排列组合第一讲 分类加法与分步乘法计数原理

排列组合第一讲  分类加法与分步乘法计数原理
排列组合第一讲  分类加法与分步乘法计数原理

两个计数原理

【知识网络】

【典型例题】

题型一、分类加法计数原理

例1、从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法种数为()

例2、在所有两位数中,个位数字大于十位数字的两位数共有多少个

【变式练习】

1.若a,b∈N*,且a+b≤5,则在直角坐标平面内的点(a,b)共有________个.

2.在所有的两位数中,个位数字小于十位数字的两位数共有多少个

例3、有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有()

A.21种B.315种C.143种D.153种

例4、某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有().

A.4种B.10种C.18种D.20种

方法总结

分类时,首先要确定一个恰当的分类标准,然后进行分类;其次分类时要注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理

【变式练习】

1.某校开设10门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门学校规定,每位同学选修三门,则每位同学不同的选修方案种数是()

A.120 B.98 C.63 D.56

2.某电脑用户计划使用不超过500元购买单价分别为60元、70元的电脑软件和电脑元件,根据需要,软件至少买3个,元件至少买2个,则不同的选购方法有()

3.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.

A.238个B.232个C.174个D.168个

例5、在某种信息传输过程中,用4个数字的一个排列(数字也许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )

A.10 .11 C

【变式练习】

1.为了应对欧债危机,沃尔沃汽车公司决定从10名办公室工作人员中裁去4人,要求甲、乙二人不能全部裁去,则不同的裁员方案的种数为________.

2.在一块并排的10垄田地中,选择二垄分别种植A、B两种作物,每种种植一垄,为有利于作物生长,要求A、B两种作物的间隔不少于6垄,不同的选法共有多少种。

3.有4人各写一张贺卡,放在一起,然后每个人取一张不是自己写的贺卡,共有多少种不

同取法

题型二:分步乘法计数原理

例6、(1)四名运动员争夺三项冠军,不同的结果最多有多少种

(2)四名运动员参加三项比赛,每人限报一项,不同的报名方法有多少种

例7、甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有().

A.6种B.12种C.24种D.30种

例8、用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有____ ____个(用数字作答).

方法总结

此类问题,首先将完成这件事的过程分步,然后再找出每一步中的方法有多少种,求其积.注意:各步之间相互联系,依次都完成后,才能做完这件事.简单说使用分步计数原理的原则是步与步之间的方法“相互独立,逐步完成”.

【变式练习】

1.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,可组成不同的二次函数共有_____________个,其中不同的偶函数共有_____________个.(用数字作答)

2.从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,这样的子集共有多少个

例9、由数字1,2,3,4,

(1)可组成多少个3位数;

(2)可组成多少个没有重复数字的3位数;

(3)可组成多少个没有重复数字的三位数,且百位数字大于十位数字,十位数字大于个位数

例10、(1)5名学生从3项体育项目中选择参赛,若每名学生只能参加一项,则有多少种不同的参赛方法

(2)5名学生争夺3项比赛的冠军,获得冠军的可能情况种数有多少

解决计数问题时一定要明确研究的对象是什么怎样才能完成计数,本题给出解决此类问题的一种方法:住店法.

【变式练习】

1.十字路口来往的车辆,如果不允许回头,共有_____________种行车路线.

B.16

2.设集合M={-3,-2,-1,0,1,2},P(a,b)是坐标平面上的点,a,b∈M,P可以表示

①平面上多少个不同的点

②第二象限内的多少个点

③不在直线y=x上的多少个点

3. (1)三封信投入到4个不同的信箱中,共有________种投法.

(2)动物园的一个大笼子里,有4只老虎,3只羊,同一只羊不能被不同的老虎分食,问老虎将羊吃光的情况有多少种

4. 乘积

12312312345)()()a a a b b b c c c c c ++++++++(展开后共有多少项

本不同的书,任选3本分给3位同学,每人1本,有多少种不同的分法

考点三:分类与分步综合之简单的面的涂色问题

例11、 如图,用5种不同的颜色给图中A 、B 、C 、D 四个区域涂色,规定每个区域只涂一

种颜色,相邻区域颜色不同,求有多少种不同的涂色方法

涂色问题的实质是分类与分步,一般是整体分步,分步过程中若出现某一步需分情况说明时还要进行分类.涂色问题通常没有固定的方法可循,只能按照题目的实际情况,结合两个基本原理和排列组合的知识灵活处理.

例12、图为四棱锥P-ABCD,用四种不同的颜色涂四棱锥的各个面,每个面只用一种颜色涂,要求相邻两面不同色,有多少种涂法

【变式练习】

1.如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种

2.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种.(以数字作答)

例13、用0,1,2,3,4这五个数字可以组成多少个无重复数字的:

(1)银行存折的四位密码(2)四位数(3)四位奇数(4)比2000大的四位偶数

五、课后习题(40分钟,共50分)

一、选择题(每小题5分,共25分)

1.如图,A、B、C、D为四个村庄,要修筑三条公路,将这四个村庄连接起来,则不同的

修筑方案共有().

A.8种B.12种C.16种D.20种

2.如图,用6种不同的颜色把图中A、B、C、D四块区域分开,若相邻区域不能涂同一种

颜色,则不同的涂法共有().

A.400种B.460种

C.480种D.496种

3.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加

A.20种B.30种C.40种D.60种

4.高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去何工厂可自由选择,

甲工厂必须有班级要去,则不同的分配方案有().

A.16种B.18种C.37种D.48种

5.4位同学从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法有().

A.12种B.24种C.30种D.36种

二、填空题(每小题5分,共10分)

6.五名学生报名参加四项体育比赛,每人限报一项,则报名方法的种数为________.五名

学生争夺四项比赛的冠军(冠军不并列),获得冠军的可能性有________种.

2 方格,在每一个方格中填入一个数字,数字可以是4,3,2,1中的任何一个,7.如图所示2

允许重复,若填人A方格的数字大于B方格的数字,则不同的填法共有

A.192种B.128种C.96种D.12种

三、解答题(共15分)

8.(15分)如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂

一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有多少种

排列组合问题之—加法原理和乘法原理

排列组合问题之—加法原理和乘法原理 华图教育梁维维 加法原理和乘法原理是排列组合问题的基本思想,绝大多数的排列组合问题都会应用到这两个原理,所以对加法、乘法原理广大考生要充分的了解和掌握。 1.加法原理 加法原理:做一件事情,完成它有N类方式,第一类方式有M1种方法,第二类方式有M2种方法,……,第N类方式有M(N)种方法,那么完成这件事情共有M1+M2+……+M(N)种方法。 例如:从长春到济南有乘火车、飞机、轮船3种交通方式可供选择,而火车、飞机、轮船分别有k1,k2,k3个班次,那么从武汉到上海共有N=k1+k2+k3种方式可以到达。加法原理指的是如果一件事情是分类完成的,那么总的情况数等于每类情况数的总和,比如如下的题目:【例1】利用数字1,2,3,4,5共可组成 ⑴多少个数字不重复的三位数? ⑵多少个数字不重复的三位偶数? 【解析】⑴百位数有5种选择;十位数不同于百位数有4种选择;个位数不同于百位数和十位数有3种选择.所以共有5×4×3=60个数字不重复的三位数。 【解析】⑵先选个位数,共有两种选择:2或4.在个位数选定后,十位数还有4种选择;百位数有3种选择.所以共有2×4×3=24个数字不重复的三位偶数。 在公务员考试当中,排列组合也是考察比较多的一个问题,国考和联考当中也对加法原理做了考察。例如如下的两道题: 【例2】某班同学要订A、B、C、D四种学习报,每人至少订一种,最多订四种,那么每个同学有多少种不同的订报方式?( ) A.7种 B.12种 C.15种 D.21种 【解析】不同的订报方式对于同学可以选择订一种、两种、三种、四种这样四类,第一类,选择一种有4种订报方式,第二类选订两种有6种订报方式,第三类选定三种有4种订报方式,第四类四种都订有1种订报方式。所以每个同学有4+6+4+1=15种订报方式。 对于加法原理大家要掌握的是分类思想,对于分类问题要掌握加法原理。总的情况数等于每类的情况数加和。下面我们继续了解排列组合问题的基本原理之乘法原理。

排列组合第一讲 分类加法与分步乘法计数原理

两个计数原理 【知识网络】 【典型例题】 题型一、分类加法计数原理 例1、从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法种数为() 例2、在所有两位数中,个位数字大于十位数字的两位数共有多少个 【变式练习】 1.若a,b∈N*,且a+b≤5,则在直角坐标平面内的点(a,b)共有________个. 2.在所有的两位数中,个位数字小于十位数字的两位数共有多少个

例3、有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有() A.21种B.315种C.143种D.153种 例4、某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有(). A.4种B.10种C.18种D.20种 方法总结 分类时,首先要确定一个恰当的分类标准,然后进行分类;其次分类时要注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理 【变式练习】 1.某校开设10门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门学校规定,每位同学选修三门,则每位同学不同的选修方案种数是() A.120 B.98 C.63 D.56 2.某电脑用户计划使用不超过500元购买单价分别为60元、70元的电脑软件和电脑元件,根据需要,软件至少买3个,元件至少买2个,则不同的选购方法有() 3.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.

A.238个B.232个C.174个D.168个 例5、在某种信息传输过程中,用4个数字的一个排列(数字也许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( ) A.10 .11 C 【变式练习】 1.为了应对欧债危机,沃尔沃汽车公司决定从10名办公室工作人员中裁去4人,要求甲、乙二人不能全部裁去,则不同的裁员方案的种数为________. 2.在一块并排的10垄田地中,选择二垄分别种植A、B两种作物,每种种植一垄,为有利于作物生长,要求A、B两种作物的间隔不少于6垄,不同的选法共有多少种。 3.有4人各写一张贺卡,放在一起,然后每个人取一张不是自己写的贺卡,共有多少种不 同取法 题型二:分步乘法计数原理 例6、(1)四名运动员争夺三项冠军,不同的结果最多有多少种 (2)四名运动员参加三项比赛,每人限报一项,不同的报名方法有多少种

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理(第一课时) 知识与技能: ①理解分类加法计数原理与分步乘法计数原理; ②会利用两个原理分析和解决一些简单的应用问题; 过程与方法: ①通过对两个原理概念的学习培养学生的理解能力、归纳概括能力和类比分 析能力; ②通过对两个原理的应用,提高学生对数学知识的应用能力; 情感态度与价值观: ①了解学习本章的意义,激发学生的学习兴趣 ②引导学生形成“自主学习”与“合作学习”等良好的学习方式. 教学重点理解两个原理,并能运用它们来解决一些简单的问题. 教学难点弄清楚“一件事”指的是什么,分清是“分类”还是“分步”. 教学方法启发式 教具准备多媒体 教学过程 一、引入课题 引例:从甲地到乙地有3条路,从乙地到丁地有2条路;从甲地到丙地有3条路,从丙地到丁地有4条路,问:从甲地到丁地有多少种走法? 决问题. 设计意图:从贴近学生实际生活的实例出发,让学生明白本节课的教学内容,激发学生学习兴趣。 师生互动:老师提问学生回答。 二、讲授新课: 1、分类加法计数原理 问题1:(多媒体展示)十一你打算从甲地到乙地旅游,假设可以乘汽车和火车.一天中,汽车有3班,火车有2班.那么一天中乘坐这些交通工具从甲地到乙地共有多少种坐交通工具的方法?有3+2=5种方法 探究1:(多媒体展示)你能说说以上问题的特征吗?(分析要完成的“一件事”是什么.) 完成一件事有两类不同方案,在第1类方案中有3种不同的方法,在第2类方案中有2种不同的方法. 那么完成这件事共有3+2=5种方法。一件事就是从甲

地到乙地的一种乘坐交通工具的方式。 发现新知:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +???++=21种不同的方法.(也称加法原理) 设计意图:由特例到定义的设计思路让学生理解加法原理的概念,体现了一般存在于特殊之中的辩证法思想,便于让学生理解概念。 师生互动:由老师提问学生回答的方式进行。在本知识点中学生可能对“一件事”的概念的理解不是很好,在学生回答完后,老师应该进行点拨。 知识应用 例1:两个袋子里分别装有40个红球,60个白球,从中任取一个球,有多少种求法? 设计意图:通过本例及变式练习让学生进一步理解“分类”的含义。并向学生指出分类的关键是弄清“一件事”是什么。 师生互动:由老师引导学生回答例题,由学生独立解答变式,并回答“一件事”是什么。 分类加法计数原理特点: 分类加法计数原理针对的是“分类”问题,完成一件事的办法要分为若干类,各类的办法法相互独立,各类办法中的各种方法也相对独立,用任何一类办法中的任何一种方法都可以单独完成这件事. 设计意图:让学生总结加法原理的特点,加深对概念的理解。 师生互动:由学生总结,老师给以补充。 2 、分步乘法计数原理 问题2:(多媒体展示)从A 村道B 村的道路有3条,从B 村去C 村的路有2条,从C 村去D 的道路有3条,小明要从A 村经过B 村,再经过C 村,最后到D 村,一共有多少条路线可以选择? 从A 村经 B 村去C 村有 2 步, 第一步, 由A 村去B 村有 3 种方法, 第二步, 由B 村去C 村有 2 种方法, 第三步,从C 村到D村有3种方法 所以从A 村经 B 村又经过C 村到D村共有 3 ×2 ×3= 18 种不同的方法 探究2:(多媒体展示)你能说说这个问题的特征吗?(分析要完成的“一件事” 是什么.) 完成一件事需要有三个不同步骤,在第1步中有3种不同的方法,在第2步中有2种不同的方法,第三步有3种不同的方法. 那么完成这件事共有3 ×2 ×3= 18种不同的方法.一件事就是:从A村到D村的一种走法 发现新知 分步乘法计数原理:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么

计数原理与排列组合经典题型

计数原理与排列组合题型解题方法总结 计数原理 一、知识精讲 1、分类计数原理: 2、分步计数原理: 特别注意:两个原理的共同点:把一个原始事件分解成若干个分事件来完成。 不同点:如果完成一件事情共有n类办法,这n类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理。分类时应不重不漏(即任一种方法必须属于某一类且只属于这一类) 如果完成一件事情需要分成n个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。各步骤有先后,相互依存,缺一不可。 3、排列 (1)排列定义,排列数 (2)排列数公式: (3)全排列列: 4.组合 (1)组合的定义,排列与组合的区别; (2)组合数公式: (3)组合数的性质 二、.典例解析 题型1:计数原理 例1.完成下列选择题与填空题 (1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。 A.81 B.64 C.24 D.4 (2)四名学生争夺三项冠军,获得冠军的可能的种数是( ) A.81 B.64 C.24 D.4 (3)有四位学生参加三项不同的竞赛, ①每位学生必须参加一项竞赛,则有不同的参赛方法有; ②每项竞赛只许有一位学生参加,则有不同的参赛方法有;

③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。 例2(1)如图为一电路图,从A 到B 共有 条不同的线路可通电。 例3: 把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢? 例4、某城在中心广场造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 ________ 种.(以数字作答) 例5、 四面体的顶点和各棱的中点共10个,在其中取4个不共面的点,问共有多少种不同的取法? 例6、(1)电视台在”欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现有主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果? (2)三边均为整数,且最大边长为11的三角形的个数是 D C B A

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理 教学目的 1了解学习本章的意义,激发学生的兴趣. 2.理解分类计数原理与分步计数原理,培养学生的归纳概括能力. 3.会利用两个原理分析和解决一些简单的应用问题. 教学重点 分类计数原理(加法原理)与分步计数原理(乘法原理) 教学难点: 分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解 教 具 多媒体、实物投影仪 教学过程 一、引入课题 今天我们来学习两个计数原理:分类加法计数原理和分类乘法计数原理。这两个原理不仅是我们解决计数问题的依据,也是我们学习排列组合和概率论的基础。 二、引出两个原理 问题1: 重庆的王先生欲回老家广州过年,从重庆到广州可以乘坐火车或者汽 车,一天中,火车有3班,汽车有2班,问从重庆到广州共有多少种不同的走法? 分析:因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从 重庆到广州,所以,共有3+2=5种不同的走法。 由问题1引出分类加法计数原理: 完成一件事情,有两类办法,在第1类办法中有m 种不同的方法,在第2类办法中有n 种不同的方法,那么完成这件事共N=m+n 种不同的方法.(也称加法原理)(板书) 追问:如果完成一件事情有 n 类不同方案,在第1类办法中有1m 种不同的方法, 在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的 方法.那么完成这件事共多少种不同的方法?.(口述) 回答:有n m m m N +???++=21种方法。 问题2:王先生在广州过完年后要去北京拜访朋友.第一天他必须乘火车去天津 办一件事,然后次日再乘汽车到北京。一天中,广州到天津的火车有3

分类加法计数原理和分步乘法计数原理(教案)

分类加法计数原理和分步乘法计数原理讲义 教学目标: 知识与技能:①理解分类加法计数原理与分步乘法计数原理; ②会利用两个原理分析和解决一些简单的应用问题; 过程与方法:培养学生的归纳概括能力; 情感、态度与价值观:引导学生形成“自主学习”与“合作学习”等良好的学习方式 教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理) 教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解 授课类型:新授课 课时安排:2课时 教具:多媒体、实物投影仪 第一课时 引入课题 先看下面的问题: ①从我们班上推选出两名同学担任班长,有多少种不同的选法? ②把我们的同学排成一排,共有多少种不同的排法? 要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法. 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法. 在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理. 1 分类加法计数原理 (1)提出问题 问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码? 问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 探究:你能说说以上两个问题的特征吗?

(2)发现新知 分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有 m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有 n m N += 种不同的方法. (3)知识应用 例1.在填写高考志愿表时,一名高中毕业生了解到,A,B 两所大学各有一些自己感兴趣的强项专业,具体情况如下: A 大学 B 大学 生物学 数学 化学 会计学 医学 信息技术学 物理学 法学 工程学 如果这名同学只能选一个专业,那么他共有多少种选择呢? 分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有 5+4=9(种). 变式:若还有C 大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种? 探究:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有多少种不同的方法? 如果完成一件事情有n 类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?

分类加法技术原理与分步乘法计数原理.

(§1.1 分类加法计数原理和分步乘法计数原理) 班级学号姓名 【基础练习】 1.一个书包内装有5本不同的小说,另一书包内有6本不同学科的教材,从两个书包中任取一本书的取法共有( ) A.5种 B.6种 C.11种 D.30种 2.教学大楼共有4层,每层都有东西两个楼梯,由一层到4层共有()种走法? A.6 B.23 C.42 D.24 3.某学校高一年级共8个班,高二年级6个班从中选一个班级担任学校星期一早晨升旗任务,共有()种安排方法 A.8 B.6 C.14 D.48 4.将三封信投入三个信箱,可能的投放方法共有( )种 A.1种 B.6 C.9 D.27 5.已知x∈{1,2,3,4},y∈{5,6,7,8},则xy可表示的不同值的个数为() A.2 B.4 C.8 D.15 6.10个苹果分成三堆,每堆至少2个,共有()种分法 A.64种 B.16种 C.4种 D.1种 7.异面直线l1、l2,l1上有5个不同点,l2上有4个不同的点,一共可组成直线()条 A.9条 B.9条 C.22 D.20条 8.在六棱锥各棱所在的12条直线中,异面直线共()对 A.12 B.24 C.36 D.48 9.若整数x、y满足|x|<4,|y|<5,则(x,y)为坐标的点共个 10.a∈{1,2,3},b∈{4,5,6},r∈{9,16,25},则方程(x-a)2+(y-b)2=r2所表示的不同圆共有个。 11.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5) 12.若集合A={a1,a2,a3,a4,a5},B={b1,b2} 从集合A到集合B,可建立 个不同的映射,从B到A可建立 个不同的映射。 13.如右图,从A到B共有条不同 的线路可通电。 14.(1)若1≤x≤4,1≤y≤5,则以有序整数对(x、y)为坐标的点共有多少个? (2)若x,y∈N且x+y≤6,则有序自然数对有多少个?

两个计数原理与排列组合知识点与例题

两个计数原理与排列组合知识点及例题 两个计数原理内容 1、分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法. 2、分步计数原理: 完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法. 例题分析 例1某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种? 分析:1、完成的这件事是什么? 2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步配一个荤菜有3种选择 第二步配一个素菜有5种选择 第三步配一个汤有2种选择 共有N=3×5×2=30(种) 例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。 (1)从书架上任取一本书,有多少种不同的取法? (2)从书架上任取一本数学书和一本语文书,有多少种不同的取法? (1)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。 解:属于分类:第一类从上层取一本书有5种选择 第二类从下层取一本书有4种选择 共有N=5+4=9(种) (2)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步从上层取一本书有5种选择 第二步从下层取一本书有4种选择 共有N=5×4=20(种) 例3、有1、2、3、4、5五个数字. (1)可以组成多少个不同的三位数? (2)可以组成多少个无重复数字的三位数? (3)可以组成多少个无重复数字的偶数的三位数? (1)分析: 1、完成的这件事是什么? 2、如何完成这件事?(配百位数、配十位数、配个位数) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 略解:N=5×5×5=125(个)

排列组合与计数原理

排列组合与计数原理 【复习目标】1.能熟练的判断利用加法原理和乘法原理。简单的排列组合组合数公式。 【复习重难点】加法原理和乘法原理公式的计算及应用。 1.高三(1),(2),(3)班分别有学生52,48,50人。 (1)从中选1人当学生代表的不同方法有____________种; (2)从每班选1人组成演讲队的不同方法有____________种; (3)从这150名学生中选4人参加学代会的不同方法有____________种; (4)从这150名学生中选4人参加数理化三个课外活动小组,共有不同方法有__________种。 2.假设在200件产品中有三件次品,现在从中任意抽取5件,期中至少有2件次品的抽法有__________种。 3.若,64 3n n C A 则n=___________。 例1.在1到20这20个整数中,任取两个数相加,使其和大于20,共有________种取法。 变式训练:从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为_______。 例2.从6人中选4人分别到张家界、韶山、衡山、桃花源四个旅游景点游览,要求每个旅游景点只有一人游览,每人只游览一个旅游景点,且6个人中甲、乙两人不去张家界游览,则不同的选择方案共有______________种. 例3.如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有_______ . 变式训练:要安排一份5天的值班表,每天有一人值班,现有5人,每人可以值多天班或不值班,但相邻两天不准由同一人值班,问此值班表共有_______ 种不同的排法.

计数原理-排列组合

排列组合 知识点 一、排列 定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定顺序排成一列,叫做从n 个不同元素中 取出m 个元素的一个排列;排列数用符号m n A 表示 对排列定义的理解: 定义中包括两个基本内容:①取出元素②按照一定顺序。因此,排列要完成的“一件事情”是“取出m 个元素,再按顺序排列” 相同的排列:元素完全相同,并且元素的排列顺序完全相同。若只有元素相同或部分相同,而排列顺序不相同,都是不同的排列。比如abc 与acb 是两个不同的排列 描述排列的基本方法:树状图 排列数公式:),)(1()2)(1(*∈+-???--=N m n m n n n n A m n 我们把正整数由1到n 的连乘积,叫做n 的阶乘,用!n 表示,即12)2()1(!??????-?-?=n n n n ,并规定1!0=。 全排列数公式可写成!n A n n =. 由此,排列数公式可以写成阶乘式: )!(!)1()2)(1(m n n m n n n n A m n -= +-???--=(主要用于化简、证明等) 二、组合 定义:一般地,从n 个不同元素中取出)(n m m ≤个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合;组合数用符号m n C 表示 对组合定义的理解: 取出的m 个元素不考虑顺序,也就是说元素没有位置要求,无序性是组合的特点. 只要两个组合中的元素完全相同,则不论元素的顺序如何,都是相同的组合.只有当两个组合中的元素不完全相同时,才是不同的组合 排列与组合的区别:主要看交换元素的顺序对结果是否有影响,有影响就是“有序”,是排列问题;没影响就是“无序”,是组合问题。 组合数公式: ),()!(!!!)1()2)(1(n m N m n m n m n m m n n n n A A C m m m n m n ≤∈-=+-???--==*,且 变式:),,()! ()1()2)(1()!(!!n m N m n C m n m n n n m n m n C m n n m n ≤∈=-+???--=-= *-且

第十章排列组合和概率(第1课)加法原理和乘法原理(1)

课题:10.1加法原理和乘法原理(一) 教学目的: 1了解学习本章的意义,激发学生的兴趣. 2.理解分类计数原理与分步计数原理,培养学生的归纳概括能力. 3.会利用两个原理分析和解决一些简单的应用问题. 教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理) 教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 两个基本原理是排列、组合的开头课,学习它所需的先行知识跟学生已熟知的数学知识联系很少,排列、组合的计算公式都是以乘法原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以在教学目标中特别提出要使学生学会准确地应用两个基本原理分析和解决一些简单的问题对于学生陌生的知识,在开头课中首先作一个大概的介绍,使学生有一个大致的了解是十分必要的基于这一想法,在引入新课时,首先是把这一章将要学习的内容,以及与其它科目的关系做了介绍,同时也引入了课题正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件;分类用加法原理,分步用乘法原理,单纯这点学生是容易理解的,问题在于怎样 的,目的就在于帮助学生对这一知识的理解与应用 两个原理是教与学重点,又具有相当难度.加法和乘法在小学就会,那么,在中学再学它与以往有什么不同?不同在于小学阶段重在运算结果的追求,而忽视了其过程中包含的深层次思想;两个原理恰恰深刻反映了人类计数最基本的“大事化小”,即“分解”的思想.更具体地说就是把事物分成类或分成步去数.“分类”、“分步”,看似简单,不难理解,却是全章的理论依据和基本方法,贯穿始终,所以,是举足轻重的重点.两个原理,要能在各种场合灵活应用并非易事,所以,着实有其难用之处 教学过程: 一、复习引入: 一次集会共50人参加,结束时,大家两两握手,互相道别,请你统计一下,大家握手次数共有多少? 某商场有东南西北四个大门,当你从一个大门进去又从另一个大门出来,问你共有多少种不同走法? 揭示本节课内容:等我们学了这一部分内容后,这些问题会很容易解决而这部分内容是代数中一个独立的问题,与旧知识联系很少,但它是以后学习二

人教版高中数学【选修2-3】[知识点整理及重点题型梳理] 分类加法计数原理和分步乘法计数原理(提高)

人教版高中数学选修2-3 知识点梳理 重点题型( 常考知识点 )巩固练习 分类加法计数原理和分步乘法计数原理 【学习目标】 1.理解分类加法计数原理和分步乘法计数原理. 2.理解分类加法计数原理和分步乘法计数原理的区别. 3.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题. 【要点梳理】 要点一:分类加法计数原理(也称加法原理) 1.分类加法计数原理: 完成一件事,有n类办法.在第1类办法中有m种不同方法,在第2类办法中有m种不同的方法,……, 12 在第n类办法中有m种不同方法,那么完成这件事共有N=m+m++m种不同的方法. n12n 2.加法原理的特点是: ①完成一件事有若干不同方法,这些方法可以分成n类; ②用每一类中的每一种方法都可以完成这件事; ③把每一类的方法数相加,就可以得到完成这件事的所有方法数. 要点诠释: 使用分类加法计数原理计算完成某件事的方法数,第一步是对这件事确定一个标准进行分类,第二步是确定各类的方法数,第三步是取和。 3.图示分类加法计数原理: 由A到B算作完成一件事.直线型流程线表示第1类方案中包括的方法数,折线型流程线表示第2类方案中包括的方法数。 从图中可以看出,完成由A到B这件事,共有方法m+n种。 要点诠释: 用分类加法计数原理计算完成某件事的方法数,“类”要一竿到底,它的起点、终点就是完成这件事的开始与结束,图示分类加法计数原理,用意就在其中。 要点二、分步乘法计数原理 1.分步乘法计数原理

“做一件事,完成它需要分成n个步骤”,就是说完成这件事的任何一种方法,都要分成n个步骤,要完成这件事必须并且只需连续完成这n个步骤后,这件事才算完成. 2.乘法原理的特点: ①完成一件事需要经过n个步骤,缺一不可; ②完成每一步有若干种方法; ③把每一步的方法数相乘,就可以得到完成这件事的所有方法数. 要点诠释: 使用分步乘法计数原理计算完成某件事的方法数,第一步是对完成这件事进行分步,第二步是确定各步的方法数,第三步是求积。 3.图示分步乘法计数原理: 由A到C算作完成一件事.设完成这件事的两个步骤为从A到B、从B到C。 要点诠释: 从A到C算作完成一件事,A是起点,C是终点,点B是中间单元,从A到B是第1步,从B到C是第2步。用分步乘法计数原理解题,按着这个模式施行就可以了,可简单地理解为:A→B,有m种方法;B→C,有n种方法;A→C,有mn种方法。 要点三、分类计数原理和分步计数原理的区别: 1.分类计数原理和分步计数原理的区别: 两个原理的区别在于一个和分类有关,一个和分步有关. 完成一件事的方法种数若需“分类”思考,则这n类办法是相互独立的,且无论哪一类办法中的哪一种方法都能单独完成这件事,则用加法原理; 若完成某件事需分n个步骤,这n个步骤相互依存,具有连续性,当且仅当这n个步骤依次都完成后,这件事才算完成,则完成这件事的方法的种数需用乘法原理计算. 2.应用两个原理的分别要注意: 若用分类计数原理,要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类计数原理,即加法原理求和得到总数; 若用分步计数原理,要做到步骤“完整”——完成了所有步骤,恰好完成所有任务,当然步与步之间要相互独立.分步后再计算每一步的方法数,最后根据分步计数原理,即乘法原理把完成每一步的方法数相乘得到总数. 要点四、分类计数原理和分步计数原理的应用 1.利用两个基本原理解决具体问题时的思考程序: (1)首先明确要完成的事件是什么,条件有哪些?

排列组合的基本理论和公式

排列组合的基本理论和公式 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1 种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列 当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n! (三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个

第1节 分类加法和分步乘法

第1节分类加法和分步乘法 【基础知识】 1.分类加法计数原理(加法原理)的概念 一般形式:完成一件事有n类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法,……,在第n类方案中有种不同的方法,那么完成这件事共有N=++……+种不同的方法. 2.分步乘法计数原理(乘法原理)的概念 一般形式:完成一件事需要n个步骤,做第1步有种不同的方法,做第2步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事共有N=种不同的方法. 3.两个原理的区别: (1)“每类”间与“每步”间的关系不同:分类加法计数原理中的每一类方案中的任何一种方法、不同类之间的任何一种方法都是相互独立,互不依赖的,且是一次性的;而分步乘法计数原理中的每一步是相互依赖,且是连续性的. (2)“每类”与“每步”完成的效果不同:分类加法计数原理中所描述的每一种方法完成后,整个事件就完成了,而分步乘法计数原理中每一步中的每一种方法得到的只是中间结果,任何一步都不能独立完成这件事. 4.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行,同时要优先考虑题中的限制条件. 【规律技巧】 1.计数问题中如何判定是分类加法计数原理还是分步乘法计数原理:如果已知的每类方法中的每一种方法都能单独完成这件事,用分类加法计数原理;如果每类方法中的每一种方法只能完成事件的一部分,用分步乘法计数原理. 2.利用分类计数原理解决问题时:(1)将一个比较复杂的问题分解为若干个“类别”,先分类解决,然后将其整合,如何合理进行分类是解决问题的关键.(2)要准确把握分类加法计数原理的两个特点:①根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;②分类时,注意完成这件事情的任何一种方法必须属于某一类,不能重复;③对于分类问题所含类型较多时也可考虑使用间接法. 3.利用分步乘法计数原理解决问题时要注意:

两个计数原理与排列组合知识点及例题

两个计数原理与排列组合知识点及例题两个计数原理内容 1、分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法. 2、分步计数原理: 完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法. 例题分析 例1 某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种? 分析:1、完成的这件事是什么? 2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步配一个荤菜有3种选择 第二步配一个素菜有5种选择 第三步配一个汤有2种选择 共有N=3×5×2=30(种) 例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。 (1)从书架上任取一本书,有多少种不同的取法? (2)从书架上任取一本数学书和一本语文书,有多少种不同的取法? (1)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。 解:属于分类:第一类从上层取一本书有5种选择 第二类从下层取一本书有4种选择 共有N=5+4=9(种) (2)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步从上层取一本书有5种选择 第二步从下层取一本书有4种选择 共有N=5×4=20(种) 例3、有1、2、3、4、5五个数字. (1)可以组成多少个不同的三位数? (2)可以组成多少个无重复数字的三位数? (3)可以组成多少个无重复数字的偶数的三位数? (1)分析: 1、完成的这件事是什么? 2、如何完成这件事?(配百位数、配十位数、配个位数) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 略解:N=5×5×5=125(个) 【例题解析】 1、某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?

抽屉原理与排列组合.

抽屉原理 把4只苹果放到3个抽屉里去,共有3种放法,不论如何放,必有一个抽屉里至少放进两个苹果。同样,把5只苹果放到4个抽屉里去,必有一个抽屉里至少放进两个苹果。……更进一步,我们能够得出这样的结论:把n+1只苹果放到n个抽屉里去,那么必定有一个抽屉里至少放进两个苹果。这个结论,通常被称为抽屉原理。 利用抽屉原理,可以说明(证明)许多有趣的现象或结论。不过,抽屉原理不是拿来就能用的,关键是要应用所学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。 【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么? 【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。 【例2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么? 【分析】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。 想一想,例2中4改为7,3改为6,结论成立吗? 【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)? 【分析】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双。拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走。如果再补进2只,又可取得第3双。所以,至少要取6+2+2=10只袜子,就一定会配成3双。 【例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球? 【分析】从最“不利”的取出情况入手。 最不利的情况是首先取出的5个球中,有3个是蓝色球、2个绿色球。

计数原理与排列组合(教师用)

姓名学生姓名填写时间2016-12-7学科数学年级高三教材版本人教版阶段第( 48 )周观察期:□维护期:□ 课题 名称排列组合课时计划 第()课时 共()课时 上课时间2016-12-8 教学目标大纲教学目标 1、理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用 问题. 2、理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解 决一些简单的应用问题. 个性化教学目标体会分类讨论的思想 教学重点1、正确区分排列与组合,熟练排列数与组合数公式 2、能熟练利用排列数与组合数公式进行求值和证明. 教学 难点 分类讨论思想的灵活应用 教学过程问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有4 班, 汽车有2班,轮船有3班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法 一、分类计数原理 完成一件事,有n类办法. 在第1类办法中有m1种不同的方法,在第2类方法中有m2种不同的方法,……,在第n类方法中有mn种不同的方法,则完成这件事共有 12n N m m m =+++种不同的方法 说明:1)各类办法之间相互独立,都能独立的完成这件事,要计算方法种数,只需将各类方法数相加,因此分类计数原理又称加法原理 2)首先要根据具体的问题确定一个分类标准,在分类标准下进行分类,然后对每类方法计数. 第一部分:计数原理

又称乘法原理

一、问题引入 问题1:从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另一名同学参加下午的活动,有多少种不同的选法 问题2:从1、2、3、4这4个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数 问题1和2的共同点是什么 二、排列 1、对排列定义的理解. 定义:一般地,从n 个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. 2、相同排列. 如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. 3、排列数. 从n 个不同元素中取出m(m≤n)个元素的所有不同的排列的个数,称为从n 个不同元素中取出m 个元素的排列数.用符号 m n A 表示. 且有:n n A 第二部分:排列

高中数学排列组合公式排列组合计算公式

排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn (两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

相关文档
最新文档