期末冲刺试卷(二)
部编版四年级语文下册期末冲刺卷(二)(有答案解析)

部编版四年级语文下册期末模拟冲刺卷(二)(有答案解析)班级姓名成绩第一部分积累运用一、下列每组中都有一个错误音节,请用横线画出,并在后面的括号里改正。
(1)涂抹.(mā) 漫.灭(màn) 墨水瓶.(píng) ()(2)膝.下(qī) 徜徉.(yáng) 仲.春( zhòng) ()(3)绽.放(zhàn) 曝.晒(bào) 炫.耀(xuàn) ()(4)晕.车(yùn) 涉.水(shè) 胆怯.(què) ()二、看拼音写词语。
shùn jiān fēi xiánɡqīnɡchèɡuóhuī()()()()lónɡyǎhuǐhuài wéi bèi wān yán()()()()三、词语全对的一组是()。
A. 固执信奉辨论膘肥体壮鹅黄嫩绿B. 糟塌捐赠凯旋与世常辞风声鹤唳C. 企图栖息僵硬梦寐以求响彻云宵D. 款待惩罚敬佩坚韧不拔一曝十寒四、字词理解及运用。
(1)“蜿蜒”在课文中的意思是______。
它让我们想起课文《长城》中的一句话:远看长城,它像_____,在_____之间蜿蜒盘旋。
我还能用“蜿蜒”造句:_______________ (2)“浓”在词典中的意思有:①液体或气体中所含的某种成分多,稠密(跟“淡”相对);②(颜色)深;③程度深。
下列词语中的加点字应选哪种意思?(填序号)浓.香( ) 睡意正浓.( ) 浓.妆艳抹(五、下列句子中的加点词语与其他三项表达的感情色彩不同的一项是( )。
A.他头脑简单..,做不了这么复杂的工作。
B.这个人贪婪..成性,什么都想据为已有。
C.海燕像黑色的闪电,在高傲..地飞翔。
D.他竟然做出如此伤天害理的勾当..!六、在括号里填上合适的词语,并根据语境选词填空(填序号)。
人教版七年级数学上学期期末冲刺模拟测试卷 (二)含答案与解析

人教版七年级上学期期末冲刺模拟测试卷 (二)数 学学校:___________姓名:___________班级:___________考号:___________(考试时间:120分钟 试卷满分:120分)注意事项:1.答题前,考生务必将自己的学校、班级、姓名、考试号、考场号、座位号,用0.5毫米黑色墨水签字笔填写在答题卷相对应的位置上,并认真核对;2.答题必须用0.5毫米黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卷上,保持卷面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。
一、选择题(每小题3分,共30分)1.(2020湘潭) 6-的绝对值是( )A .6-B .6C .61-D .16 2.如图所示,某同学的家在A 处,书店在B 处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线( )A .A→C→D→B B .A→C→F→BC .A→C→E→F→BD .A→C→M→B 3.若|b+2|与(a ﹣3)2互为相反数,则b a 的值为( )A .﹣bB .﹣18C .﹣8D .8 4.下列说法中,正确的是( )A .单项式223x y -的系数是﹣2,次数是3 B .单项式a 的系数是0,次数是0C .﹣3x 2y+4x ﹣1是三次三项式,常数项是1D .单项式232ab -的次数是2,系数为92- 5.下列说法正确的是( )A.近似数4.60与4.6的精确度相同B.近似数5千万与近似数5000万的精确度相同C.近似数4.31万精确到0.01D.1.45×104精确到百位6.(2020金华)如图,在编写数学谜语题时;“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+27.(2020黔南州)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元8.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程23t=32,未知数系数化为1,得t=1D.方程10.20.5x x--=1化成3x=69.(2020河北)如图1,已知∠ABC,用尺规作它的角平分线,如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.b均无限制B.a>0,b>12DE的长C.a有最小限制,b无限制D.a≥0,b<12DE的长10.(2020西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…若第n个相同的数是103,则n等于()A.18B.19C.20D.21二、填空题(每小题3分,共24分)11.在式子:2a、3a、1x y、﹣12、1﹣x﹣5xy2、﹣x、6xy+1、a2﹣b2中,其中多项式有个.12.(2020绵阳)若多项式xy|m-n|+(n-2)x2y2+1是关于x、y的三次多项式,则mn=_____.13.3x m+5y2与x3y n是同类项,则m n的值是13.(2020广东)已知:x=5-y,xy=2,计算:3x+3y-4xy的值为______.14.若(a﹣1)x|a|+3=﹣6是关于x的一元一次方程,则a=;x=.15.如图,BO⊥AO,∠BOC与∠BOA的度数之比为1:5,那么∠COA=,∠BOC的补角=.16.(2020凉山州)点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A. 10cmB. 8cmC. 10cm或8cmD. 2cm或4cm17.已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=度.18.(2020黄冈一模)在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S =1+3+32+33+34+35+36+37+38 ①,然后在①式的两边都乘以3,得:3S =3+32+33+34+35+36+37+38+39 ②, ②一①得:3S ―S =39-1,即2S =39-1,∴S =39―12. 得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m 2020的值?如能求出,其正确答案是___________.三、解答题(共66分)19.(8分)化简并求值:﹣6(a 2﹣2ab+b 2)+2(2a 2﹣3ab+3b 2),其中a=1,b=12. 20.(8分)解方程:(1)x+5(2x ﹣1)=3﹣2(﹣x ﹣5)(2)32x +﹣2=﹣225x -. 21.(6分)已知多项式x 2y m+1+xy 2﹣3x 3﹣6是六次四项式,单项式6x 2n y 5﹣m 的次数与这个多项式的次数相同,求m+n 的值.22.(8分)线段AB=12cm ,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点. (1)若点C 恰好是AB 中点,求DE 的长?(2)若AC=4cm ,求DE 的长.23.(8分)一位同学做一道题:“已知两个多项式A 、B ,计算2A+B”.他误将“2A+B”看成“A+2B”求得的结果为9x 2﹣2x+7,已知B=x 2+3x ﹣2,求正确答案.24.(2020广州)(8分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.25.(2020安徽)(10分)某超市有线上和线下两种销售方式与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的线下线下销售额(直接在表格中填写结果);时间销售总额(元) 线上销售额(元) 线下销售额(元) 2019年4月份a x a-x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.26.(10分)如图,已知OE 是∠AOC 的角平分线,OD 是∠BOC 的角平分线. (1)若∠AOC=120°,∠BOC=30°,求∠DOE 的度数;(2)若∠AOB=90°,∠BOC=α,求∠DOE 的度数.参考答案与解析一、选择题(每小题3分,共30分)1.(2020湘潭) 6-的绝对值是( )A .6-B .6C .61-D .16【答案】B【解析】根据绝对值的定义,得|6|6-=,故选:B .2.如图所示,某同学的家在A 处,书店在B 处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线( )A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B 【答案】B【解析】根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.3.若|b+2|与(a﹣3)2互为相反数,则b a的值为()A.﹣b B.﹣18C.﹣8 D.8【答案】C【解析】∵|b+2|与(a﹣3)2互为相反数,∴|b+2|+(a﹣3)2=0,∴b+2=0,a﹣3=0,解得:b=﹣2,a=3.∴b a=(﹣2)3=﹣8.故选:C.4.下列说法中,正确的是()A.单项式223x y-的系数是﹣2,次数是3B.单项式a的系数是0,次数是0C.﹣3x2y+4x﹣1是三次三项式,常数项是1D.单项式232ab-的次数是2,系数为92-【答案】D【解析】A、单项式223x y-的系数是﹣23,次数是3,系数包括分母,错误;B、单项式a的系数是1,次数是1,当系数和次数是1时,可以省去不写,错误;C、﹣3x2y+4x﹣1是三次三项式,常数项是﹣1,每一项都包括这项前面的符号,错误;D、单项式232ab-的次数是2,系数为92-,符合单项式系数、次数的定义,正确;故选:D.5.下列说法正确的是()A.近似数4.60与4.6的精确度相同B.近似数5千万与近似数5000万的精确度相同C.近似数4.31万精确到0.01D.1.45×104精确到百位【答案】D【解析】A、近似数4.60精确到百分位,4.6精确到十分位,故错误;B、近似数5千万精确到千万位,近似数5000万精确到万位,故错误;C、近似数4.31万精确到百位.故错误;D、正确.故选:D.6.(2020金华)如图,在编写数学谜语题时;“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+2【答案】D【解析】设“□”内数字为x,根据题意可得;3×(20+x)+5=10x+2,故选D.7.(2020黔南州)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元【答案】C【解析】设该商品每件的进价为x元,依题意,得12×0.8-x=2,解得,x=7.6.故选C.8.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程23t=32,未知数系数化为1,得t=1D.方程10.20.5x x--=1化成3x=6【答案】D【解析】A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,故本选项错误;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,故本选项错误;C、方程23t=32,未知数系数化为1,得t=94,故本选项错误;D、方程10.20.5x x--=1化成3x=6,故本选项正确.故选:D.9.(2020河北)如图1,已知∠ABC,用尺规作它的角平分线,如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.b均无限制B.a>0,b>12DE的长C.a有最小限制,b无限制D.a≥0,b<12DE的长【答案】B【解析】以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b为圆心画弧时,b必须大于12DE,否则没有交点.故选:B.10.(2020西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…若第n个相同的数是103,则n等于()A.18B.19C.20D.21【答案】A【解析】第1个相同的数是1=0×6+1,第2个相同的数是7=1×6+1,第3个相同的数是13=2×6+1,第4个相同的数是19=3×6+1,…第n个相同的数是6(n-1)+1=6n-5,所以6n-5=103,解得n=18.故选:A.二、填空题(每小题3分,共24分)11.在式子:2a、3a、1x y、﹣12、1﹣x﹣5xy2、﹣x、6xy+1、a2﹣b2中,其中多项式有个.【答案】3.【解析】1﹣x﹣5xy2、6xy+1、a2﹣b2是多项式,共3个,故答案为:3.12.(2020绵阳)若多项式xy|m-n|+(n-2)x2y2+1是关于x、y的三次多项式,则mn=_____.【答案】0或8.【解析】∵xy|m-n|+(n-2)x2y2+1是关于x、y的三次多项式,∴n-2=0,1+|m-n|=3,∴n-n=2或n-m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.13.3x m+5y2与x3y n是同类项,则m n的值是【答案】4【解析】∵3x m+5y2与x3y n是同类项,∴m+5=3,n=2,解得:m=﹣2,n=2,∴m n=(﹣2)2=4.故答案为:4.13.(2020广东)已知:x=5-y,xy=2,计算:3x+3y-4xy的值为______.【答案】7【解析】∵x=5-y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)-4xy=3×5-4×2=15-8=7.故答案为:7.14.若(a﹣1)x|a|+3=﹣6是关于x的一元一次方程,则a=;x=.【答案】﹣1,92.【解析】由一元一次方程的特点得10 ||1aa-≠⎧⎨=⎩,解得:a=﹣1,将a=﹣1代入方程得﹣2x+3=6,解得:x=92.故答案为:﹣1,92.15.如图,BO⊥AO,∠BOC与∠BOA的度数之比为1:5,那么∠COA=,∠BOC的补角=.【答案】72°,162°.【解析】∵BO⊥AO,∠BOC与∠BOA的度数之比为1:5,∴∠COA=45×90°=72°,则∠BOC=18°,故∠BOC的补角=180°﹣18°=162°.故答案为:72°,162°.16.(2020凉山州)点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A. 10cmB. 8cmC. 10cm或8cmD. 2cm或4cm【答案】C【解析】∵C是线段AB的中点,AB=12cm,∴AC=BC=12AB=12×12=6(cm),点D是线段AC的三等分点.①当AD=23AC时,如图,BD=BC+CD/=BC+13AC=6+4=10(cm).所以线段BD的长为10cm或8cm.17.已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=度.【答案】35°【解析】∵OE ⊥AB ,∴∠AOE=90°∵∠1=55°,∴∠AOC=90°﹣55°=35°,∴∠BOD=∠AOC=35°(对顶角相等).18.(2020黄冈一模)在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S =1+3+32+33+34+35+36+37+38 ①,然后在①式的两边都乘以3,得:3S =3+32+33+34+35+36+37+38+39 ②, ②一①得:3S ―S =39-1,即2S =39-1,∴S =39―12. 得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m 2020的值?如能求出,其正确答案是___________.【答案】S =202111m m --. 【解析】设S =1+m +m 2+m 3+m 4+…+m 2020,在所示设式的两边都乘以m ,得:mS =m +m 2+m 3+m 4+…+m 2020+m 2021,两式相减可得出答案.设S =1+m +m 2+m 3+m 4+…+m 2020…………………①,在①式的两边都乘以m ,得:mS =m +m 2+m 3+m 4+…+m 2020+m 2021 …………………② ②一①得:mS ―S =m 2021-1.∴S =202111m m --. 三、解答题(共66分)19.(8分)化简并求值:﹣6(a 2﹣2ab+b 2)+2(2a 2﹣3ab+3b 2),其中a=1,b=12. 【答案】﹣2a 2+6ab ,1.【解析】原式=﹣6a 2+12ab ﹣6b 2+4a 2﹣6ab+6b 2=﹣2a2+6ab,当a=1、b=12时,原式=﹣2×12+6×1×1 2=﹣2+3=1.20.(8分)解方程:(1)x+5(2x﹣1)=3﹣2(﹣x﹣5)(2)32x+﹣2=﹣225x-.【答案】(1)x=2;(2)x=1.【解析】(1)去分母,得:x+10x﹣5=3+2x+10,移项,得:x+10x﹣2x=3+10+5,合并同类项,得:9x=18,系数化为1,得:x=2;(2)去分母,得:5(x+3)﹣20=﹣2(2x﹣2),去括号,得:5x+15﹣20=﹣4x+4,移项,得:5x+4x=4﹣15+20,合并同类项,得:9x=9,系数化为1,得:x=1.21.(6分)已知多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,单项式6x2n y5﹣m的次数与这个多项式的次数相同,求m+n的值.【答案】m+n=3+2=5.【解析】∵多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,∴2+m+1=6,∴m=3,∵单项式26x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,∴2n=1+3=4,∴n=2.∴m+n=3+2=5.22.(8分)线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,求DE的长?(2)若AC=4cm,求DE的长.【答案】(1)DE的长是6cm;(2)DE的长是6cm.【解析】(1)∵AB=12cm,点C恰好是AB中点,∴AC=BC=6cm,∵点D、E分别是AC和BC的中点,∴CD=3cm,CE=3cm,∴DE=CD+CE=6cm,即DE的长是6cm;(2)∵AB=12cm,AC=4cm,∴CB=8cm,∵点D、E分别是AC和BC的中点,∴DC=2cm,CE=4cm,∴DE=DC+CE=6cm,即DE的长是6cm.23.(8分)一位同学做一道题:“已知两个多项式A、B,计算2A+B”.他误将“2A+B”看成“A+2B”求得的结果为9x2﹣2x+7,已知B=x2+3x﹣2,求正确答案.【答案】2A+B=15x2﹣13x+20.【解析】根据题意得A=9x2﹣2x+7﹣2(x2+3x﹣2)=9x2﹣2x+7﹣2x2﹣6x+4=(9﹣2)x2﹣(2+6)x+4+7=7x2﹣8x+11.所以2A+B=2(7x2﹣8x+11)+x2+3x﹣2=14x2﹣16x+22+x2+3x﹣2=15x2﹣13x+20.24.(2020广州)(8分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.【答案】(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.【解析】(1)50×(1-50%)=25(万元),故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是x辆,则今年每改装的无人驾驶出租车是(260-x),辆,依题意有50×(260-x)+25x=9000,解得,x=160.故明年改装的无人驾驶出租车是160辆.25.(2020安徽)(10分)某超市有线上和线下两种销售方式与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下线下销售额(直接在表格中填写结果);(2)求2020年4月份线上销售额与当月销售总额的比值.【答案】(1)该超市2020年4月份线下销售额为1.04(a-x)元;(2)2020年4月份线上销售额与当月销售总额的比值为0.2.【解析】(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a-x)元.(2)依题意,得1.1a=1.43x+1.04(a-x),解得:x=213a,∴21.43 1.430.22130.21.1 1.1 1.1ax aa a a⋅===答:2020年4月份线上销售额与当月销售总额的比值为0.2.26.(10分)如图,已知OE是∠AOC的角平分线,OD是∠BOC的角平分线.(1)若∠AOC=120°,∠BOC=30°,求∠DOE的度数;(2)若∠AOB=90°,∠BOC=α,求∠DOE的度数.【答案】(1)∠DOE=45°;(2)∠DOE=45°.【解析】(1)∵OE是∠AOC的角平分线,OD是∠BOC的角平分线,∠AOC=120°,∠BOC=30°,∴∠EOC=60°,∠DOC=15°,∴∠DOE=∠EOC﹣∠DOC=60°﹣15°=45°;(2))∵OE是∠AOC的角平分线,OD是∠BOC的角平分线,∠AOB=90°,∠BOC=α,∴∠EOC=12(90°﹣α),∠DOC=12α,∴∠DOE=∠EOC﹣∠DOC=12(90°﹣α)﹣12α=45°.。
人教版八年级上册数学期末冲刺试卷(二)附答案

3.下列各条件中,不能画出唯一三角形的是( )
A.已知两边和其中一边的对角
B.已知三边
C.已知两角和夹边
D.已知两边和夹角
4.下列图形中,△A’B’C’与△ABC 关于直线 MN 成轴对称的是( )
5.如图所示,在 4×4 的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小 正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形,那么符合条件 的小正方形共有( )
°,∠γ= 75°,则∠β的度数为_____.
4.如图,在△ABC 中,高 AD,BE 交于点 F,AD= BD,那么△ADC≌_____,理由是____.
5.(x²-x+m)(x-8)中不含 x 的一次项,则 m 的值为_______.
1
1
6.已知 y= 5 x -1,则 5 x²-2xy+5y²-2 的值是______.
二、填空题
1.如图所示,已知 AB=DE,AF=CD,EF=BC,∠A=30°,∠B= 100°,则∠EFD=_____.
2.如图所示,P,Q 是△ABC 的边 BC 上的两点,且 BP=PQ=QC=AP=AQ,则∠BAC 的大小等 于_____.
第 2 题图
第 3 题图
第 4 题图
3.如图所示,光线 L 照射到平面镜Ⅱ上,然后在平面镜Ⅰ、Ⅱ之间来回反射,已知∠α= 55
别交 AD 于 E,交 BD 于 F,则有 AE= ED=DF= FB.
A.0 个 B.1 个 C.2 个 D.3 个 2x 5 3
9.分式方程 x 3 3 x 的解是( )
A.x=-3 B.x=3 C.x=1 D.x=1 或 x=3
1 m .(m2 1)
2022-2023学年上学期七年级数学期末复习冲刺卷(02)

2022-2023学年上学期七年级数学期末复习冲刺卷(02)(满分120分,完卷时间120分钟)注意事项:1.本试卷分选择题、填空题、解答题三部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、单选题(每题3分,共30分)1.﹣的绝对值是()A.﹣B.﹣2C.D.22.在0、π、0.010*******…(每两个0之间的1依次增加)、﹣3.14、中,无理数的个数有()A.4个B.3个C.2个D.1个3.下列计算正确的是()A.x2y+2xy2=3x2y2B.2a+3b=5abC.﹣2xy+3yx=xy D.a3+a2=a54.若﹣a m b n与5a2b可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.15.若表示一个整数,则整数a可取的值共有()A.2个B.3个C.4个D.5个6.如图是由10个同样大小的小正方体搭成的几何体,它的主视图、左视图和俯视图中面积相等的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.面积都一样7.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.ab>0B.﹣a+b>0C.a+b<0D.|a|﹣|b|>08.定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+1;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算可以重复进行,例如,取n=25时,运算过程如图.若n=34,则第2022次“F运算”的结果是()A.16B.5C.4D.19.如图,点O在直线AB上,∠AOC与∠BOD互余,∠AOD=148°,则∠BOC的度数为()A.122°B.132°C.128°D.138°10.如图,长方形ABCD中,AB=8cm,AD=6cm,P,Q两动点同时出发,分别沿着长方形的边长运动,P点从B点出发,顺时针旋转一圈,到达B点后停止运动,Q点的运动路线为B→C→D,P,Q点的运动速度分别为2cm/秒,1cm/秒,当一个动点到达终点时,另一个动点也同时停止运动.设两动点运动的时间为t秒,要使△BDP和△ACQ的面积相等,满足条件的t值的个数为()A.2B.3C.4D.5二、填空题(每题3分,共24分)11.比较大小:﹣|﹣9|﹣(﹣3)2(填“<”、“=”、“>”).12.2021年5月,第七次全国人口普查结果公布,全国人口约1412000000人,数据1412000000用科学记数法表示为.13.如图,输入数值1921,按所示的程序运算(完成一个方框内的运算后,把结果输入下一个方框继续进行运算),输出的结果为.14.如果两个单项式5x m y5与﹣4x2y n是同类项,则5x m y5﹣(﹣4x2y n)=.15.多项式﹣a2b3+a3b+1的次数是.16.若2y﹣x=16,则化简3(x﹣2y)﹣23(x﹣2y)﹣4(x﹣2y)﹣13(x﹣2y)并代入后的结果是.17.已知x=﹣2是方程的解,则=.18.某地铺设矩形人行道,由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推.现在街道上铺设一条这样的人行道,一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(用含n的代数式表示).三、解答题(共66分)19.计算:(1)(+﹣)×24;(2)10+32÷(﹣2)3+|﹣1|×5.20.解方程:(1)5x﹣8=8x+1;(2)1﹣=.21.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=,b=﹣.22.图①是一个的简单几何体.请在图②的4×4方格纸中分别画出它的主视图、左视图和俯视图(请将所画线加粗).23.如图,点P是∠AOB的边OB上的一点.(1)过点P画OA的垂线,垂足为H.(2)过点P画OB的垂线,交OA于点C.(3)线段PH的长度是点P到的距离.是点C到直线OB的距离.(4)线段PC、PH、OC的大小关系是(用“<”号连接).24.用“*”定义一种新运算:对于任意有理数a和b,规定a*b=b2+2ab,如:1*4=42+2×1×4=24.(1)求2*(﹣5)的值;(2)若(3x﹣2)*1=x,求x的值.25.如图,已知DB=2,AC=10,点D为线段AC的中点,分别求线段CD、BC的长度.26.某超市第一次以4450元购进甲、乙两种商品,其中乙商品的件数是甲商品件数的2倍多15件,甲、乙两种商品的进价和售价如下表:(注:利润=售价﹣进价)甲乙进价(元/件)2030售价(元/件)2540(1)该超市第一次购进甲、乙两种商品各多少件?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中乙商品的件数不变,甲商品的件数是第一次的2倍;乙商品按原价销售,甲商品打折销售,第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样,求第二次甲商品是按原价打几折销售?27.如图,∠AOB=m°,OC是∠AOB内的一条射线,OD、OE分别平分∠BOC、∠AOC.(1)若∠BOC=90°,∠AOC=30°,求∠DOE的度数;(2)试用含m的代数式表示∠DOE;(3)在图中,将OC反向延长,得到OP,OM、ON分别平分∠BOP、∠AOP.请将图补充完整,并用含m的代数式表示∠MON.28.(1)如图1:正方形ABCD边长为5,点P、点Q在正方形的边上.点P从点A以每秒3个单位长度的速度沿A→B→C→D→A折线循环运动,同时点Q从点C以每秒1个单位长度的速度沿C→D →A→B→C折线循环运动.设点P运动时间为x秒.①当x为何值时,点P和点Q第一次相遇.②当x为何值时,点P和点Q第二次相遇.(2)如图2:是长为6,宽为4的长方形ABCD,点E为边CD的中点,点M从点A以每秒2个单位长度的速度沿A→B→C→E折线运动,到达点E停止.设点M运动时间为t秒,当△AME的面积等于9时,请求出t的值.答案与解析三、单选题(每题3分,共30分)1.﹣的绝对值是()A.﹣B.﹣2C.D.2【分析】根据绝对值的定义直接计算即可解答.【解答】解:﹣的绝对值为.故选:C.【点评】本题主要考查绝对值的性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.在0、π、0.010*******…(每两个0之间的1依次增加)、﹣3.14、中,无理数的个数有()A.4个B.3个C.2个D.1个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0是整数属于有理数;﹣3.14是有限小数,属于有理数;是分数,属于有理数;无理数是π、0.010*******…(每两个0之间的1依次增加),共2个.故选:C.【点评】此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…(每两个1之间0的个数依次加1),等有这样规律的数.3.下列计算正确的是()A.x2y+2xy2=3x2y2B.2a+3b=5abC.﹣2xy+3yx=xy D.a3+a2=a5【分析】根据合并同类项法则即可求出答案.【解答】解:A、x2y与2xy2不是同类项,故不能合并,故A不符合题意.B、2a与3b不是同类项,故不能合并,故B不符合题意.C、﹣2xy+3yx=xy,故C符合题意.D、a2与a2不是同类项,故不能合并,故D不符合题意.故选:C.【点评】本题考查合并同类项,解题的关键是熟练运用合并同类项法则,本题属于基础题型.4.若﹣a m b n与5a2b可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.1【分析】根据同类项的定义可求出m与n的值,然后代入m﹣n即可求出答案.【解答】解:由题意可知:﹣a m b n与5a2b是同类项,∴m=2,n=1,∴m﹣n=2﹣1=1,故选:D.【点评】本题考查合并同类项,解题的关键是正确求出m与n的值,本题属于基础题型.5.若表示一个整数,则整数a可取的值共有()A.2个B.3个C.4个D.5个【分析】根据题意列出等式即可求出答案.【解答】解:由题意可知:a﹣1=±1或±3,∴a=0,2,﹣2,4,故选:C.【点评】本题考分式的值,解题的关键是正确列出等式,本题属于基础题型.6.如图是由10个同样大小的小正方体搭成的几何体,它的主视图、左视图和俯视图中面积相等的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.面积都一样【分析】利用结合体的形状,结合三视图的定义判断即可.【解答】解:它的主视图有三列,从左到右小正方形的个数分别为:3、1、2,故有6个小正方形的面;左视图有三列,从左到右小正方形的个数分别为:3、2、1,故有6个小正方形的面;俯视图有三列,从左到右小正方形的个数分别为:3、2、1,故有6个小正方形的面;所以它的主视图、左视图和俯视图面积都一样.故选:D.【点评】此题主要考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题关键.7.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.ab>0B.﹣a+b>0C.a+b<0D.|a|﹣|b|>0【分析】根据a,b两数在数轴上的位置确定它们的符号和绝对值的大小,再对各个选项逐一分析判断即可.【解答】解:由数轴可知,﹣1<a<0<1<b,|b|>|a|.∵a<0,b>0,∴ab<0,∴A选项错误;∵a<0,∴﹣a>0,又∵b>0,∴﹣a+b>0,∴B选项正确;∵a<0,b>0,|b|>|a|,∴a+b>0,∴C选项错误;∵|b|>|a|,∵|a|﹣|b|<0,∴D选项错误.故选:B.【点评】本题考查了实数与数轴的对应关系,解题的关键是确定a,b的符号和绝对值的大小关系.8.定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+1;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算可以重复进行,例如,取n=25时,运算过程如图.若n=34,则第2022次“F运算”的结果是()A.16B.5C.4D.1【分析】按新定义的运算法则,分别计算出当n=34时,第一、二、三、四、五、六、七、八、九次运算的结果,发现循环规律即可解答.【解答】解:由题意可知,当n=34时,历次运算的结果是:=17,3×17+1=52,,13×3+1=40,=5,3×5+1=16,=1,3×1+1=4,…,故17→52→13→40→5→16→1→4→1…,即从第七次开始1和4出现循环,偶数次为4,奇数次为1,∴当n=34,第2022次“F运算”的结果是4.故选:C.【点评】本题考查的是整数的奇偶性新定义,通过若干次运算得出循环规律是解题的关键.9.如图,点O在直线AB上,∠AOC与∠BOD互余,∠AOD=148°,则∠BOC的度数为()A.122°B.132°C.128°D.138°【分析】再根据余角和补角的定义求解即可.【解答】解:∵点O在直线AB上,∠AOC与∠BOD互余,∴∠AOC+∠BOD=90°,∠COD=180°﹣(∠AOC+∠BOD)=180°﹣90°=90°,∵∠AOD=148°,∴∠BOD=180°﹣∠AOD=180°﹣148°=32°,∵∠BOC=∠COD+∠BOD=90°+32°=122°,故选:A.【点评】本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义.10.如图,长方形ABCD中,AB=8cm,AD=6cm,P,Q两动点同时出发,分别沿着长方形的边长运动,P点从B点出发,顺时针旋转一圈,到达B点后停止运动,Q点的运动路线为B→C→D,P,Q点的运动速度分别为2cm/秒,1cm/秒,当一个动点到达终点时,另一个动点也同时停止运动.设两动点运动的时间为t秒,要使△BDP和△ACQ的面积相等,满足条件的t值的个数为()A.2B.3C.4D.5【分析】分五种情况,根据运动的路径和△BDP和△ACQ的面积相等列出方程,求解即可.【解答】解:由题意进行分类讨论:①当P点在AB上,Q点在BC上时(t≤4),BP=2t,CQ=6﹣t,∵△BDP与△ACQ面积相等,∴×6×2t=×8×(6﹣t),解得:t=2.4;②当P点在AD上,Q点在BC上时(4<t≤6),DP=14﹣2t,CQ=6﹣t,要使△BDP与△ACQ面积相等,则DP=CQ,即14﹣2t=6﹣t,解得:t=8(舍去);③当P点在AD上,Q点在CD上时(6<t≤7),DP=14﹣2t,CQ=t﹣6,∵△BDP与△ACQ面积相等,∴×8×(14﹣2t)=×6×(t﹣6),解得t=;④当P点在CD上,Q点在CD上时(7<t≤11),DP=2t﹣14,CQ=t﹣6,要使△BDP与△ACQ面积相等,则DP=CQ,即2t﹣14=t﹣6,解得:t=8;⑤当P点在BC上,Q点在CD上时(11<t≤14),BP=28﹣2t,CQ=t﹣6,∵△BDP与△ACQ面积相等,∴×8×(28﹣t)=×6×(t﹣6),解得:t=;综上可得共有4种情况满足题意,所以满足条件的t值得个数为4.故选:C.【点评】本题考查了矩形的性质、三角形的面积以及一元一次方程的应用,读懂题意,找到等量关系,列出方程是解题的关键,注意:需要分类讨论.四、填空题(每题3分,共24分)11.比较大小:﹣|﹣9|=﹣(﹣3)2(填“<”、“=”、“>”).【分析】分别根据相反数和绝对值的性质化简,再比较大小即可.【解答】解:﹣|﹣9|=﹣9,﹣(﹣3)2=﹣9,故答案为:=.【点评】本题考查了相反数,绝对值以及有理数的比较大小,掌握相反数和绝对值的定义是解题的关键.12.2021年5月,第七次全国人口普查结果公布,全国人口约1412000000人,数据1412000000用科学记数法表示为 1.412×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1412000000=1.412×109,故答案为:1.412×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.13.如图,输入数值1921,按所示的程序运算(完成一个方框内的运算后,把结果输入下一个方框继续进行运算),输出的结果为2021.【分析】把1921代入程序中计算,判断即可得到结果.【解答】解:把1921代入得:(1921﹣1840+50)×(﹣1)=﹣131<1000,把﹣131代入得:(﹣131﹣1840+50)×(﹣1)=1921>1000,则输出结果为1921+100=2021.故答案为:2021.【点评】此题考查了有理数的混合运算,弄清程序中的运算过程是解本题的关键.14.如果两个单项式5x m y5与﹣4x2y n是同类项,则5x m y5﹣(﹣4x2y n)=9x2y5.【分析】直接利用同类项的定义得出关于m,n的值,进而求出答案.【解答】解:∵两个单项式5x m y5与﹣4x2y n是同类项,∴m=2,n=5,∴5x m y5﹣(﹣4x2y n)=5x2y5﹣(﹣4x2y5)=5x2y5+4x2y5=9x2y5,故答案为:9x2y5.【点评】此题主要考查了同类项以及合并同类项,正确得出m,n的值是解题关键.15.多项式﹣a2b3+a3b+1的次数是5.【分析】先找出多项式各项的次数,再确定多项式的次数.【解答】解:该多项式各项的次数依次为:5,4,0.∵多项式的次数是最高次项的次数,∴该多项式的次数是5.故答案为:5.【点评】本题考查多项式次数的概念,正确掌握多项式次数的求法是求解本题的关键.16.若2y﹣x=16,则化简3(x﹣2y)﹣23(x﹣2y)﹣4(x﹣2y)﹣13(x﹣2y)并代入后的结果是592.【分析】由2y﹣x=16可得x﹣2y=﹣16,把3(x﹣2y)﹣23(x﹣2y)﹣4(x﹣2y)﹣13(x﹣2y)合并化简后代入计算即可.【解答】解:∵2y﹣x=16,∴x﹣2y=﹣16,∴3(x﹣2y)﹣23(x﹣2y)﹣4(x﹣2y)﹣13(x﹣2y)=(3﹣23﹣4﹣13)(x﹣2y)=﹣37(x﹣2y)=﹣37×(﹣16)=592,故答案为:592.【点评】本题考查了整式的加减—化简求值,把整式正确化简是解题的关键.17.已知x=﹣2是方程的解,则=18.【分析】根据一元一次方程的解的定义解决此题.【解答】解:由题得,a•(﹣2+3)=.∴a=﹣4.∴=16﹣(﹣1)+1=18.故答案为:18.【点评】本题主要考查一元一次方程的解,熟练掌握一元一次方程的解的定义是解决本题的关键.18.某地铺设矩形人行道,由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推.现在街道上铺设一条这样的人行道,一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(2n+4)(用含n的代数式表示).【分析】观察图形2可知:中间一个正方形的左上、左边、左下共有3个等腰直角三角形,它右上和右下各对应了一个等腰直角三角形,右边还有1个等腰直角三角形,即6=3+2×1+1=4+2×1;图3和图1中间正方形右上和右下都对应了两个等腰直角三角形,均有图2一样的规律,据此可得答案.【解答】解:观察图1可知:中间的每个正方形都对应了两个等腰直角三角形,所以每增加一块正方形地砖,等腰直角三角形地砖就增加2块;观察图形2可知:中间一个正方形的左上、左边、左下共有3个等腰直角三角形,它右上和右下各对应了一个等腰直角三角形,右边还有1个等腰直角三角形,即6=3+2×1+1=4+2×1,图3和图1中间正方形右上和右下都对应了两个等腰直角三角形,均有图2一样的规律,图3:8=3+2×2+1=4+2×2,归纳得:4+2n(即2n+4),∴若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(2n+4)块,故答案为:(2n+4);【点评】本题以等腰直角三角形和正方形的拼图为背景,关键是考查规律性问题的解决方法,探究规律要认真观察、仔细思考,善用联想来解决这类问题.三、解答题(共66分)19.计算:(1)(+﹣)×24;(2)10+32÷(﹣2)3+|﹣1|×5.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.【解答】解:(1)原式=×24+×24﹣×24=16+4﹣21=﹣1;(2)原式=10+32÷(﹣8)+1×5=10﹣4+5=11.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)5x﹣8=8x+1;(2)1﹣=.【分析】(1)方程移项、合并同类项、系数化为1即可;(2)方程去分母、去括号、移项、合并同类项、系数化为1即可.【解答】解:(1)5x﹣8=8x+1,移项,得5x﹣8x=8+1,合并同类项,得﹣3x=9,系数化为1,得x=﹣3;(2)1﹣=,去分母,得6﹣3(1﹣x)=2(2x﹣1),去括号,得6﹣3+3x=4x﹣2,移项,得3x﹣4x=3﹣2﹣6,合并同类项,得﹣x=﹣5,系数化为1,得x=5.【点评】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解答本题的关键.21.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=,b=﹣.【分析】根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=,b=﹣时,原式=3×()2×(﹣)﹣×(﹣)2=﹣.【点评】本题考查了整式的加减,去括号是解题关键,括号前是负数去括号都变号,括号前是正数去括号不变号.22.图①是一个的简单几何体.请在图②的4×4方格纸中分别画出它的主视图、左视图和俯视图(请将所画线加粗).【分析】根据三视图的定义画出图形即可.【解答】解:如图所示:【点评】本题考查三视图,解题的关键是理解题意,学会正确画出三视图,属于中考常考题型.23.如图,点P是∠AOB的边OB上的一点.(1)过点P画OA的垂线,垂足为H.(2)过点P画OB的垂线,交OA于点C.(3)线段PH的长度是点P到直线OA的距离.线段PC的长度是点C到直线OB的距离.(4)线段PC、PH、OC的大小关系是PH<PC<OC(用“<”号连接).【分析】(1)和(2)利用方格线画垂线即可;(3)根据点到直线的距离的定义得到线段PH的长度是点P到OA的距离,线段OP的长是点C到直线OB的距离;(4)根据直线外一点到直线上各点连接的所有线中,垂线段最短得到PC>PH,CO>CP,即可得到线段PC、PH、OC的大小关系.【解答】解:(1)如图,直线PH即为所求:(2)如图,直线PC即为所求:(3)线段PH的长度是点P到直线OA的距离;线段PC的长度是点C到直线OB的距离.(4)线段PC、PH、OC的大小关系是PH<PC<OC.故答案为:直线OA,线段PC的长度;PH<PC<OC.【点评】本题考查了基本作图以及垂线段最短:直线外一点到直线上各点连接的所有线中,垂线段最短.解题时注意:点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.24.用“*”定义一种新运算:对于任意有理数a和b,规定a*b=b2+2ab,如:1*4=42+2×1×4=24.(1)求2*(﹣5)的值;(2)若(3x﹣2)*1=x,求x的值.【分析】(1)原式利用已知的新定义计算即可求出值;(2)已知等式利用题中的新定义化简,即可求出x的值.【解答】解:(1)根据题中的新定义得:原式=(﹣5)2+2×2×(﹣5)=25﹣20=5;(2)根据题中的新定义化简得:1+2(3x﹣2)=x,去括号得:1+6x﹣4=x,移项合并得:5x=3,解得:x=.【点评】本题考查了解一元一次方程,掌握解一元一次方程的基本步骤是解答本题的关键.25.如图,已知DB=2,AC=10,点D为线段AC的中点,分别求线段CD、BC的长度.【分析】根据点D为线段AC的中点,得AD=DC=5,再根据BC=DC﹣BD得出结果.【解答】解:∵点D为线段AC的中点,AC=10,∴AD=DC=AC=5,∵DB=2,∴BC=DC﹣BD=3,∴CD=5,BC=3.【点评】本题主要考查了两点间的距离,熟练掌握线段中点定义的应用,线段之间的数量转化是解题关键.26.某超市第一次以4450元购进甲、乙两种商品,其中乙商品的件数是甲商品件数的2倍多15件,甲、乙两种商品的进价和售价如下表:(注:利润=售价﹣进价)甲乙进价(元/件)2030售价(元/件)2540(1)该超市第一次购进甲、乙两种商品各多少件?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中乙商品的件数不变,甲商品的件数是第一次的2倍;乙商品按原价销售,甲商品打折销售,第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样,求第二次甲商品是按原价打几折销售?【分析】(1)设第一次购进甲种商品x件,则购进乙种商品(2x+15)件,根据第一次以4450元购进甲、乙两种商品得:20x+30(2x+15)=4450,即可解得答案;(2)设第二次甲商品是按原价打m折销售,根据获得的总利润与第一次获得的总利润一样得:50×2×(25×﹣20)+115×(40﹣30)=50×(25﹣20)+115×(40﹣30),即可解得答案.【解答】解:(1)设第一次购进甲种商品x件,则购进乙种商品(2x+15)件,根据题意得:20x+30(2x+15)=4450,解得x=50,∴购进乙种商品2x+15=2×50+15=115,答:第一次购进甲种商品50件,购进乙种商品115件;(2)设第二次甲商品是按原价打m折销售,根据题意得:50×2×(25×﹣20)+115×(40﹣30)=50×(25﹣20)+115×(40﹣30),解得m=9,答:第二次甲商品是按原价打9折销售.【点评】本题考查一次方程的应用,解题的关键是读懂题意,找到等量关系列方程.27.如图,∠AOB=m°,OC是∠AOB内的一条射线,OD、OE分别平分∠BOC、∠AOC.(1)若∠BOC=90°,∠AOC=30°,求∠DOE的度数;(2)试用含m的代数式表示∠DOE;(3)在图中,将OC反向延长,得到OP,OM、ON分别平分∠BOP、∠AOP.请将图补充完整,并用含m的代数式表示∠MON.【分析】(1)根据角平分线的定义得∠DOE=,代入即可得出答案;(2)由(1)知,∠DOE===;(3)首先得出∠BOP+∠AOP=360°﹣∠AOB=360°﹣m°,再由角平分线的定义得∠MON=∠MOP+∠NOP=.【解答】解:(1)∵OD、OE分别平分∠BOC、∠AOC,∴∠DOE==60°;(2)由(1)知,∠DOE===;(3)补充图形如下:∵∠AOB=m°,∴∠BOP+∠AOP=360°﹣∠AOB=360°﹣m°,∵OM、ON分别平分∠BOP、∠AOP,∴∠MON=∠MOP+∠NOP==.【点评】本题主要考查了角平分线的定义,角的和差关系等知识,等量代换是找出两个角之间关系常用的方法.28.(1)如图1:正方形ABCD边长为5,点P、点Q在正方形的边上.点P从点A以每秒3个单位长度的速度沿A→B→C→D→A折线循环运动,同时点Q从点C以每秒1个单位长度的速度沿C→D→A →B→C折线循环运动.设点P运动时间为x秒.①当x为何值时,点P和点Q第一次相遇.②当x为何值时,点P和点Q第二次相遇.(2)如图2:是长为6,宽为4的长方形ABCD,点E为边CD的中点,点M从点A以每秒2个单位长度的速度沿A→B→C→E折线运动,到达点E停止.设点M运动时间为t秒,当△AME的面积等于9时,请求出t的值.【分析】(1)①点P和点Q第一次相遇,P比Q多运动10个单位,可得3x﹣x=5×2,即可解得答案;②点P和点Q第二次相遇,P比Q多运动30个单位,列方程即可解得答案;(2)由已知可得CE=2,分三种情况分别列方程:①当M在AB上,即t≤2时,×2t×6=9,②当M在BC上,即2<t≤5时,×(2+4)×6﹣×4×(2t﹣4)﹣×2×(4+6﹣2t)=9,③当M在CE上,即5<t≤6时,×(4+6+2﹣2t)×6=9,即可解得答案.【解答】解:(1)①根据题意得:3x﹣x=5×2,解得x=5,答:当x为5时,点P和点Q第一次相遇,②根据题意得:3x﹣x=5×2+4×5,解得x=15,答:当x为15时,点P和点Q第二次相遇;(2)由已知可得CE=2,①当M在AB上,即t≤2时,如图:根据题意得:×2t×6=9,解得t=,②当M在BC上,即2<t≤5时,如图:根据题意得:×(2+4)×6﹣×4×(2t﹣4)﹣×2×(4+6﹣2t)=9,解得t=,③当M在CE上,即5<t≤6时,如图:根据题意得:×(4+6+2﹣2t)×6=9,解得t=(不符合题意,舍去),综上所述,当△AME的面积等于9时,t的值为秒或秒.【点评】本题考查一次方程的应用,解题的关键是读懂题意,找到等量关系列方程.。
北师大版六年级数学下册期末考前冲刺卷(二)(含答案)

北师大版六年级数学下册期末考前冲刺卷学校:_______ 班级:_______ 姓名:_______ 考号:_______一、选择题1.一个平行四边形的相邻两条边长分别是10厘米和6厘米,其中一条边上的高是8厘米,这个平行四边形的面积是()平方厘米。
A. 40B. 48C. 60D. 802.下面几组相关联的量中,成正比例的是( )A. 看一本书,每天看的页数和看的天数B. 圆锥的体积一定它的底面积和高C. 修一条路已经修的米数和未修的米数D. 同一时间、地点每棵树的高度和它影子的长度3.在一幅图纸上,图上距离( ) 实际距离。
A. 大于B. 小于C. 可能大于,也可能小于或等于D. 无法确定4.一个钟表零件是5mm,把它画在比例尺是20∶1的地图上,应画( ) cm。
A. 0.1B. 1C. 10D. 1005.下面四种说法中,()是错误的。
A. 等边三角形的周长与边长成正比例B. 看一本书,已看的页数与剩下的页数成反比例C. 比例尺一定,图上距离与实际距离成正比例D. 平行四边形的面积一定,底与对应的高成反比例二、判断题1.所有的三角形都是轴对称图形。
( )2.在对折的正方形彩纸上的任意位置打孔,将彩纸展开后,孔都是对称的。
( )3.时间一定,路程和速度成正比例。
( )4.如果长方形的面积一定,则长方形的长和宽成反比例。
( )5.在一幅区域地图上,图上距离和实际距离成比例.( )三、填空题1.汽车在笔直的公路上行驶,车身做( ) 运动,车轮做( ) 运动。
2.时针从2时到6时,按( )方向旋转了( )°。
3.如果5y =6x ,那么x 和y 成( ) 比例;如果5y =6x ,那么x 和y 成( ) 比例.4.如果5x=8y (x 、y≠0),x 与y 成( ) 比例.5.一个零件的高是5mm ,在图纸上的高是2cm ,那么这幅图纸的比例尺( ) 。
6.把一个直角三角形按3∶1进行放大,面积会扩大( ) 倍。
专题11:期末冲刺卷(新高考海南卷)(二)(原卷版)

专题11期末冲刺卷(新高考海南卷)(二)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成下面小题。
材料一:像牛一样耕耘像牛一样奋发陈凌“在中华文化里,牛是勤劳、奉献、奋进、力量的象征。
人们把为民服务、无私奉献比喻为孺子牛,把创新发展、攻坚克难比喻为拓荒牛,把艰苦奋斗、吃苦耐劳比喻为老黄牛。
”在2021年春节团拜会上,习近平总书记深情礼赞牛所代表的精神品质,并赋予孺子牛、拓荒牛、老黄牛以新的时代内涵。
古往今来,中国人民爱牛、敬牛、颂牛,或咏之、或绘之、或塑之。
在唐朝诗人柳宗元看来,牛是“日耕百亩”的勤劳符号;在宋代名将李纲眼中,牛代表的是“但得众生皆得饱,不辞赢病卧残阳”的牺牲精神;在现代诗人藏克家笔下,牛具有的是“深耕细作走东西”的开拓品格。
体悟牛的品格、弘扬牛的精神、激发牛的干劲,是中华优秀传统文化的重要特色,也是中国人民精气神的具体精现。
“俯首甘为孺子牛”,鲁迅先生曾以这样饱含真情的诗句歌颂牛。
千百年来,牛都是任劳任怨、无私奉献的象征。
这也是人们爱牛、敬牛、颂牛的一个原因。
画家李可染便曾将自己的画室堂号定为“师牛堂”,他这样解释自己为何喜欢画牛:“牛也,力大无穷,俯首孺子而不逞强。
”不辞劳苦、不计得失,脚踏实地、默默奉献,这是牛身上的品格,也是值得每个人学习的精神。
“天开于子,地辟于丑”,古人历来将牛视为开天辟地的力量之一。
人们之所以赞颂牛,也在于牛所拥有的这种勇于开拓的劲头。
而这种劲头,恰恰是我们在攻坚克难中奋进、在披荆斩棘中前行的力量所在。
著名物理学家钱三强教授在年逾花甲时,仍干劲十足,经常工作到深夜。
期末考试冲刺卷二(解析版)

期末考试冲刺卷二一、单选题1.下列交通标志中,是中心对称图形的是()A.B.C.D.【答案】D【解析】A既不是轴对称图形,也不是中心对称图形,故不符合题意;B是轴对称图形,不是中心对称图形,故不符合题意;C是轴对称图形,不是中心对称图形,故不符合题意;D既是轴对称图形,也是中心对称图形,故符合题意;故选D.2.下列事件属于必然事件的是()A.抛掷两枚硬币,结果一正一反B.取一个实数x,x0的值为1C.取一个实数x,分式11xx-+有意义D.角平分线上的点到角的两边的距离相等【答案】D【解析】A、可能会出现两正,两反或一正一反或一反一正等4种情况,故错误,不合题意;B、x应取不等于0的数,故错误,不合题意;C、x=﹣1时,分式没意义,故错误,不合题意;D、正确,属于必然事件,符合题意;故选:D.3.已知关于x的方程x2+mx﹣2=0有一个根是2,则m的值为()A.﹣1B.1C.﹣3D.3【答案】A【解析】解:把x =2代入方程x 2+mx ﹣2=0得4+2m ﹣2=0,解得m =﹣1.故选:A .4.二次函数 y =(x ﹣4)2+3 的最小值是( )A .2B .3C .4D .5【答案】B【解析】二次函数y =(x ﹣4)2+3的最小值是3,故选B .5.一圆锥的底面半径是2,母线长为6,此圆锥侧面展开图扇形的圆心角的度数为( )A .90°B .120°C .150°D .180° 【答案】B【解析】先根据圆的周长公式求得圆锥侧面展开图扇形的弧长,再根据弧长公式即可求得结果. 由题意得221806⨯=⨯ππn ,解得120=n 故选B.6.如图,在ABC ∆中,090BAC ∠=,4AB AC ==,以点C 为中心,把ABC ∆逆时针旋转045,得到''A B C ∆,则图中阴影部分的面积为( )A .2B .2πC .4D .4π【答案】B【解析】【详解】 ∵在ABC ∆中,090BAC ∠=,4AB AC ==,∴BC =0''45ACB A CB ∠=∠=,∴阴影部分的面积(()2245?45?4114444236022360πππ=-⨯⨯+⨯⨯-=, 故选:B .7.如图,AB 是O 的直径,点C 、D 在O 上,且点C 、D 在AB 的异侧,连接AD 、BD 、OD 、OC ,若15ABD ∠=︒,且AD OC ∥,则BOC ∠的度数为( )A .120°B .105°C .100°D .110°【答案】B【解析】 AB 是O 的直径,15ABD ∠=︒,90ADB ∴∠=,75A ∴∠=︒,AD OC ,75AOC ∴∠=︒,18075105BOC ∴∠=︒-︒=︒,故选:B .8.在学校乒乓球比赛中,从甲、乙、丙、丁这四人中,随机抽签一组对手,正好抽到乙与丁的概率是( )A .110B .14 C .15 D .16【答案】D【解析】画树状图为:共有12种等可能的结果数,其中正好抽到乙与丁的结果数为2,所以正好抽到乙与丁的概率=21126. 故选D . 9.如图,四边形ABCD 内接于⊙O ,F 是CD 上一点,且DF BC =,连接CF 并延长交AD 的延长线于点E ,连接AC ,若∠ABC =105°,∠BAC =25°,则∠E 的度数为( )A .45°B .50°C .55°D .60°【答案】B【解析】 依题意,四边形ABCD 为⊙O 的内接四边形,由圆内接四边形的外角等于它的内对角可知,105CDE ABC ∠=∠=︒,∵DF BC =,∴25DCF BAC ∠=∠=︒,在DCE 中,105CDE ∠=︒,25DCE ∠=︒,∴1801052550E ∠=︒-︒-︒=︒.故选B .10.关于x 的方程20(a 0)++=≠ax bx c ,有一根为0的条件是( )A .0b =B .0cC .00c b =≠且D .240b ac -=【答案】B【解析】若关于x 的一元二次方程ax 2+bx +c =0有一根为0,则a ×02+b ×0+c =0,即c =0.故选B .11.若抛物线2y x bx c =-++经过点()2,3-,则2c b -的值是( )A .7B .-1C .-2D .3【答案】A【解析】把(-2,3)代入2y x bx c =-++可得-2b+c=7,即2c b -=7故选A.12.圆的一条弦长等于它的半径,那么这条弦所对的圆周角的度数是( )A .30°B .60°C .150°D .150°或30° 【答案】D【解析】如图,根据题意得:OA=AB=OB ,∴△OAB 是等边三角形,∴∠AOB=60°,∴∠ACB=12∠AOB=30°, ∴∠ADB=180°−∠ACB=150°.即这条弦所对的圆周角的度数为:30°或150°.故答案为:30°或150°.13.如图,在△ABC 中,CA =CB ,∠ACB =90∘,AB =2,点D 为AB 的中点,以点D 为圆心作圆心角为90∘的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为( )A .π2+12B .π−14C .π4+12D .π4−12【答案】D【解析】连接CD ,作DM ⊥BC ,DN ⊥AC .∵CA=CB ,∠ACB=90°,点D 为AB 的中点,∴DC=12AB=1,四边形DMCN 是正方形,DM=√22. 则扇形FDE 的面积是:90π×12360=π4. ∵CA=CB ,∠ACB=90°,点D 为AB 的中点,∴CD 平分∠BCA ,又∵DM ⊥BC ,DN ⊥AC ,∴DM=DN ,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN ,则在△DMG 和△DNH 中,{∠DMG =∠DNH∠GDM =∠HDN DM =DN,∴△DMG ≌△DNH (AAS ),∴S 四边形DGCH =S 四边形DMCN =12. 则阴影部分的面积是:π4-12. 14.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( )A .①④B .②④C .②③D .①②③④ 【答案】A【解析】解:①∵抛物线与x 轴由两个交点,∴240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,∴0abc >,故②错误; ③∵对称轴:直线12bx a =-=-,∴2b a =,∴24a b c a c +-=-,∵0a <,40a <,0c >,0a <,∴240a b c a c +-=-<,故③错误;④∵对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,∴抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确.故选:A.15.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4.P是△ABC内部的一个动点,且满足∠P AB=∠PB C.则线段CP长的最小值为()A.32B.2 C.8√1313D.12√1313【答案】B【解析】∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴OP=OA=OB∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC=√BO2+BC2=5,∴PC=OC-OP=5-3=2.∴PC最小值为2.故选B.16.如图,在Rt△ABC中,BC=3cm,AC=4cm,动点P从点C出发,沿C→B→A→C运动,点P在运动过程中速度始终为1cm/s,以点C为圆心,线段CP长为半径作圆,设点P的运动时间为t(s),当⊙C与△ABC有3个交点时,此时t的值不可能是()A.2.4B.3.6C.6.6D.9.6【答案】B【解析】以C为圆心,作半径为r的圆,则与Rt△ABC只有三个交点的半径r只有2个,一个是r=3,另一个是r=2.4(此时圆与斜边AB相切),其余情况都不能满足与Rt△ABC只有三个交点,所以以2.4和3为半径做圆,与Rt△ABC相交的点有6个,t分别为2.4,3,4.8,6.6,9,9.6.故选B.二、填空题17.如图△ABC中,AB=AC=8,∠BAC=30°,现将△ABC绕点A逆时针旋转30°得到△ACD,延长AD、BC交于点E,则DE的长是_____.【答案】4√3−4【解析】如图,过点C作CH⊥AE于H,∵AB=AC=8,∴∠B=∠ACB=12(180°﹣∠BAC)=12(180°﹣30°)=75°.∵将△ABC绕点A逆时针旋转,使点B落在点C处,此时点C落在点D处,∴AD=AB=8,∠CAD=∠BAC=30°,∵∠ACB=∠CAD+∠E,∴∠E=75°−30°=45°.在Rt△ACH中,∵∠CAH=30°,∴CH=12AC=4,AH=√3CH=4√3,∴DH=AD−AH=8−4√3,在Rt△CEH中,∵∠E=45°,∴EH=CH=4,∴DE=EH−DH=4−(8−4√3)=4√3−4.故答案为4√3−4.18.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,设人行通道的宽度为xm,则可列方程为_____.【答案】(30﹣3x)(24﹣2x)=480.【解析】解:设人行通道的宽度为xm,则两块矩形绿地可合成长为(30﹣3x)m、宽为(24﹣2x)m的大矩形,根据题意得:(30﹣3x)(24﹣2x)=480.故答案为:(30﹣3x)(24﹣2x)=480.19.若抛物线y=a(x−ℎ)2+k上有点A(2, 1),且当x=−2时,y有最大值3,则a=________,ℎ=________,k=________.-23【答案】−18【解析】∵x=-2时,y有最大值3,∴h=-2,k=3,又∵抛物线过点A(2,1),∴代入抛物线得1=a(2+2)2+3,求得a=-18, ∴a=-18,h=-2,k=3. 20.如图,60AOB ∠=,点M 是射线OB 上的点,4OM =,以点M 为圆心,2cm 为半径作圆.若OA 绕点O 按逆时针方向旋转,当OA 和M 相切时,OA 旋转的角度是_____.【答案】30或90.【解析】如图;①当OA 旋转到OE 位置时,与圆M 相切于点E ,连接ME ;则2ME =,90MEO ∠=;Rt OEM ∆中,12ME sin MOE OM ∠==, ∴30MOE ∠=︒, ∴30AOE AOB MOE ∠=∠-∠=︒;②当OA 旋转到OF 位置时,与圆M 相切于点F ,连接MF ;则2MF =,90MFO ∠=;Rt OFM ∆∠中,12MF sin MOF OM ∠==, ∴30MOF ∠=︒, ∴90AOF AOB FOB ∠=∠+∠=;故OA 旋转的角度为30︒或90.三、解答题21.用适当的方法解下列方程:(1)24320x x -+=;(2)(1)(3)12x x -+=;(3)2310x x ++=;(4)3(2)2(2)x x x -=-.【答案】(1)原方程无实数解;(2)13x =,25x =-;(3)1x =2x =;(4)12x =,223x =-. 【解析】(1)24320x x -+=,∵4,3,2a b c ==-=,∴2494?4?2230b ac <-=-=-,∴原方程无实数解;(2)()()1312x x -+=,整理得:22150x x +-=,分解因式得:()()350x x -+=,可得30x -=或50x +=,解得:13x =,25x =-;(3)2310x x ++=;∵1,3,1a b c ===,2494?1?150b ac -=-=>,∴33212x -±-±==⨯,∴1x =2x =; (4)()()3222x x x -=-.()()32220x x x -+-=,()()2320x x -+=,∴20x -=或320x +=,∴12x =,223x =-. 22.如图,A 、B 两个转盘分别被平均分成三个、四个扇形,分别转动A 盘、B 盘各一次,转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止,请用列表或画树状图的方法,求两个转盘停止后指针所指区域内的数字之和大于4的概率.【答案】34 【解析】画树状图为:共有12种等可能的结果数,其中指针所指区域内的数字之和大于4的结果数为9,所以指针所指区域内的数字之和大于4的概率=912=34.23.已知关于x 的方程226350x x m m -+--=的一个根为一1,求另一个根及m 的值.【答案】1212m m ==,,另一根为7.【解析】把x=-1代入方程得1+6+m 2-3m -5=0,即m 2-3m+2=0,解得12m 1m 2==,,当m=1或m=2时,方程为x²-6x -7=0,解得x=-1或x=7,即另一根为7,综上可得12m 1m 2==,,另一根为7.24.已知△ABC 中,∠ACB=135°,将△ABC 绕点A 顺时针旋转90°,得到△AED ,连接CD ,CE .(1)求证:△ACD 为等腰直角三角形;(2)若BC=1,AC=2,求四边形ACED 的面积.【答案】(1)详见解析;(2)2+【解析】(1)∵△AED 是△ABC 旋转90°得到的,∴∠CAD=90°,AC=AD ,∴△ACD 是等腰直角三角形;(2)∵△AED 是△ABC 旋转90°得到的,∴DE=BC=1,∠ADE=∠ACB=135°,∵△ACD 是等腰直角三角形,∴∠ADC=∠ACD=45°,AC=AD=2,∴,∵∠ADE=135°,∴∠CDE=∠ADE ﹣∠ADC=90°,∴S 四边形ADEC =S △ACD +S △CDE =12AC•AD+12CD•DE=12×2×2+12. 25.如图,AB 是⊙O 的直径,点C 是⊙O 上一点,AD 与过点C 的切线垂直,垂足为点D ,直线DC 与AB 的延长线相交于点P ,CE 平分∠ACB ,交AB 于点E .(1)求证:AC 平分∠DAB ;(2)求证:△PCE 是等腰三角形.【答案】见解析【解析】(1)如图1所示:连接OC.∵PD切⊙O于点C,∴OC⊥PD.又∵AD⊥PD,∴OC // AD.∴∠ACO=∠DAC.又∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)∵AD⊥PD,∴∠DAC+∠ACD=90∘.又∵AB为⊙O的直径,∴∠ACB=90∘.∴∠PCB+∠ACD=90∘,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACE=∠BCE,∴∠CAO+∠ACE=∠PCB+∠BCE,∴∠PEC=∠PCE,∴PC=PE,即△PCE是等腰三角形.26.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.【解析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,=10.25,∵-2<0,-412×(-2)故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.。
【期末满分冲刺卷】苏教版2022-2023学年小学五年级数学(上)期末满分冲刺卷(二)含答案与解析

苏教版小学五年级(上)期末满分冲刺卷(二)数 学(时间:90分钟 满分:100分)班级: 姓名: 得分:一、选择题(满分16分)1.如果从点A 向南走40米到点B 记作﹢40米,那么从点B 向北走140米应记作( )。
A .﹣140米B .﹣100米C .﹣180米D .﹣60米2.一个直角三角形的三条边长分别是6cm ,8cm ,10cm ,这个三角形的面积是( )。
A .24cm 2B .30cm 2C .40cm 2D .48cm 23.把3.068保留两位小数是( )A .3.06B .3.07C .3.094.3.13中有两个“3”,整数部分的“3”比小数部分的“3”大( )。
A .3.03B .2.97C .2.7D .0.975.教室长9米,宽8米,大约( )个这样的教室地面的面积是1公顷。
A .14B .140C .100D .14006.下面是某家电商场2011年第一季度普通彩电和液晶彩电的月销售量统计图,根据统计图,如果商场要进货的话,应该多进哪种彩电?A .普通彩电B .液晶彩电C .两种一样多D .无法确定7.六·一儿童节,学校早餐桌上有3种饮料和5种点心,饮料和点心只能各选1种,共有( )种不同的搭配方法。
A .8B .12C .158.妈妈买了一袋大米,每天吃掉a 千克,吃了10天后还剩b 千克,这袋大米原来重( )千克。
A .10a b ++B .10a b +-C .10a b +D .10a b -二、填空题(满分16分)9.爸爸领取工资5000元,银行卡流水账单中会显示( )元;如果取出2000元买彩电,账单中会显示( )元10.梯形的上底是a,下底是b,高是c,则它的面积=( )。
11.一个数由10个0.1、4个0.01和8个0.001组成,这个数是( ),保留两位小数是( )。
12.5.78比3.95大( ),比5.78大3.95的数是( ).13.在下面填上适当的数.0.8÷0.25=_____÷25 1.72÷0.4=_____÷420.5÷1.47=_____÷147 3.05÷0.16=_____÷1614.如图是甲、乙两位师傅完成加工零件情况统计图,根据图中给出的信息,完成有关问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末冲刺试卷(二)一.单选选择.( ) 1. -You look worried. Why?-The Boston Bombing(波士顿爆炸案)____________on April 15, 2013.A.happensB. takes placeC. took placeD. was happened( ) 2.______the girl is only nine, she takes care of her brother and cooks meals every day.A. IfB. BecauseC. AlthoughD. As( ) 3. -Pardon?I didn't catch______.-I said Mo Yan's book sold very well in our school.A. what you saidB. where you would goC. who you talked aboutD. what did you say( ) 4. -Dick, ______I use your e-dictionary?-Sorry. I_______it.A. will; useB. may; am usingC. may; useD. will; using( ) 5. -Is Yao Ming very strong?-Yes. I think so. _______ basketball is good for his health.A. PlayB. To playC. PlayingD. To playing( ) 6. There are many flowers and trees on______side of the Century Road.A. eachB. everyC. bothD. all( ) 7. Wang Yaping______into space on June 11, 2013.A. flyB. fliesC. flewD. will fly( ) 8. In the V oice of China, Wu Mochou sang well and Liang Bo did even______.A. wellB. betterC. moreD. worse( ) 9. It's very convenient (便利的) for us______ train tickets now because we can buy them either from the station or on the Internet.A. to buyB.of buyingC.buyingD.for buying( )10. -What do you think of soap operas?- _________. But my mother likes them.A.I like themB.I enjoy themC.I can't stand themD.I don't agree二、用所给词的适当形式填空。
1. If I know the result of the exam,I____(tell) you at once.2. Xiao Qiang likes telling jokes. He is______ (friendly) boy in our class.3. I'm very fat, but my best friend is a lot______ (fat) than me.4.Li Miaoke is becoming_______and______ (beautiful).5. It is difficult for the old man_______(climb) the top of Mount Tai.三、根据汉语意思及所给英语提示完成句子,每空一词。
1.我们一周打两次网球。
We play tennis_____ ____ ___.2.长江是中国最长的河。
The Yangtze river is____ ____river in China.3.你期望能从这本书中学到什么?What can you____ ____ ____ ____from the book?4.除非你努力学习,否则你不会成功。
You____ ____unless you____ ____.5.你认为莫言的书怎么样?What do you____ ____Mo Yan's books?四、按要求完成下列句子,每空一词。
1. Jenny and Lucy are good at speaking English. Rose is better at speaking English than Jenny and Lucy.(合并为一句)Rose____ ____ ____speaking English____the two girls.2.Tom wants to go swimming because the weather is hot.(改为同义句)Tom wants to go swimming____ ____ the hot weather.3.Would you like to buy the new television tomorrow?(改为同义句)____you____to buy the new television tomorrow?4.The boy plays micro message(微信)twice a day.(对画线部分提问)____ ____ does the boy play micro message?5. Eating more junk food is bad for our health. (改为同义句)____ good for our health____ ____ ____junk food.五、完形填空。
When Tom got up one morning, he looked from the window, and 1 that the ground was covered with snow. On the side of the house, the 2 was higher than Tom."We must have a path 3 this snow," said his father. "I would make one if I had time. But I 4 be at the office early this morning. Do you think you could 5 the path, my son?"he asked little Tom. "I? Why? The snow is higher than me! How could I ever cut a path through that snow? " "How? You can do it little by 6 . I hope you will try," said the father. Then his father 7 for his office.Later, Tom set to work. He threw up first one shovelful(铲), and then another; but it was slow 8 . "I don't think I can do it, mother," he said. "A shovelful is so little, and there is so much snow." "Little by little, Tom," said his mother. "That snow fell flake(雪花) by flake, but you see how much it has made." "Yes, 9 , I see," said Tom. "If I throw it away little by little, it will soon be gone." So he worked on.When his father came home to dinner, he was 10 to see the fine path. The next day was Tom's birthday, the father gave little Tom a pen, with yellow letters "Little by Little on it.( ) 1. A. saw B. heard C. felt D. smelt( ) 2. A. rain B. wind C. snow D. smoke( ) 3. A. across B. cross C. through D. past( ) 4. A. must B. can C. may D. need( ) 5. A. take B. carry C. bring D. make( ) 6. A. few B. little C. a little D. a few( ) 7. A. came B. got C. left D. looked( ) 8. A. work B. job C. a work D. a job( ) 9. A. father B. brother C. mother D. sister( ) 10. A. angry B. sad C. interested D. pleased六、阅读理解。
Do you know the boy in the picture? His name is Ma Ziyue. The little boy is famous for his sound of nature(天籁之音).Ma Ziyue was born in a small village of Chengwu, Shandong Province, in August, 2000. He loves singing very much. His favorite thing is to watch all kinds of singing competitions(比赛)on TV after school. He is good at imitating(模仿)singing stars, especially Han Hong and WangFei, the well-known singers in China.On November 27, 2012, he took part in the program China's Got Talent. His unusual voice moved everyone there. Gao Xiaosong, one of the judges was so excited that he stood up and said, “I'm going to make him sing for my next movie!” Ma Ziyue's parents ran to the stage and hugged (拥抱)their son tightly with tears in their eyes. They were really proud of the boy.Ma Mingliang, the father is a little worried about his future. He doesn't know what to do with his son's talent. Should he find a professional music teacher for him or let it be?根据短文内容,完成下面各题。