深层地基的勘察效果不佳。

此外,试验结果受土层性质、钻头形状、操作技术等因素影响,需要综合其他勘察方法进行验证。

静力触探法研究综述

静力触探法研究综述

静力触探法研究综述静力触探法是一种常用的地质勘探方法,已被广泛应用于工程地质、地质灾害等领域。

本文将从静力触探法的基本原理、设备及操作、数据解析等方面进行综述。

一、静力触探法基本原理静力触探法利用一根细长的探头在垂直方向向地下进行推进,测量不同深度下的推进阻力和地下土壤的稳定性,从而判断地下土层的性质和特性。

在静力触探法中,土壤的阻力是通过探头与土体相互作用而产生的,探头的下降速度相对较小,土体的变形、固结等因素对探头下降产生的影响可以忽略不计。

因此,通过测量探头下降的阻力大小,我们就可以了解到不同深度处的土壤的稳定性以及地层构成等信息。

二、静力触探法设备及操作静力触探法设备通常由静力触探机、探针、同步采集仪等组成。

其中,静力触探机是整个设备的核心,负责将探测探头向下推入土体。

静力触探机的设计应该具有以下特点:1.具有稳定的推力,在不同的土层中都能可靠稳定推进。

2.具有较高的精度,可以测量出不同深度下的土壤推力。

3.可以自动控制设备和采集数据,提高测量效率和准确性。

在使用静力触探法时,需要注意以下操作步骤:1.确定试验点位置,并先进行标识。

2.根据试验点的情况选择相应的连续探头或分段探头。

3.将静力触探机和探头组装好,并将探头插入土壤中。

4.推进探头过程中,应根据推进的阻力大小和下降速度来判断地下土层的性质和特性。

5.达到设定深度后,记录下测量结果,并将探头取出。

三、静力触探法数据解析静力触探法测量获得的数据量大,需要进行综合解析后才能得到有效的结果。

常见的数据解析方法主要有以下几种:1.经验方法:依据经验公式确定土层的物理和机械性质,如密度、抗压强度等。

2.统计方法:通过建立地层统计模型和实际观测值的比较,对土体性质进行综合解析,如地层划分、土层厚度等。

3.数值方法:利用有限元、边界元等数值方法对土体结构分析,得到更精确的地下结构模型和土壤力学性质参数,以预测地面沉降、振动等情况。

总之,静力触探法是一种常用的基础地质勘探方法,通过测量地下土层的推进阻力大小,可以了解到地层的物理、力学等性质,具有很高的实用价值。

六、静力触探试验

六、静力触探试验

六、静力触探试验1. 试验的目的及意义通过静力触探试验,了解双桥经理处探探头的构造和标定方法,掌握试验的操作步骤及技术要求,处理试验数据得到地基土的锥尖阻力q 、侧壁摩阻力f 及摩阻比R ,并对地基csf土进行分层及土类鉴别。

2. 试验的适用范围静力触探试验适应于软土、粘性上、粉土、砂类土和含有少量碎石的土层。

与传统的钻探方法相比,静力触探试验具有速度快、劳动强度低、清洁、经济等优点,而且可连续获得地层的强度和其他方面的信息。

不受取样扰动等人为因索的影响。

这对于地基土在竖向变化比较复杂,而用其他常规勘探试验手段能大密度取土或测试来査明土层变化;对于在饱和砂土、砂质粉土及高灵敏性软土中的钻探取样往往不易达到技术要求,或者无法取样的情况。

静力触探试验均具有它独特的优越性。

因此,在适宜于使用静力触探的地区,该技术普遍受到欢迎。

但是,静力射探试验中不能对上进行直接的观察、鉴别,而且不适用于含较多碎石、砾石的土层和很密实的砂层。

3. 试验的基本原理静力触探试验是利用准静力以恒定的贯入速率将一定规格和形状的圆锥探头通过一系列探杆压入土中,同时测记贯入过程中探头所受到的阻力,根据测得的贯入阻力大小来间接判定土的物理力学性质的现场试验方法。

静力触探试验所能获得的土层信息与探头的性能有很大的关系。

单桥探头测得圆锥所受土体总的阻力,即贯入比阻力p ,双桥探头同时测得锥尖阻力q 和侧壁摩阻力f,这些scs 参数广泛用于桩基承载力设计中。

孔压探头是在双桥探头基础上增加了孔压测量传感器,因此测试过程中除了能够获得锥尖阻力q 和侧壁摩阻力f之外,还可以获得孔压u ,并可在静止状态下在某一深度进行孔cs压消散试验,得到土层固结特性。

4.试验仪器及制样工具静力触探试验设备主要包括探头、贯入主机、反力装置、探杆和记录仪组成•试验中采用设备如下:探头:多功能无绳静力触探探头,除了可以量测锥尖阻力和侧壁摩阻力外,还可以测得孔压、贯入深度和钻杆倾斜度;试验前需要在标定架上对静力触探探头进行标定,得到相应的标定系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静力触探试验静力触探试验是用静力将探头以一定的速率压入土中,利用探头内的力传感器,通过电子量测仪器将探头受到的贯入阻力记录下来。

由于贯入阻力的大小与土层的性质有关,因此通过贯入阻力的变化情况,可以达到了解土层的工程性质的目的。

静力触探试验可根据工程需要采用单桥探头、双桥探头或带孔隙水压力量测的单、双桥探头,可测定比贯入阻力(ps)、锥尖阻力(qc)侧壁阻力(fs)和贯入时的孔隙水压力(u)。

静力触探试验适用于软土、一般粘性土、粉土、砂土和含少量碎石的土。

一、静力触探的试验设备静力触探设备试验由加压装置、反力装置、探头及量测记录仪器等四部分组成:(一)加压装置加压装置的作用是将探头压入土层中,按加压方式可分为下列几种。

1.手摇式轻型静力触探。

利用摇柄、链条、齿轮等用人力将探头压入土中。

用于较大设备难以进入的狭小场地的浅层地基土的现场测试。

2.齿轮机械式静力触探。

主要组成部件有变速马达(功率2.8~3kW)、伞形齿轮、丝杆、稻香滑块、支架、底板、导向轮等。

其结构简单,加工方便,既可单独落地组装,也可装在汽车上,但贯入力小,贯入深度有限。

3.全液压传动静力触探。

分单缸和双缸两种。

主要组成部件有:油缸和固定油缸底座、油泵、分压阀、高压油管、压杆器和导向轮等。

目前在国内使用液压静力触探仪比较普遍,一般最大贯入力可达200kN。

(二)反力装置静力触探的反力用三种形式解决:1.利用地锚作反力。

当地表有一层较硬的粘性土覆盖层时,可以是使用2~4个或更多的地锚作反力,视所需反力大小而定。

锚的长度一般1.5m左右,叶片的直径可分成多种,如25、30、35、40cm,以适应各种情况。

2.用重物作反力。

如地表土为砂砾、碎石土等,地锚难以下入,此时只有采用压重物来解决反力问题,即在触探架上压以足够的重物,如钢轨、钢锭、生铁块等。

软土地基贯入30m以内的深度,一般需压重物40~50kN。

3.利用车辆自重作反力。

将整个触探设备装在载重汽车上,利用载重汽车的自重作反力。

贯入设备装在汽车上工作方便,工效比较高,但由于汽车底盘距地面过高,使钻杆施力点距离地面的自由长度过大,当下部遇到硬层而使贯入阻力突然增大时易使钻杆弯曲或折断,应考虑降低施力点距地面的高度。

触探钻杆通常用外径Φ32~35mm、壁厚为5mm以上的高强度无缝钢管制成,也可用Φ42mm的无缝钢管。

为了使用方便,每根触探杆的长度以1m为宜,钻杆接头宜采用平接,以减小压入过程中钻杆与土的摩擦力。

(三)探头1.探头的工作原理将探头压入土中时,由于土层的阻力,使探头受到一定的压力。

土层的强度愈高,探头所受到的压力愈大。

通过探头内的阻力传感器(以下简称传感器),将土层的阻力转换为电讯号,然后由仪表测量出来。

为了实现这个目的,需运用三个方面的原理,即材料弹性变形的虎克定律、电量变化的电阻率定律和电桥原理。

传感器受力后要产生变形。

根据弹性力学原理,如应力不超过材料的弹性范围,其应变的大小与土的阻力大小成正比,而与传感器截面积成反比。

因此,只要能将传感器的应变大小测量出,即可知土阻力的大小,从而求得土的有关力学指标。

如果在传感器上贴上电阻应变片,当传感器受力变形时,应变片也随之产生相应的应变从而引起应变片的电阻产生变化,根据电阻定律,应变片的阻值变化与电阻丝的长度变化成正比,与电阻丝的截面积变化成反比,这样就能将传感器的变形转化为电阻的变化。

但由于传感器在弹性范围内的变形很小,引起电阻的变化也很小,不易测量出来。

为此,在传感器上贴一组电阻应变片,组成一个电桥电路,使电阻的变化转化为电压的变化,通过放大,就可以测量出来。

因此,静力触探就是通过探头传感器实现一系列量的转换:土的强度—土的阻力—传感器的应变—电阻的变化—电压的输出,最后由电子仪器放大和记录下来,达到测定土强度和其他指标的目的。

2.探头的结构目前国内用的探头有三种(如图4﹣5所示),一种是单桥探头,另一种是双桥探头。

此外还有能同时测量孔隙水压的两用(ps~u)或三用qc~u~fs)探头,即在单桥或双桥探头的基础上增加了能量侧孔隙水压力的功能。

(1)单桥探头;单桥探头由带外套筒的锥头、弹性元件(传感器)、顶柱和电阻应变片组成,锥底的截面积规格不一,常用的探头型号及规格见表4﹣2,其中有效侧壁长度为锥底直径的1.6倍。

(2)双桥探头。

单桥探头虽带有侧壁摩擦套筒,但不能分别测出锥头阻力和侧壁摩擦阻力。

双桥探头除锥头传感器外,还有侧壁摩擦传感器及摩擦套筒。

侧壁摩擦套筒的尺寸与锥底面积有关。

双桥探头结构见图4﹣5,其规格见表4﹣3。

(3)探头的密封及标定要保证传感器高精度地进行工作,就必须采取密封、防潮措施,否则因传感器受潮而降低其绝缘电阻,使零飘增大,严重时电桥不能平衡,测试工作无法进行。

密封方法有包裹法、堵塞法、充填法等。

用充填法时应注意利用中性填料,且填料要呈软膏状,以免对应变片产生腐蚀或影响讯号的传递。

(四)量测记录仪器目前我国常用静力触探的量测记录仪器有两种类型,一种为电阻应变仪,另一种为自动记录仪。

1.电阻应变仪电阻应变仪由稳压电源、振荡器、测量电桥、放大器、相敏检波器和平衡指示器等组成。

应变仪是通过电桥平衡原理进行测量的。

当触探头工作时,传感器发生变形,引起测量电桥电路的电压平衡发生变化,通过手动调整电位器使电桥达到新的平衡,根据电位器调整程度就可确定应变的大小,并从读数盘上直接读出。

2.自动记录仪自动记录仪是由通用的电子电位差计改装而成,它能随深度自动记录土层贯入阻力的变化情况,并以曲线的方式自动绘在记录纸上,从而提高了野外工作的效率和质量。

它主要由稳压电源、电桥、滤波器、放大器、滑线电阻和可逆电机组成。

由探头输出的信号,经过滤波器以后,产生一个不平衡电压,经放大器放大后,推动可逆电机转动,与可逆电机相连的指示机构,就沿着有分度的标尺滑行,标尺是按讯号大小比例刻制的,因而指示机构所显示的位置即为被测讯号的数值。

近年来已有将静力触探试验过程引入微机控制的行列。

即在钻进过程中可显示和存入与各深度对应的qc和fs值,起拔钻杆时即可进行资料分析处理,打印出直观曲线及经过计算处理的各土层的qc、fs平均值,并可永久保存,还可根据要求进行力学分层。

二、静力触探现场试验要点(一)试验前的准备工作试验前的准备工作有:1.设置反力装置(或利用车装重量)。

2.安装好加压和量测设备,并用水准尺将底板调平。

3.检查电源电压是否符合要求。

4.检查仪表是否正常。

5.检查探头外套筒及锥头的活动情况,并接通仪器,利用电阻挡调节度盘指针,如调节比较灵活,说明探头正常。

(二)现场试验现场试验步骤如下:1.将仪表与探头接通电源,打开仪表和稳压电源开关,使仪器预热15min。

2.根据土层软硬情况,确定工作电压,将仪器调零,并记录孔号、探头号、标定系数、工作电压及日期。

3.先压入0.5m,稍停后提升10cm,使探头与地温相适应,记录仪器初读数εo。

试验中每贯入10mm测记读数ε1一次。

以后每贯入3~5m,要提升5~10cm,以检查仪器初读数εo。

4.探头应匀速垂直压入土中,贯入速度控制在1.2m/min。

:5.接卸钻杆时,切勿使入土钻杆转动,以防止接头处电缆被扭断,同时应严防电缆受拉,以免拉断或破坏密封装置。

6.防止探头在阳光下暴晒,每结束一孔,应及时将探头锥头部分卸下,将泥沙檫洗干净,以保持顶柱及外套筒能自由活动。

(三)静力触探试验的技术要求静力触探试验的技术要求应符合下列规定:1.探头圆锥锥底截面积应采用10cm2或15cm2,单桥探头侧壁高度应分别采用57mm或70mm,双桥探头侧壁面积应采用150~300cm2,锥尖锥角应为60°。

2.探头测力传感器应连同仪器、电缆进行定期标定,室内探头标定测力传感器的非线性误差、重复性误差、滞后误差、温度漂移、归零误差均应小于1%FS,现场试验归零误差应小于3%,绝缘电阻不小于500MΏ。

3.深度记录的误差不应大于触探深度的±1%。

4.当贯入深度超过30m或穿过厚层软土后再贯入硬土层时,应采取措施防止孔斜或断杆,也可配置测斜探头,量测触探孔的偏斜角,校正土层界线的深度。

5.孔压探头在贯入前,应在室内保证探头应变腔为已排除气泡的液体所饱和,并在现场采取措施保持探头的饱和状态,直至探头进入地下水位以下的土层为止。

在孔压静探试验过程中不得上提探头。

6.当在预定深度进行孔压消散试验时,应量测停止贯入后不同时间的孔压值,其计时间隔由密而疏合理控制;试验过程中不得松动探杆。

三、试验成果整理(一)单孔资料的整理1.初读数的处理初读数是指探头在不受土层阻力的条件下,传感器的初始应变的读数。

影响初读数的因素很多,最主要的是温度。

因为现场工作过程的地温与气温同探头标定时的温度不一样。

消除初读数影响的办法,可采用每隔一定深度将探头提升一次,在其不受力的情况下将应变仪调零一次,或测定一次初读数。

后者在进行应变量计算时,按下式消除初读数的影响式中:ε——应变量,με;ε1——探头压入时的读数με;εo——初读数με。

2.贯入阻力的计算将电阻应变仪测出的应变量ε,换算成比贯入阻力ps(单桥探头),或锥头阻力qc及侧壁摩擦力fs(双桥探头)。

3.摩阻比的计算摩阻比是以百分率表示的双桥探头的各对应深度的锥头阻力和侧壁摩擦力的比值(三)绘制触探曲线单桥和双桥探头应绘制ps~z曲线、qc~z曲线、fs~z曲线、Rf~z曲线;孔压探头尚应绘制ui~z曲线、qt~z曲线、ft~z曲线、Bq~z曲线和孔压消散ut~lgt曲线。

其中,Rf—摩阻比;ui—孔压探头贯入土中量测的孔隙水压力(即初始孔压);qt—真锥头阻力(经孔压修正);ft—真侧壁摩阻力(经孔压修正);Bq—静探孔压系数,(四)划分土层界限根据静力触探曲线对土进行力学分层,或参照钻孔分层结合静探曲线的大小和形态特征进行土层工程分层,确定分层界线。

土层划分应考虑超前与滞后的影响,其确定方法如下:1.上下层贯入阻力相差不大时,取超前深度和滞后深度的中点,或中点偏向小阻值土层5~10cm处作为分层界面。

2.上下层贯入阻力相差1倍以上时,当由软层进入硬层或由硬层进入软层时,取软层最后一个(或第一个)贯入阻力小值偏向硬层10cm处作为分层界面。

3.上下层贯入阻力无甚变化时,可结合fs或Rf的变化确定分层界面。

(五)分层贯入阻力计算单孔各分层的贯入阻力,可采用算术平均法或按触探曲线采用面积法,计算时应剔除个别异常值(如个别峰值),并剔除超前、滞后值。

计算勘察场地的分层阻力时,可按各孔穿越该层的厚度加权平均计算场地分层的平均贯入阻力,或将各孔触探曲线叠加后,绘制低值与峰值包络线,以便确定场地分层的贯入阻力在深度上的变化规律及变化范围。

相关文档
最新文档