中考冲刺数学模拟试卷 (2)
中考数学模拟冲刺卷2 华东师大版

中考数学模拟冲刺卷2 华东师大版一、选择题(本大题共10小题,每小题4分,共40分.)在每小题给出的四个选项中,只有一项是符合题意的,请把你认为正确的选项前字母填写在该题后面的括号中.1.若x<-3,则2)3(4++x等于()A.7+x B.7-x C. 1-x D.1+x2.3)1242764810(÷+-的结果是()A.27 B. 28 C. 29 D.303. 观察右图形,则第n个图形中三角形的个数是()A.2n+2 B. 4n+4 C. 4n-4 D. 4n4. 若关于x的方程k x2-2x-1=0有实数根,则k的取值范围是()A.k≥-1 B. k≥-1且k≠0 C. k≤1 D. k≤1且k≠05. 若一个圆锥的底面圆的周长是4πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角的度数是()A.40° B. 80° C. 120° D. 150°6. 如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心作0°~90°的旋转,那么旋转时露出的△ABC的面积S随着旋转角度N的变化而变化,下面表示S与N 的关系的图象大致是()。
7.(如图)小明随机地在如图所示的正三角形及内区域投针,则针扎到其内切圆(阴影)区域的概率为()A.21 B.π63 C.π93 D.π338. 如图,已知⊙O过正方形ABCD的顶点A、B,且与BC边相切,若正方形的边长为2,则⊙O的半径为()得分评卷人(第7题)(第6题)A .34B. 45C.35 D. 1 9. 下列命题中是真命题的有( )①两个端点能够重合的弧是等弧 ②圆的任意一条弦把圆分成优弧和劣弧两部分 ③长度相等的弧是等弧 ④半径相等的圆是等圆 ⑤直径是最大的弦 ⑥半圆所对的弦是直径 A .3个B. 4个C. 5个D. 6个10. 如图⊙M 与x 轴相切于原点,平行于Y 轴的直线交圆于P 、Q 两点,P点在Q 点的下方,若P 点的坐标是(2,1),则圆心M 的坐标是( ) A .(0,3) B. (0, 25) C. (0,2)D.(0,23)二、填空题(本大题共6小题,每小题5分,共30分)11.函数212-+=x x y 有意义,则x 范围是_________.12.1999)2010)(2008(=--a a ,则=-+-2)2010(2)2008(a a __________. 13. ⊙O 的半径为7cm ,⊙O 内有一点P ,OP=5cm ,则经过P 点所有弦中,弦长为整数的有______条。
2023初中数学中考真题模拟冲刺卷(含解析)

2023初中数学中考真题模拟冲刺卷(含解析)一、单选题1.用配方法解一元二次方程2640x x -+=,配方正确的是()A .()235x +=-B .()2313x -=C .()235x +=D .()235x -=2.若关于x 的一元二次方程20x x n -+=有两个相等的实数根,则实数n 的值为()A .4B .14C .14-D .-43.已知公式180n rl π=用,l r 表示n ,正确的是()A .180lr n π=B .180n l rπ=C .180r n lπ=D .180l n rπ=4.下列运算中,正确的是()A .3x ÷x=4x B .236()x x =C .3x -2x=1D .222()a b a b -=-5.不等式组2131532123(1)152(1)x x x x x -+⎧-≤-⎪⎨⎪-+>--⎩的解集为()A .102x -<<B .12x -<≤C .12x -≤<D .12x -≤≤6.若y 与x 成反比例,且x=3时,y=7,则比例系数是()A .3B .7C .21D .207.如图,四边形ABCD 是菱形,120ADC ∠=︒,4AB =,扇形BEF 的半径为4,圆心角为60︒,则图中阴影部分的面积是()A .8433π-B .8233π-C .243π-D .223π-8.如图是一个组合烟花的横截面,其中16个圆的半径相同,点A 、B 、C 、D 分别是四个角上的圆的圆心,且四边形ABCD 为正方形.若圆的半径为r ,组合烟花的高为h ,则组合烟花侧面包装纸的面积至少需要(接缝面积不计)..二、填空题11.在平面直角坐标系中,将二次函数()211y x =-+的图像向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为______.12.如图,ABC 的顶点均在坐标轴上,AE BC ⊥于点E ,交y 轴于点D ,已知点B ,C 的坐标分别为()0,6B ,()2,0C ,若AD BC =,则AOD △的面积为_______.13.如图,双骄制衣厂在厂房O 的周围租了三幢楼A 、B 、C 作为职工宿舍,每幢宿舍楼之间均有笔直的公路相连,并且厂房O 与每幢宿舍楼之间也有笔直公路相连,且BC AC AB >>.已知厂房O 到每条公路的距离相等.(1)则点O 为ABC 三条_____的交点(填写:角平分线或中线或高线);(2)如图,设BC a =,AC b =,AB c =,OA x =,OB y =,OC z =,现要用汽车每天接送职工上下班后,返回厂房停放,那么最短路线长是_____.14.如图,过⊙O 外一点P 引⊙O 的两条切线PA 、PB ,切点分别是A 、B ,OP 交⊙O 于点C ,点D 是优弧 ABC 上不与点A 、点C 重合的一个动点,连接AD 、CD ,若∠APB =80°,则∠ADC 的度数是_____.15.如图,在△ABC 中,AB =AC═12,AD ⊥BC ,BE ⊥AC ,F 为AC 中点,连接BF 、DE ,当BE 2﹣DE 2最大时,则DE 长为_______.三、解答题19.甲、乙两人相约一起去登山,乙两人距地面的高度y(米)与登山时间据图象所提供的信息解答下列问题:参考答案与解析有三条路线可走:1d x c a =+++在BC 上截取BE BA =,连接OE ∵点O 为ABC 三条角平分线的交点,∴ABO OBE ∠=∠,在ABO 和EBO 中,AB BE ABO OBE BO BO =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABO EBO ≌,∴1252ADC AOP∠=∠=︒,故答案为:25︒CD如图所示:(2)线段'(3)将线段B C'绕C点旋转180︒(2)()()150********x x y x x ⎧≤≤⎪=⎨-<≤⎪⎩(3)甲、乙相遇后,甲再经过1.5分或10.5分与乙相距30米.【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度⨯时间即可算出乙在A 地时距地面的高度b 的值;(2)分02x ≤≤和2x >两种情况,根据高度=初始高度+速度⨯时间即可得出y 关于x 的函数关系;(3)先求出甲、乙相遇时所用时间,在路程之间的关系列出方程求解即可.【详解】(1)解:()3001002010-÷=(米/分钟),151230b =÷⨯=.故答案为:10;30;(2)解:当02x ≤≤时15y x =;当2x >时,()3010323030y x x =+⨯-=-.当3030300y x =-=时,11x =.∴乙登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式为()()150********x x y x x ⎧≤≤⎪=⎨-<≤⎪⎩;(3)解:甲登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式为()10100011y x x =+≤≤.当101003030+=-x x 时,解得: 6.5x =;∴()()30 6.510 6.530x x ---=,解得8x =,∴ 6.5 1.5x -=;当甲距离山顶30米时,此时203 6.510.5--=(分),18【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,等腰直角三角形的性质,含30°直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于压轴题.23.(1)y=5x+30;(2)第23天去掉捐款后的利润是6235元;(3)W=﹣5(x﹣30)2+6480,第30天的利润最大,最大利润是6480元.【分析】(1)设函数解析式为y=kx+b(k≠0),从表中取两个点(1,35),(3,45),把两点坐标代入函数解析式中,求得k、b即可解决;(2)设第x天去掉捐款后的利润为6235元,根据等量关系:一件的利润×销量=总利润,列出方程,解方程即可;(3)根据:总利润=一件的利润×销量,即可得出W与x之间的二次函数关系式,然后求出此二次函数最大值即可.【详解】(1)设y与x满足的一次函数数关系式为y=kx+b(k≠0),将(1,35),(3,45)分别代入y=kx+b中,得:35453k bk b=+⎧⎨=+⎩,解得:530 kb=⎧⎨=⎩,∴y与x的函数关系式为y=5x+30;(2)设第x天去掉捐款后的利润为6235元根据题意得:(130﹣x﹣60﹣4)(5x+30)=6235,整理得:x2﹣60x+851=0,解得:x=23或x=37(舍),∴在这30天内,第23天去掉捐款后的利润是6235元;(3)由题意得:W=(130﹣x﹣60﹣4)(5x+30)=﹣5x2+300x+1980即W与x之间的函数关系式为W=﹣5x2+300x+1980∵W=﹣5x2+300x+1980=﹣5(x﹣30)2+6480,且a=﹣5<0,∴当x=30时,W有最大值,最大值为6480元.∴W与x之间的函数关系式是W=﹣5x2+300x+1980,第30天的利润最大,最大利润是6480元.【点睛】本题是函数与方程的综合性问题,考查了待定系数法求函数解析式,解一元二次方程,求二次函数的最值等知识,本题首先要正确理解题意,熟悉售价、进价、利润三者间的关系,其次要求有较好的运算能力.。
【中考冲刺】2023年辽宁省沈阳市中考模拟数学试卷(附答案)

2023年辽宁省沈阳市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.如果一个负数大于它的倒数,那么,这个负数是( ) A .真负分数B .分数C .整数D .假分数2.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .3.下列运算正确的是( ) A .236a a a ⋅=B .1234y y y ÷=C .33(2)8x x -=-D .3362x x x +=4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x ,则下列方程中正确的是( ) A .12(1+x )=17 B .17(1﹣x )=12 C .12(1+x )2=17D .12+12(1+x )+12(1+x )2=175.如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则a ∠的度数是( )A .42B .40C .36D .326.若关于x 的方程2(1)10a x -+=有两个实数根,则a 的最大整数值为( ) A .-1B .0C .1D .27.如图,由8个边长为1的小正方形组成的图形,被线段AB 平分为面积相等的两部分,已知点A 的坐标是()1,0,则点B 的坐标为( )A .11,33⎛⎫ ⎪⎝⎭B .10,33⎛⎫ ⎪⎝⎭C .15,34⎛⎫ ⎪⎝⎭D .18,35⎛⎫ ⎪⎝⎭8.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地.快车的速度为60千米/小时,特快车的速度为90千米/小时.甲、乙两地之间的距离为300千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间t (小时)之间的函数图象是( )A .B .C .D .9.如图,BD 是O 的直径,弦AC 交BD 于点G .连接OC ,若126COD ∠=︒,AB AD =,则AGB ∠的度数为( )A .98°B .103°C .108°D .113°10.如图,在平面直角坐标系中,平行四边形OABC 的边OA 在y 轴的正半轴上,反比例函数(0)k y x x=>的图像分别交AB 于中点D ,交OC 于点E ,且:1:2CE OE =,连接AE ,若2ADE S =△,则k 的值为( )A .5B .367C .6D .647二、填空题11.新冠肺炎疫情爆发后,学生上学检测体温采用的调查方式是_____________ .(填“普查”或“抽样调查”)12.分别写有数字13、1-、π的四张大小和质地均相同的卡片,从中任意抽取一张后不放回再抽取一张,两次抽到的卡片都是无理数的概率是______.13.某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作.A .“北斗卫星”;B .“5G 时代”;C .“智轨快运系统”;D .“东风快递”;E .“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选“5G 时代”的百分率为 ______.14.某同学用描点法y=ax 2+bx+c 的图象时,列出了表: x … ﹣2 ﹣1 0 1 2 … y …﹣11﹣21﹣2﹣5…由于粗心,他算错了其中一个y 值,则这个错误的y 值是_______.15.如图是按以下步骤作图:(1)在ABC 中,分别以点B ,C 为圆心,大于12BC 长为半径作弧,两弧相交于点M ,N ;(2)作直线MN 交AB 于点D ;(3)连接CD ,若90,8BCA AB ∠=︒=,则CD 的长为________.16.某中学为了选拔一名运动员参加区运会100m 短跑比赛,有甲、乙、丙3名运动员备选,他们100m 短跑的平均成绩和方差如下表所示如果要选择一名成绩优秀且稳定的人去参赛,应派_______去.17.如图,在ABC 中,90ACB ∠=︒,AC BC ==ABC 绕点C 按逆时针方向旋转得到DEC ,连接AD ,BE ,直线AD ,BE 相交于点F ,连接CF ,在旋转过程中,线段CF 长度的范围为__________.18.如图,点E 是菱形ABCD 的边AD 的中点,点F 是AB 上的一点,点G 是BC 上的一点,先以CE 为对称轴将CDE △折叠,使点D 落在CF 上的点D 处,再以EF 为对称轴折叠AEF ,使得点A 的对应点A '与点D '重合,以FG 为对称轴折叠BFG ,使FG19.如图,点A 为等边三角形BCD 外一点,连接AB 、AD 且AB =AD ,过点A 作AE CD ∥分别交BC 、BD 于点E 、F ,若34,5BD AE EF ==,则线段AE 的长________.20.如图是抛物线21(0)y ax bx c a =++≠图象的一部分,抛物线的顶点坐标为()1,3A -,与x 轴的一个交点为()4,0B ,点A 和点B 均在直线2(0)y mx n m =+≠上.①20a b +=;①0abc >:①抛物线与x 轴的另一个交点时()4,0-;①方程23ax bx c ++=-有两个不相等的实数根:①4a b c m n -+>+;①不等式2mx n ax bx c +>++的解集为14x <<.上述六个结论中,其中正确的结论是________.(填写序号即可) 三、解答题21.计算:20202||2|(1)-+-.22.如图,一次函数5y x =+的图象与反比例函数ky x=(k 为常数,且0k ≠)的图象相交于()2,A m -和B 两点.(1)求反比例函数的表达式:______________ (2)直接写出不等式5kx x+≤的解集___________ (3)将一次函数5y x =+的图象沿y 轴向下平移b 个单位()0b >.使平移后的图象与反比例函数ky x=的图象有且只有一个交点,b 的值=________ 23.如图,在钝角三角形ABC 中,90ABC ∠>︒,点A ,B ,C 在O 上,过点A 作AD BC ⊥交CB 的延长线于点D ,且DAB C ∠=∠,过点B 作BE AB ⊥交O 于点E ,过点E 作EF AC ,交O 于点M ,交DA 的延长线于点F .(1)求证:DF 是O 的切线.(2)若点C 是BE 的中点,BE =BM 的长_________.24.如图1,在矩形ABCD 中,AB =2,E 是AD 的中点,以点E 为直角顶点的直角三角形EFG 的两边EF ,EG 分别过点B ,C ,30F ∠=︒.将EPG △绕点E 旋转,(1)若EF ,EG 分别与线段AB ,线段BC 相交于点M ,N (如图2).求证:BM CN =;(2)在(1)的条件下,①BMN △面积的最大值___________①当旋转停止时,点B 恰好在FG 上(如图3),sin EBG ∠的值___________ (3)在旋转过程中,射线EF 与直线BC 交于P .射线EG 与直线CD 交于Q ﹐30EPQ S =△,CP =________25.如图,抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点,点A 在点B 的左边,与y 轴交于点C ,点A 的坐标为()2,0-,::1:2:3AO CO BO =.(1)如图1,求抛物线的解析式;(2)如图1,点D 在直线BC 上方的抛物线上运动(不含端点B 、C ),连接DC 、DB ,当四边形ABDC 面积最大时,求出面积最大值和点D 的坐标;(3)如图2,将(1)中的抛物线向右平移,当它恰好经过原点时,设原抛物线与平移后的抛物线交于点E ,连接BE .点M 为原抛物线对称轴上一点,N 为平面内一点,以B 、E 、M 、N 为顶点的四边形是矩形时,若直线OK 平分这个矩形面积,请直接写出直线OK 的解析式. ①________________ ①________________ ①_______________参考答案:1.A 【解析】 【分析】设这个负数为a ,则a <0,且1a a>,可得10a -<<,即可求解. 【详解】解:设这个负数为a ,则a <0,且1a a>, ①21a <, 解得:10a -<<, ①这个负数是真负分数. 故选:A 【点睛】本题主要考查了倒数,解不等式,根据题意得到1a a>是解题的关键. 2.A 【解析】 【分析】利用轴对称图形、中心对称图形的定义进行判断即可. 【详解】A 选项既是轴对称图形,又是中心对称图形,符合题意;B 选项既不是轴对称图形,又不是中心对称图形,不符合题意;C 选项是轴对称图形,不是中心对称图形,不符合题意;D 选项不是轴对称图形,是中心对称图形,不符合题意; 故选:A . 【点睛】本题考查了轴对称图形、中心对称图形的定义,即一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;一个图形绕着中心点旋转180°后能与自身重合,那么这个图形叫做中心对称图形. 3.C 【解析】根据同底数幂的乘法法则可判断A ,根据同底数幂的除法法则可判断B ,根据积的乘法法则可判断C ,根据合并同类项法则可判断D . 【详解】A .23235a a a a +⋅==,A 选项错误;B .1231239y y y y -÷==,B 选项错误;C .3333(2)(2)8x x x -=-=-,C 选项正确;D .3332x x x +=,D 选项错误. 故选:C . 【点睛】本题主要考查了同底数幂的运算法则以及合并同类项的知识,熟记相关运算法则是解答本题关键. 4.C 【解析】 【详解】【分析】设游客人数的年平均增长率为x ,由2015年约为12万人次,到2017年约为17万人次,增长了2次,可列出方程.【详解】设游客人数的年平均增长率为x ,由2015年约为12万人次,到2017年约为17万人次,增长2次,可列出方程12(1+x)2=17. 故选C【点睛】本题考核知识点:列一元二次方程解应用题.解题关键点:找出相等关系,列方程. 5.A 【解析】 【分析】根据正多边形的内角,角的和差,可得答案. 【详解】解:正方形的内角为90°,正五边形的内角为(52)1801085︒︒-⨯=,正六边形的内角为(62)1801206︒︒-⨯=,①1=360°-90°-108°-120°=42°,故选:A .本题考查多边形的内角与外角,解题关键是利用正多边形的内角进行计算. 6.B 【解析】 【分析】分当10a -=,即1a =时,当10a -≠,即1a ≠-时,两种情况讨论求解即可. 【详解】解:当10a -=,即1a =10+=只有一个实数根,不符合题意; 当10a -≠,即1a ≠-时,原方程为一元二次方程,且有两个实数根,①()22=4410b ac a ∆-=--≥,①74a ≤且1a ≠, ①a 的最大整数值为0, 故选B . 【点睛】本题主要考查了一元二次方程根的判别式和一元二次方程的定义,熟知一元二次方程根的判别式是解题的关键. 7.A 【解析】 【分析】如图所示,过点B 作BC ①y 轴于C ,设点B 的坐标为(m ,3),则OC =3,BC =m ,根据题意可知7OABC S =梯形,则72BC OAOC +⋅=,由此求解即可. 【详解】解:如图所示,过点B 作BC ①y 轴于C , 由题意得可知点B 的纵坐标为3, 设点B 的坐标为(m ,3), ①OC =3,BC =m ,①线段AB 平分这8个正方形组成的图形的面积, ①18372OABC S =⨯+=梯形,①72BC OA OC +⋅=, ①1372m +⨯=, ①113m =, ①点B 的坐标为11,33⎛⎫ ⎪⎝⎭, 故选A .【点睛】本题主要考查了坐标与图形,正确作出辅助线构造梯形OABC 是解题的关键.8.D【解析】【分析】分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,①相遇后向相反方向行驶到特快到达甲地,这段时间两车距迅速增加,①特快车到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.【详解】解:①两车从开始到相遇,这段时间两车距迅速减小;①相遇后向相反方向行驶到特快到达甲地这段时间两车距迅速增加;①特快车到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得D 选项符合题意.故选:D .【点睛】本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.9.C【解析】【分析】先求出①COB的度数,由圆周角定理求出①BAC的度数,再根据弧、弦之间的关系求出①ABD=45°,即可得到答案.【详解】解:①①COD=126°,①①COB=54°,①1=272BAC COB=︒∠∠,①BD是圆O的直径,①①BAD=90°,①AB AD=,①AB=AD,①①ABD=①ADB=45°,①①AGB=180°-①BAG-①ABG=108°,故选C.【点睛】本题主要考查了圆周角定理,直径所对的圆周角是直角,等弧所对的弦相等,等腰直角三角形的性质与判定,三角形内角和定理等等,熟知圆周角定理是解题的关键.10.D【解析】【分析】连结BE,延长BC交x轴于H,过E作EG①x轴于G,DF①x轴于F,由点D为AB中点,可得AD=BD=12AB,由S△AED=2,可求S平行四边形AOCB=2 S△AEB=8,设D(,kaa),OF=a,OH=2a,可求OA=842a a=,由:1:2CE OE=,可求23OEOC=,由EG①CH,可证△OGE①①OHC,可求2433OG OH a==,EG=23CH,求出E(43a,41633ka a-),由点E在反比例函数图像上得43a41633kka a⎛⎫⋅-=⎪⎝⎭,解得647k=.【详解】解:连结BE,延长BC交x轴于H,过E作EG①x轴于G,DF①x轴于F,①点D为AB中点,①AD=BD=12AB,OF=FH,①S△AED=2,①S△AEB=2 S△AED=4,①S平行四边形AOCB=2 S△AEB=8,设D(,kaa),OF=a,FH=OF=a,OH=2a,OA=842a a=,①:1:2 CE OE=,,①12 CEOE=,①122CE OEOE++=,①23 OEOC=,①EG①CH,①①OEG=①OCH,①OGE=①OHC=90°,①①OGE①①OHC,①23 OE OG EGOC OH CH===,①2433OG OH a==,EG=23CH,由梯形中位线2FD=OA+HB=2OA+CH,①CH=28 22kFD OAa a-=-,EG=2416 333kCHa a=-,E(43a,41633ka a-),点E在反比例函数图像上,43a41633kka a⎛⎫⋅-=⎪⎝⎭,解得647k=,故选择:D.【点睛】本题考查平行四边形性质,梯形中位线,相似三角形判定与性质,利用点E坐标在反比例函数图像上构造方程是解题关键.11.普查【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行解答即可.【详解】解:因为新冠肺炎疫情事关重大,学生上学必须进行体温检测,所以采用的调查方式是普查,故答案为:普查.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12.1 6【解析】【分析】根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,再根据概率公式即可得出答案.【详解】解:根据题意,画出树状图,如下:共有12种等可能结果,其中两次抽到的卡片都是无理数的有2种,①两次抽到的卡片都是无理数的概率是21 126.故答案为:1 6【点睛】此题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.13.30%【解析】【分析】根据折线图,先算出总人数,然后用“5G时代”的人数除以总人数即可得到答案.【详解】解:由折线图可知:这个班的总人数=25+30+10+20+15=100人①“5G时代”的人数是30①“5G时代”的百分率=30÷100=30%故答案为:30%【点睛】本题主要考查了折线统计图,解题的关键在于能够准确地从折线图中获取信息求解.14.﹣5.【解析】【详解】根据关于对称轴对称的自变量对应的函数值相等,可得答案.解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得212a b c c a b c -+=-⎧⎪=⎨⎪++=-⎩, 解得,301a b c =-⎧⎪=⎨⎪=⎩,函数解析式为y=﹣3x 2+1x=2时y=﹣11,故答案为﹣5.“点睛”本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.15.4【解析】【分析】根据作图可以判断MN 垂直平分BC ,然后根据线段的垂直平分线的性质得到DB =DC ,再证明DA =DC ,即可得到CD =12AB =4.【详解】解:由作图方法可得MN 垂直平分BC ,∴DB =DC ,∴B BCD ∠=∠,90BCA ∠=︒,∴①B +①A =90°,①BCD +①ACD =90°,①①ACD =①A ,①DA =DC ,①CD =12AB =12×8=4.故答案为:3.【点睛】本题考查了识别线段的垂直平分线的作图,常见的基本作图有作一条线段等于已知线段、作一个角等于已知角、作已知线段的垂直平分线、作已知角的角平分线、过一点作已知直线的垂线.识别出MN 为线段BC 的垂直平分线,然后根据垂直平分线的性质和直角三角形的性质是解题的关键.16.乙【解析】【分析】综合比较平均成绩和方差,甲和乙的平均成绩较好,均为12.85秒,乙和丙方差较小,均为1.1,说明乙的成绩优秀且稳定.【详解】解:①12.85秒<12.87秒,①甲,乙的平均成绩较好,①1.1<2.1,①乙的成绩稳定,①应派乙去参赛.故答案为:乙.【点睛】本题考查了用平均数和方差做决策,解决问题的关键是熟练比较平均数选出平均数最小的,比较方差选出方差最小的.17.0CF≤≤【解析】【分析】取AB的中点H,连接CH、FH,设EC,DF交于点G,在①ABC中,由勾股定理得到AB=①DCE①①ACB,从而①DCA=①BCE,①ADC=①BEC,由①DGC=①EGF,可得①AFB=90º,由直角三角形斜边上的中线等于斜边的一半,可得AB①FCH中,当F、C、H在一条直线上时,CFFH=CH=12再求出CF的最小值即可.【详解】解:取AB的中点H,连接CH、FH,设EC,DF交于点G,在①ABC中,①ACB=90º,AC BC,①AB由旋转可知:①DCE①①ACB,①①DCE=①ACB,DC=AC,CE=CB,①①DCA=①BCE,①①ADC=12(180º-①ACD) ,①BEC=12(180º-①BCE),①①ADC=①BEC,①①DGC=①EGF,①①DCG=①EFG=90º,①①AFB=90º,①H是AB的中点,①FH=12AB,①①ACB=90º,①CH=12AB,①FH=CH=12AB在①FCH中,FH+CH>CF,当F、C、H在一条直线上时,CF=①线段CF.如图所示,当①ABC绕点C逆时针旋转180度时,直线AD与直线BE的交点即为点C,则此时C、F重合,即此时CF=0,①0CF≤≤故答案为:0CF≤≤【点睛】本题考查了旋转的性质、三角形内角和定理、勾股定理,直角三角形斜边上的中线,解决本题的关键是掌握旋转的性质.18.35【解析】【分析】过点C 作CH AB ⊥,交AB 延长线于点H ,设AF A F x '==,分别解得FC ,BF ,BH ,FH 的长,在t R FCH 中利用勾股定理解得45x =,在证明ECA GFB ''∽最后根据相似三角形对应边成比例解答即可.【详解】解:过点C 作CH AB ⊥,交AB 延长线于点H ,设AF A F x '==,①22CF CD AF x BF AB AF x =+=+=-=-,,①四边形ABCD 是菱形,①AD BC ∥, 60CBH A ∴∠=∠=︒,①30BCH ∠=︒112BH BC ∴==,①CH3FH x ∴=-,在t R FCH 中,由勾股定理得222CF CH FH =+,222(2)(3)x x ∴+=+-,2244396x x x x ∴++=+-+,45x ∴=, 65BF ∴=, ①四边形ABCD 是菱形,①D B ∠=∠,AB CD ∥,由折叠的性质可得EA C GB F B D ''∠=∠==∠∠,1122DCE ECF DCF BFG GFC BFC ∠=∠=∠∠=∠=∠,, ①AB CD ∥,DCF CFB ∴∠=∠,1122DCE ECF DCF BFG GFC BFC ∴∠=∠=∠∠=∠=∠,, ECF GFC ∴∠=∠,ECA GFB ''∴∽,FG B F BF CE A C DC'∴==', ①3=5FG BF CE DC =, 故答案为:35. 【点睛】本题考查菱形的性质、相似三角形的判定与性质、折叠的性质、含30°角的直角三角形的性质、勾股定理等知识,是重要考点,作出正确辅助线是解题关键.19.15【解析】【分析】连接AC交BD于点O,可得AC是BD的垂直平分线,设BD=4x,则AE=3x,求出OF=OB-BF=2x-5,AF=AE-EF=3x-5,证明①BOE是等边三角形,得30AFE∠=︒,利用AF=2OF列出方程求出x的值,进而可得AE的长.【详解】解:如图,连接AC交BD于点O,①3BD=4AE,①43 BDAE=,设BD=4x,则AE=3x,①①BCD是等边三角形,①BC=CD=BD=4x,①DCB=①DBC=60°,①AB=AD,BC=CD,①AC是BD的垂直平分线,①OB=OD=2x,OC平分①BCD,①AOF=90°,①①DCO=12①DCB=30°,①OC=,①AE①CD,①①AEB=①BCD=60°,①①AEB =①FBE =①BFE =60°,①①BEF 是等边三角形,①BE =BF =EF =5,①BFE =60°,①OF =OB -BF =2x -5,AF =AE -EF =3x -5,①60AFO BFE =∠=︒∠①30FAC ∠=︒①2AF OF =①()35225x x -=-,解得x =5,①AE =3x =15.故答案为:15.【点睛】本题考查了垂直平分线的判定与性质,勾股定理,等边三角形的判定与性质,直角三角形的性质,解决本题的关键是得到AF =2OF 列出方程求解.20.①①①①【解析】【分析】根据抛物线的顶点坐标即可确定抛物线的对称轴即可得到20a b +=即可判断①;根据抛物线的开口方向以及与y 轴的交点情况即可判断①;根据抛物线的对称轴结合已知的与x 轴的一个交点即可判断①;利用图象法即可判断①;分别求出当x =-1时10y a b c =-+<,当x =4时,240y m n =+=,即可判断①;利用图象法即可判断①.【详解】解:①抛物线的顶点坐标为(1,-3),①抛物线的对称轴为直线12b x a=-=, ①20a b +=,故①正确;①抛物线开口向上,与y 轴的交点在y 轴的负半轴,①00a c ><,,①0b <,①0abc >,故①正确;①抛物线对称轴为直线x =1,与x 轴的一个交点为(4,0),①抛物线与x 轴的另一个交点为(-2,0),故①错误;①抛物线顶点坐标为(1,-4),①由函数图象可知,抛物线与直线y =-3有两个不同的交点,①方程23ax bx c ++=-有两个不相等的实数根,故①正确;①抛物线与x 轴的另一个交点为(-2,0)①当x =-1时,10y a b c =-+<,①点A 和点B 均在直线2(0)y mx n m =+≠上,①当x =4时,240y m n =+=,①4a b c m n -+<+,故①错误;①不等式2mx n ax bx c +>++的解集即为一次函数图象在抛物线图象上方时x 的取值范围, ①不等式2mx n ax bx c +>++的解集为14x <<,故①正确;故答案为:①①①①.【点睛】本题主要考查了二次函数图象的性质,二次函数与一次函数图象综合等等,熟知二次函数图象的性质是解题的关键.21.【解析】【分析】直接利用绝对值的性质以及立方根的性质、有理数的乘方运算法则分别化简,进而得出答案.【详解】解:2020|2||2|(1)-+-【点睛】本题主要考查了实数的运算,理解相关运算法则,正确化简各数是解题关键.22.(1)6y x=- (2)3x ≤-或20x -≤<(3)5或5【解析】【分析】(1)把点()2,A m -代入5y x =+,可得点A (-2,3),再把点A (-2,3)代入k y x=,即可求解;(2)联立得:65y x y x ⎧=-⎪⎨⎪=+⎩,求出点D 的坐标,再观察图象,即可求解; (3)根据题意得到平移后的图象的解析式为5y x b =+-,可得到方程2(5)60x b x +-+=,再利用一元二次方程根的判别式,即可求解.(1)解:把点()2,A m -代入5y x =+,得:253m =-+=,①点A (-2,3),把点A (-2,3)代入k y x=,得:32k =-,解得:k =-6, ①反比例函数的表达式为6y x=-; 故答案为:6y x=- (2) 解:联立得:65y x y x ⎧=-⎪⎨⎪=+⎩,解得:121123,32x x y y =-=-⎧⎧⎨⎨==⎩⎩, ①点B (-3,2),观察图象得:当3x ≤-或20x -≤<时,一次函数图象位于反比例函数图象的下方或两图象相交,①不等式5k x x+≤的解集为3x ≤-或20x -≤<; 故答案为:3x ≤-或20x -≤<(3)解:①一次函数5y x =+的图象沿y 轴向下平移b 个单位()0b >.①平移后的图象的解析式为5y x b =+-, 联立得:65x b x-=+-, 整理得:2(5)60x b x +-+=,①平移后的图象与反比例函数k y x=的图象有且只有一个交点, ①2(5)240b ∆=--=,解得:5b =5故答案为:55【点睛】本题主要考查了反比例函数与一次函数的综合题,一元二次方程根的判别式,熟练掌握反比例函数与一次函数的图象和性质是解题的关键.23.(1)见解析 (2)43π 【解析】【分析】(1)连接AE ,根据圆周角定理得出AE 为O 的直径,根据直角三角形的两锐角互余及等量代换可推出90DAO ∠=︒,即可得解;(2)连接OM ,OB ,先根据切线的性质易得EBC AEB ∠=∠,再根据弧、圆心角的关系得到BAC CAE ∠=∠,进而得到AEB EAC BAC ∠=∠=∠,得到 390EAC ∠=︒,求出30EAC ∠=︒,再根据等腰三角形的性质及三角形外角性质得出120MOB ∠=︒,在Rt ABE △中,解直角三角形得到4AE =,即得圆的半径为2,再根据弧长公式求解即可.(1)解:连接AE ,如下图.①AB BE ⊥,①90ABE ∠=︒,①AE 是O 的直径,90BEA BAE ∠+∠=︒.①C DAB ∠=∠,C BEA ∠=∠,①DAB BEA ∠=∠,①90DAB BAE ∠+∠=︒,即:EA FD ⊥.又①点A 在O 上,OA 为O 的半径,①FD 是O 的切线;(2)解:①FD 是O 的切线,①90EAD ∠=︒.①AD CD ⊥,①90ADC ∠=︒,①180EAD ADC ∠+∠=︒.①AE CD ∥,①EBC AEB ∠=∠.①C 是BE 的中点,①BC CE =,①EAC BAC EBC ∠=∠=∠,①AEB EAC BAC ∠=∠=∠.①在Rt ABE △中,390EAC ∠=︒,①30EAC ∠=︒.①AC EF ,①30FEA EAC ∠=∠=︒,①60FEB =︒∠,连接OB ,OM ,则2120MOB MEB ∠=∠=︒,在Rt ABE △中,30AEB ∠=︒, ①4cos30BEAE ,①2OA =,①120241803BM ππ=⨯=. 【点睛】本题考查了切线的判定与性质、圆周角定理、弧长计算公式,解直角三角形,熟记切线的判定与性质、弧长计算公式并作出合理的辅助线是解题的关键.24.(1)证明见解析(2)①2;(3)2或2【解析】【分析】(1)利用“SAS ”定理证明BAE CDE △≌△得到BE CE =,再等腰直角三角形的性质得到45EBC ECB ∠=∠=︒,进而得到BEM CEN ∠=∠,利用“SAS ”定理证明BEM CEN ≌,根据全等三角形的性质求解;(2)①设AB a ,BM CN x ==,利用全等三角形的性质得到2BN a x =-,根据三角形的面积公式得到()221-22BMN a S x a =-+,根据二次函数的性质解答; ①作EH BG ⊥于H ,设NG m =,根据直角三角形的性质、勾股定理用m 表示出BN 、BG ,根据三角形的面积公式用m 表示出EH ,根据正弦的定义计算,得到答案;(3)根据图1,求得AD 的长为2,继而证△MPE ≌DEQ ,得到三角形EPQ 为等腰直角三角形,勾股定理即可求解.(1)证明:如图1,①四边形ABCD 是矩形,①AB DC =,90A D ∠=∠=︒.①E 是AD 中点,①AE DE =,①BAE CDE SAS ≌(), ①BE CE =.①以点E 为直角顶点的直角三角形EFG 的两边EF ,将EPG △绕点E 旋转, ①EBC 是等腰直角三角形,①==45EBC ECB ∠∠︒.①90ABC BCD ∠=∠=︒,①45EBM ECN ∠=∠=︒.①90MEN BEC ∠=∠=︒,①MEN BEN BEC BEN ∠-∠=∠-∠,即BEM CEN ∠=∠.在BEM △和CEN 中,BEM CEN EB EC EBM ECN ∠∠⎧⎪⎨⎪∠∠⎩===, ①BEM CEN ASA ≌(), ①BM CN =;(2)解:设AB a .①45ABE ∠=︒,90A ∠=︒,①==AE AB a ,①==2BC AD a .①BEM CEN ≌,①BM CN =,设BM CN x ==,则2BN a x =-, ①()()22112-222BMN a S x a x x a =⋅⋅-=-+. ①1-02<, ①x a =时,BMN △的面积最大,此时AB CN =,即2AB a x ===时,BMN △的最大面积是22=22. 故答案为:2;解:如下图,作EH BG ⊥于H ,①EF BN ∥,①==30GBN F ∠∠︒ ,设=NG m ,则=2BG m ,由勾股定理得,BN EN ===,则EB ==,①)1EG EN NG m =+=. ①1122EBG S EG BN EG EH =⋅⋅=⋅⋅,①)111222m m EH ⨯=⨯⨯,解得EH =, 在Rt EBH △中,=EH sin EBG EB ∠=(3)如图1中,①四边形ABCD 是矩形,①AB =DC ,①A =①D =90°,①E 是AD 中点,①AE =DE ,①①BAE ①①CDE ,①BE =CE .90EEG ∠=︒EBC ∴△是等腰直角三角形45ABE AEB DEC DCE ∴∠=∠=∠=∠=︒ ,AE AB DC ED ∴==2AB =4AD ∴=如图,过点P 作PM AD ⊥交直线AD 于M , 则四边形,MPCD MPBA 是矩形, 2PM CD ∴==90,90PEQ M EDQ ∠=︒∠=∠=︒, 90MEP DEQ EQD ∴∠=︒-∠=∠ 在△MPE 与DEQ 中,MP DE M EDQ MEP DQE =⎧⎪∠=∠⎨⎪∠=∠⎩∴△MPE ≌DEQPE PQ ∴=,DQ ME =PEQ ∴是等腰直角三角形1302EPQ S EP EQ =⋅=,①PE EQ ==当P 在CD 的左边时,QD ME ∴===2PC ME ED ∴=+=当P 在CD 的右边时,2PC ME ED =-=故答案为:2或2.【点睛】本题考查的是全等三角形的判定和性质、正方形的性质、锐角三角函数的定义、二次函数的应用,掌握全等三角形的判定定理和性质定理、二次函数的性质是解题的关键.25.(1)214433y x x =-++ (2)ABDC S 四边形最大值为25,点D 的坐标为()3,5 (3)59y x =或1120y x =或1325y x = 【解析】【分析】(1)先根据()2,0A -,::1:2:3AO CO BO =.求出OA =2,OC =4,OB =6,得出()6,0B ,()0,4C 将A 、B 、C 代入()20y ax bx c c =++≠得:42036604a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解方程组即可;(2)作DM x ⊥轴交BC 于点M ,利用待定系数法求出直线BC 的解析式为243y x =-+,令214,433D t t t ⎛⎫-++ ⎪⎝⎭,则2,43M t t ⎛⎫-+ ⎪⎝⎭,求出2123DM t t =-+,将四边形ABCD 分割成两个三角形面积利用公式得出ABC BCD ABDC S S S ∆∆=+四边形2616t t =-++()2325t =--+即可;(3)将抛物线配方为()2214116423333y x x x =-++=--+.向右平移2个单位抛物线过原点,解析式为()2116433y x =--+,求两抛物线交点点E (3,5),分两种情况以BE 为对角线时和以BE 为边时,求出以B 、E 、M 、N 为顶点的矩形的中心点P 坐标,当直线OK 经过点P 时满足题意,据此求解即可.(1)解:①()2,0A -,::1:2:3AO CO BO =.①OA =2,OC =4,OB =6,①()6,0B ,()0,4C ,将A 、B 、C 代入()20y ax bx c c =++≠得:42036604a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得13434a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩, ①抛物线的解析式为214433y x x =-++; (2)解:过点D 作DM x ⊥轴交BC 于点M ,设BC 的解析式为1y kx b =+,①()6,0B ,()0,4C ,代入坐标得:11460b k b =⎧⎨+=⎩, 解得:1423b k =⎧⎪⎨=-⎪⎩, ①直线BC 的解析式为243y x =-+, 设214,433D t t t ⎛⎫-++ ⎪⎝⎭,则2,43M t t ⎛⎫-+ ⎪⎝⎭, ①2123DM t t =-+, ①ABC BCD ABDC S S S ∆∆=+四边形,1122AB OC DM OB =⋅+⋅, 21118426223t t ⎛⎫=⨯⨯+-+⨯ ⎪⎝⎭, 2616t t =-++,()2325t =--+,①当3t =时,ABDC S 四边形的值最大,最大值为25.当3t =时,5y =,①点D 的坐标为()3,5;(3) 解:将抛物线配方为()2214116423333y x x x =-++=--+. ①原抛物线对称轴为直线2x =,①原抛物线向右平移2个单位抛物线过原点,①平移后的抛物线解析式为()2116433y x =--+, 联立()()22116233116433y x y x ⎧=--+⎪⎪⎨⎪=--+⎪⎩,两式相减得()()2224x x -=-, 解得x =3, ①()211634533y =--+=, ①点E (3,5),设点M 的坐标为(2,m ),如图1所示,以BE 为对角线,且四边形EMBN 为矩形时,①矩形EMBN 的中心P 的坐标为(92,52), ①直线OK 平分这个矩形EMBN 的面积,①当直线OK 经过点P 时满足题意,设直线OK 的解析式为1y k x =, ①19522k =, ①159k =, ①直线OK 的解析式为59y x =;如图2所示,当BE 为矩形M 1N 1BE 的边时,M 1E ①BE ,过E 作EH ①MG ,EF 垂直于直线x =2于F ,①①HEM 1+①HEB =90°,①FEM 1+①HEM 1=90°,①①FEM 1=①HEB ,①①EFM 3=①EHB =90°,①①EFM 1①①EHB , ①1EF FM EH HB=, ①BH =6-3=3,EF =3-2=1,FM 1=5-m ,EH =5, ①1553m -=, 解得225m =, ①M 1(2,225), ①矩形M 1N 1BE 的中心P 的坐标为(4,115), 同理可求得直线OK 的解析式为1120y x =; 如图2所示,当BE 为矩形N 2M 2BE 的边时,M 2E ①BE ,①①M 2BE =90°,①①M 2BG +①EBH =90°,①EBH +①BEH =90°,①①M 2BG =①BEH ,①①M 2GB =①EHB =90°,①①M 2GB ①①BHE , ①2M G BG BH EH =即435m -=, 解得125m, ①点M (2,125-), ①矩形N 2M 2BE 的中点嗲P 的坐标为(52,1310), 同理求得直线OK 的解析式为1325y x =; 综上所述,当以B 、E 、M 、N 为顶点的四边形是矩形时,若直线OK 平分这个矩形面积,则直线OK 的解析式为59y x =或1120y x =或1325y x =【点睛】本题考查待定系数法求抛物线解析式,一次函数解析式,四边形面积,二次函数的最值,抛物线平移,三角形相似判定与性质,矩形性质,中点坐标公式,掌握待定系数法求抛物线解析式,四边形面积,二次函数的最值,抛物线平移性质,三角形相似判定与性质,矩形性质,中点坐标公式是解题关键.。
2024年广东中考模拟冲刺卷数学试题(二)

2024年广东中考模拟冲刺卷数学试题(二)一、单选题1.12-的倒数是( ) A .-2 B .2 C .12- D .122.牡丹自古以来就是中国的国花,被誉为“百花之王”,据估计,我国牡丹栽种数量约为175500000株,用科学记数法表示为(精确到百万位)( )A .81.7610⨯B .917610⨯.C .91.810⨯D .717.5510⨯ 3.下面四个几何体中,主视图是圆的几何体是 ( )A .B .C .D .4.下列运算中,正确的是( )A =BC .623a a a ÷=D .()222a b a b +=+ 5.如图,已知1240B ∠=∠∠=︒,, 则3∠的度数为( )A .30︒B .40︒C .50︒D .60︒6.如图,掷飞镖游戏中,掷中阴影部分的概率是( )A .12B .13C .14 D .237.若用半径为6cm ,圆心角为120︒的扇形纸片卷成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( )A .2cmB .3cmC .4cmD .6cm8.如图,Rt ABC △中,90C ∠=︒,利用尺规分别以A ,B 为圆心,大于12AB 的长为半径画弧相交于两点,连接交点,交AB 于点D ,下列说法不一定正确的是( )A .AD CD =B .ACD BCD ∠=∠C .DCB CBD ∠=∠ D .AD DB =9.如图,无人机在空中A 处测得某校旗杆顶部B 的仰角为30︒,底部C 的俯角为60︒,无人机与旗杆的水平距离AD 为6m ,则旗杆BC 的高为( )A .(3m +B .12mC .D .(6m + 10.如图,若抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于点C ,若OAC OCB ∠=∠.则ac 的值为( )A .1-B .2-C .12-D .13-二、填空题11x 的取值范围是.12.已知a 2+3a=1,则代数式2a 2+6a ﹣1的值为.13.在Rt ABC ∆中,90ACB ∠=︒,10AB =,CD 是AB 边上的中线,则CD 的长是. 14.如图,以平行四边形ABCD 的一边AB 为直径作O e ,若O e 过点 C ,且80AOC ∠=︒, 则D ∠=15.如图,在正方形ABCD 中,点E ,F 分别在边BC CD ,上,AE AF =,30EAF ︒∠=,则AEB ∠=︒.16.如图,在Rt POQ △中,4OP OQ ==,M 是PQ 中点,把一三角尺的直角顶点放在点M 处,以M 为旋转中心,旋转三角尺,三角尺的两直角边与POQ △的两直角边分别交于点A 、B .连结AB ,在旋转三角尺的过程中,AOB V 的周长的最小值.三、解答题17.(1)计算:()0sin 45tan 6043π︒⋅︒--+-(2)解不等式组256123x x x +>⎧⎪-⎨<⎪⎩18.先化简,再求值: 2111a a a -⎛⎫+÷ ⎪⎝⎭,其中1a . 19.已知:如图Rt ABC △,90C ∠=︒.(1)用尺规作图法做ABC ∠平分线交AC 于点D (不写作法,保留作图痕迹);(2)若10AB =,3CD =,求ABD △的面积.20.某校为了加强反霸凌相关方面的教育,提高学生的法律意识,举办了“NO 霸凌!”法律知 识竞赛,从中随机抽取20名学生的成绩(成绩得分用x 表示,单位:分):94,83,83,86, 94,88,96,100,97,82,94,82,84,89,88,93,98,94,93,92.整理数据,得到频数分布表和扇形统计图.根据以上信息,解答下列问题:(1)a = ,b =;20名学生成绩的中位数是.(2)若成绩不低于90分为优秀,请估计该校2000名学生中达到优秀等级的人数.(3)已知 A 等级中有2名男生,现从 A 等级中随机抽取2名同学成为学校法律宣讲员,试用列表法或树状图的方法求出恰好抽到一男一女的概率21.小美打算买一束百合和康乃馨组合的鲜花,在“母亲节”祝福妈妈.已知买2支百合和1支康乃馨共需花费14元,3支康乃馨的价格比2支百合的价格多2元.(1)求买一支康乃馨和一支百合各需多少元?(2)小美准备买康乃馨和百合共11支,且百合不少于2支.设买这束鲜花所需费用为w 元,康乃馨有x 支,求w 与x 之间的函数关系式,并设计一种使费用最少的买花方案,写出最少费用.22.如图,点O 在ABC V 的BC 边上,O e 经过点A 、C ,且与BC 相交于点D .点E 是下半圆弧的中点,连接AE 交BC 于点F ,已知AB BF =.(1)求证:AB 是O e 的切线;(2)若4CF =,EF =sin B 的值.23.如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE ,ED ,DB 组成,已知河底ED 是水平的,16m ED =,8m AE =,抛物线的顶点C 到ED 的距离是11m , 以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系.(1)根据题意,填空:①顶点C 的坐标为 ;②点B 的坐标为(2)求抛物线的解析式.(3)已知从某时刻开始的40h 内,水面与河底ED 的距离l (单位:m) 随时间t (单位:h)的变化满足函数关系()()21198040128l t x =--+≤≤,且当点C 到水面的距离不大于5m 时,需禁止船只通行,请通过计算说明,在这一时段内,有多少小时禁止船只通行?24.某班级同学在数学老师的指导下,以“等腰三角形的旋转”为主题,开展数学探究活动.【特例操作】(1)如图1,OAB △中,60OA OB AOB =∠=︒,,将O A B △绕点O 逆时针旋转180°,得到ODE V,连接AE ,F 是AE 的中点,连接OF ,则OF 与DE 的数量关系是______;【迁移探究】(2)如图2,OAB △中,90OA OB AOB ==︒,∠,将△OAB 绕点O 顺时针旋转,得到ODE V ,连接AE ,F 是AE 的中点,连接OF ,当60AOE =︒∠时,求OF 与DE 的数量关系;【拓展应用】(3)按(1)中将OAB △绕点O 逆时针旋转一定的角度,得到ODE V ,且4OA =,其它条件不变,当15EAB ∠=︒或30︒时,请直接写出OF 的长.。
2023年初中数学中考冲刺模拟卷二(含解析)

2023年初中数学中考冲刺模拟卷(含解析)一、单选题1.如图,小明、小亮分别从甲地到乙地再返回的路程时间图,已知小亮比小明晚走5分钟,下列说法:①甲、乙两地相距3000米;②小明中间休息了12分钟;③小亮从乙地返回用了22.5分钟;④小明从乙地返回的速度是200米每分钟正确的是()A .①②③B .①②④C .①③④D .①②③④2.tan 30︒的值为()A .1B .2C D .23.劳动教育已纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种农作物的产量两年内从300千克增加到363千克.设平均每年增长的百分率为x ,则可列方程为()A .()23631300x -=B .()36012300x -=C .2300(1)363+=x D .()23001363x +=4.在“学雷锋活动月”中,某班级第一小组7名同学积极捐出自己的零花钱,他们捐款的数额分别是(单位:元):5,2,5,3,2,5,4,则这组数据的众数和中位数分别是()A .5,2B .5,3C .5,4D .5,55.将直线y =2x ﹣3向右平移2个单位.再向上平移2个单位后,得到直线y =kx+b ,A .经过第一、二、四象限B .与x 轴交于(2,0)C .y 随x 的增大而减小D .与y 轴交于(0,﹣5)6.如图,点A 在反比例函数3(0)y x x=-<的图象上,点B 在反比例函数3(0)y x x=>的图象上,点C 在x 轴的正半轴上,则平行四边形ABCO 的面积是()A .6B .5C .4D .37.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:则该班学生一周读书时间..的中位数和众数分别是()读书时间(小时)7891011学生人数610987A .9,8B .9,9C .9.5,9D .9.5,88.正方形网格中,AOB ∠如图放置,则sin AOB ∠=()A B C .12D .2二、填空题9.在函数y =221x -中,自变量x 的取值范围是_____.10.2020年5月22日,李克强总理在政府工作报告中指出,农村贫困人口减少11090000人,脱贫攻坚取得决定性成就,把数11090000用科学记数法表示为____.11.甲、乙二人进行射击比赛,已知他们每人五次射击的成绩如下表(单位:环),那么二人中成绩最稳定的是_____________.12.已知x ,y 互为相反数且满足二元一次方程组25316x y kx y +=⎧⎨-=⎩,则k 的值是_____.13.如图所示,点A 是半圆上的一个三等分点,B 是劣弧 AN 的中点,点P 是直径MN 上的一个动点,⊙O 的半径为1,则AP+PB 的最小值_______.14.如图所示,这是某工件的三视图,其中主视图,左视图均是边长为10cm 的正方形,则此工件的侧面积是____cm 2.15.若1x ,2x 是一元二次方程230x x +-=的两个实数根,则3221417x x -+的值为______.16.如图,正五边形ABCDE 的边长为5,分别以点C 、D 为圆心,CD 长为半径画弧,两弧交于点F ,则 BF的长为_____.三、解答题17.计算:|﹣3|﹣(﹣1)201827+3tan30°.18.计算:032cos30π--︒.19.先化简,将求值:2211122x x x x-⎛⎫-÷ ⎪--⎝⎭,其中1x =.20.(1)计算:()021sin 60201812π-+(2)解方程:2470x x --=21.某市体育中考共设跳绳、立定跳远、仰卧起坐三个项目,要求每位学生必须且只需选考其中一项,该市东风中学初三(2)班学生选考三个项目的人数分布的条形统计图和扇形统计图如图所示.(1)求该班的学生人数;(2)若该校初三年级有1000人,估计该年级选考立定跳远的人数.22.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按八折收费;在乙商场累计购物超过50元后,超出50元的部分按九折收费.设顾客累计购物x (单位:元),购物花费为y (单位:元).(1)分别写出在甲、乙两个商场购物时,y 关于x 的函数解析式;(2)顾客到哪家商场购物花费少?23.如图,在Rt △AOB 中,∠AOB =90°,以点O 为圆心,OA 为半径的圆交AB 于点C ,点D 在边OB 上,且CD =BD .(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)已知tan ∠ODC =247,AB =40,求⊙O 的半径.24.(1)如图1,在四边形ABCD 是矩形,点E 是AD 的中点,求证:EB=EC .(2)如图2,AB 与O 相切于C ,A B ∠=∠,⊙O 的半径为6,AB =16,求OA 的长.25.如图,四边形ABCD 是矩形.(1)尺规作图:连接AC 并作对角线AC 的垂直平分线,分别交边AD 、BC 于点F 、E .(保留作图痕迹,不写作法)(2)若边4cm AB =,8cm BC =.则四边形AECF 的面积是.参考答案与解析1.D【分析】根据图象进行数据分析即可判断.【详解】由图象y 轴可知甲乙两地相距3000米,①正确;由于小明先走,由图中10分钟到22分钟路程没变,故小明中间休息了12分钟,②正确;根据图形可知小亮返回速度为2000÷(40-25)=4003,3000÷4003=22.5,③正确;小明返回的速度为2000÷(40-30)=200,④正确;故选D .【点睛】本题考查折线统计图的应用,关键在于结合图形得出有用信息.2.C【详解】tan30︒故选C .3.D【分析】可先表示出第一年的产量,那么第二年的产量×(1+增长率)=363,把相应数值代入即可求解.【详解】解:第一年的产量为300×(1+x ),第二年的产量在第一年产量的基础上增加x ,为300×(1+x )×(1+x ),则列出的方程是300(1+x )2=363.故选:D .【点睛】考查由实际问题抽象出一元二次方程,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为21a x b ±=().4.C【分析】根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数(或最中间两个数的平均数);根据众数的定义找出出现次数最多的数即可.【详解】题中5出现了3次,出现的次数最多,则众数是5;把这组数据从小到大排列为:2,2,3,4,5,5,5,最中间的数是4,则中位数是4.故选C.【点睛】本题考查了众数及中位数的定义,众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.5.D【分析】先根据题意得到新的直线关系式,再根据其关系式求解.【详解】解:将直线y=2x﹣3向右平移2个单位.再向上平移2个单位后得到直线y=2x ﹣5,A、直线y=x﹣5经过第一、三、四象限,错误;B、直线y=x﹣5与x轴交于(5,0),错误;C、直线y=x﹣5,y随x的增大而增大,错误;D、直线y=x﹣5与y轴交于(0,﹣5),正确故选D.【点睛】此题主要考查一次函数的图像,解题的关键是熟知直线的平移与关系式的特点. 6.A【分析】因为四边形ABCO是平行四边形,所以点A、B纵坐标相等,即可求得A、B横坐标,则AB的长度即可求得,然后利用平行四边形面积公式即可求解.【详解】解:∵四边形ABCO是平行四边形∴点A、B纵坐标相等设纵坐标为b,将y=b带入3(0)y xx=-<和3(0)y xx=>中,则A点横坐标为3b-,B点横坐标为3b∴AB=336()b b b --=∴66 ABCOS bb=⨯=故选:A.【点睛】本题考查了反比例函数以及平行四边形面积公式,本题关键在于两点间距离的求法.7.A【分析】根据中位数和众数的定义进行解答即可.【详解】由表格,得该班学生一周读书时间的中位数和众数分别是9,8.【点睛】本题主要考查了中位数和众数,掌握中位数和众数的定义及求法是解答的关键. 8.B【分析】先在∠AOB的两边上找出两点C、D,使△DOC构成直角三角形,再根据正方形网格的特点及勾股定理求出OC 的长,由锐角三角函数的定义即可求出sin ∠AOB 的值.【详解】由图可知连接C 、D 两点,此时△DOC 恰好构成直角三角形,如图:设正方形网格的边长为1,则CD =2,OD =1,OC由锐角三角函数的定义可知:sin ∠AOB =CDOC =.故选:B .【点睛】本题考查的是锐角三角函数的定义及勾股定理,熟知正方形网格的特点,能在∠AOB 的边上找出两点使△DOC 恰好构成直角三角形是解答此题的关键.9.x ≠12【分析】根据分式有意义的条件为分母不为0进行求解即可.【详解】解:由题意,得2x ﹣1≠0,解得x ≠12,故答案为:x ≠12.【点睛】考查了分式有意义的条件,解题关键是熟记分式有意义的条件为:分母不等于0.10.1.109×107.【分析】绝对值大于10的数用科学记数法表示一般形式为a ×10n ,n 为整数位数减1.【详解】11090000=1.109×107.故答案为:1.109×107.【点睛】本题考查用科学记数法表示绝对值大于10的数,一般形式为a ×10n ,其中1≤|a |<10,n 为整数位数减1.11.乙【详解】试题分析:甲的平均数=(9.3+7.9+4+7.1+6)÷5=6.86,乙的平均数=(6.1+6.8+7.2+8+6.2)÷5=6.86,甲的方差=222221[(9.3 6.86)(7.9 6.86)(4 6.86)(7.1 6.86)(6 6.86)]5-+-+-+-+-=3.20,乙的方差=222221[(6.1 6.86)(6.8 6.86)(7.2 6.86)(8 6.86)(6.2 6.86)]5-+-+-+-+-=0.486.∵甲的方差大于乙的方差,故乙的成绩稳定.故答案为乙.考点:方差.12.−12【分析】由已知可得x =−y ,再将x =−y 代入方程组即可分别求出x 、y 、k 的值.【详解】解:∵x ,y 互为相反数,∴x =−y ,25316x y k x y ⎧⎨-⎩+=①=②,由②得−4y =16,∴y =−4,∴x =4,将x =4,y =−4代入①得,8−20=k ,∴k =−12,故答案为:−12.【点睛】本题考查二元一次方程组的解,熟练掌握相反数的概念,会求二元一次方程组的解是解题的关键.13【详解】试题分析:首先找出点A 关于MN 对称的对称点A',AP+BP 的最小值就是A′B 的长度.试题解析:如图,作点A 关于MN 的对称点A′,连接BA′交圆于P ,则点P 即是所求作的点,∵A 是半圆上一个三等分点,∴∠AON=∠A′ON=360°÷2÷3=60°,又∵点B是弧AN的中点,∴∠BON=12∠AON=12×60°="30°"∴∠A′OB=∠A′ON+∠BON=60°+30°=90°在Rt△A′OB中,由勾股定理得:A′B2=A′O2+BO2="1+1=2"得:,所以:AP+BP.考点:1.圆周角定理;2.垂径定理;3.轴对称-最短路线问题.14.100π【分析】易得此几何体为圆柱,那么侧面积=底面周长×高.【详解】由题意得圆柱的底面直径为10,高为10,∴侧面积=10π×10=100πcm2.故答案为100π【点睛】本题考查由三视图判断几何体,本题难点是确定几何体的形状,关键是找到等量关系里相应的量.15.-2【分析】利用根与系数的关系可得出x1+x2=-1、x1•x2=-3,将代数式x23-4x12+17进行转化后得出=-7-4(x12+x1)+17,再代入数据即可得出结论.【详解】解:∵x1,x2是一元二次方程x2+x-3=0的两个实数根,∴x1+x2=-1,x1•x2=-3,x22+x2=3,x12+x1=3,∴x23-4x12+17=(3-x2)x2-4x12+17=3x2-x22-4x12+17=3x2-(3-x2)-4x12+17=4x2-3-4x12+17=4(-1-x1)-3-4x12+17=-7-4(x12+x1)+17=10-4×3=-2故答案为-2.【点睛】本题考查了方程的解、根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,则x1+x2=-ba,x1x2=ca.16.4 3π【分析】连接CF,DF,得到△CFD是等边三角形,得到∠FCD=60°,根据正五边形的内角和得到∠BCD=108°,求得∠BCF=48°,根据弧长公式即可得到结论.【详解】解:如图,连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴ 48541803BFππ⨯==,故答案为:43π.【点睛】本题考查了正多边形与圆,弧长的计算,等边三角形的判定和性质,正确作出辅助线是解题的关键.17.【分析】本题涉及绝对值、乘方、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】原式=3﹣1﹣,=3﹣1﹣=2﹣【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.1【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值分别化简得出答案.【详解】解:原式122+-⨯=1=1=.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.19.1x x +,12-【分析】先去括号,把除法变为乘法把分式化简,再把数代入求值.【详解】解:原式=()()()221211x x x x x x ---⋅-+-()()()21211x x x x x x --=⋅-+-1x x =+;当1x =时,原式12=-【点睛】此题主要考查了分式的化简求值,分母有理化,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.20.(1)94-2)12x =+,22x =【分析】(1)根据实数的运算顺序计算即可;(2)利用配方法解一元二次方程即可.【详解】解:(1)()021sin 60201812π-+=2112-++=31142-+=94-(2)2470x x --=方程变形得:247x x -=配方得:2224(2)7(2)x x -+-=+-即:2()211x -=开方得:2x -=解得:12x =+,22x =【点睛】本题考查了实数运算以及解一元二次方程,掌握相关运算法则是解答本题的关键.21.50人;100人.【详解】解:(1)根据题意得:30÷60%=50(人),答:该班学生人数为50人;(2)根据题意得:1000×50301550--=100(人),答:估计该年级选考立定供远的人数为100人.22.(1)y 甲()()01000.820100x x x x ⎧≤⎪=⎨+⎪⎩<>;y 乙()()0500.9550x x x x ⎧≤⎪=⎨+⎪⎩<>;(2)当050x <≤或150x =时,到甲、乙两商场花费一样多;当50150x <<时,到乙商场购物花费少;当150x >时,到甲商场购物花费少.【分析】(1)根据题意写出函数关系式即可,注意自变量的取值范围;(2)分情况讨论,利用函数关系式建立方程或不等式即可得到答案.【详解】解:(1)在甲商场购物当0100x <≤时,y 甲x =;当100x >时,y 甲1000.8(100)0.820x x =+-=+在乙商场购物当050x <≤时,y 乙x =;当50x >时,y 乙500.9(50)0.95x x =+-=+综上,y 甲()()01000.820100x x x x ⎧≤⎪=⎨+⎪⎩<>,y 乙()()0500.9550x x x x ⎧≤⎪=⎨+⎪⎩<>.(2)当050x <≤时,y 甲=y 乙,购物花费一样多.当50100x <≤时,则0.9x+5<x ,因此到乙商场购物花费少.当100x >时,①若到乙商场购物花费少,即y 甲>y 乙.则0.8200.95x x +>+.解得150x <.②若到甲商场购物花费少,即y 甲<y 乙.则0.8200.95x x +<+.解得150x >.③若到甲、乙商场购物花费一样多,即y 甲=y 乙.则0.8200.95x x +=+.解得150x =.综上所述,当050x <≤或150x =时,到甲、乙两商场花费一样多;当50150x <<时,到乙商场购物花费少;当150x >时,到甲商场购物花费少.【点睛】本题考查的是一次函数是实际应用,以及利用方程与不等式作最优化选择的问题,掌握以上知识是解题的关键.23.(1)相切,理由见解析(2)24【分析】(1)如图,连接OC ,根据等边对等角可得∠A =∠ACO ,∠B =∠DCB ,根据三角形的内角和定理得∠A +∠B =90°,可得90OCD ∠=︒,进而结论得证;(2)根据2t 4an =7=ODC OC CD∠,设CD =7x =DB ,OC =24x =OA ,在Rt COD 中,由勾股定理得25OD x =,在Rt AOB 中,由勾股定理得AB 2=AO 2+OB 2,即1600=576x 2+1024x 2,计算求解x 的值,进而可得OA 的值.(1)解:直线CD 与⊙O 相切.理由如下:如图,连接OC ,∵OA =OC ,CD =BD ,∴∠A =∠ACO ,∠B =∠DCB ,∵∠AOB =90°,∴∠A +∠B =90°,∴∠ACO +∠DCB =90°,∴∠OCD =90°,∴OC ⊥CD ,又∵OC 为半径,∴直线CD 与⊙O 相切.(2)解:∵2t 4an =7=ODC OC CD∠,∴设CD =7x =DB ,OC =24x =OA ,∵∠OCD =90°,在Rt COD 中,由勾股定理得25OD x =,∴OB =32x ,在Rt AOB 中,由勾股定理得AB 2=AO 2+OB 2,即1600=576x 2+1024x 2,解得1x =或=1x -(舍去)∴OA =24,∴⊙O 的半径为24.【点睛】本题考查了切线的判定与性质,等边对等角,三角形的内角和定理,勾股定理,正切值求线段长等知识.解题的关键在于对知识的灵活运用.24.(1)见解析;(2)10.【分析】(1)利用SAS 证明△ABE ≌△DCE ,根据全等三角形性质即可得;(2)连接OC ,则有OC ⊥AB ,再根据等腰三角形的判定与性质可得AC 长,在直角三角形OAC 中,利用勾股定理即可求得OA 长.【详解】(1)∵四边形ABCD 是矩形,∴∠A=∠D=90°,AB=DC ,又∵AE=DE ,∴△ABE ≌△DCE (SAS ),∴EB=EC ;(2)如图,连接OC ,∵AB 与O 相切于C ,∴OC ⊥AB ,∵∠A=∠B ,∴OA=OB ,∴AC=BC=12AB=12×16=8,在Rt △OAC 中,OA 2=OC 2+AC 2,∴【点睛】本题考查了矩形的性质、切线的性质、等腰三角形的判定与性质等,正确添加辅助线、熟练应用相关知识是解题的关键.25.(1)见解析;(2)220cm 【分析】(1)分别以A 、C 为圆心,以大于12AC 为半径,画弧即可.(2)先判定四边形AECF 是菱形,后设未知数,运用勾股定理计算即可.(1)如图,EF为所作;(2)EF 交AC 于O ,如图,四边形ABCD 为矩形,//AD BC ∴,90B Ð=°,ECA FAC ∴∠=∠,EF 垂直平分AC ,AO CO ∴=,AE CE =,在CEO ∆和AFO ∆中,ECO FAO CO AO COE AOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()CEO AFO ASA ∴∆≅∆,CE AF ∴=,//CE AF ,∴四边形AECF 为平行四边形,AE CE = ,∴四边形AECF 为菱形,设AE x =cm ,则CE x =cm ,(8)BE x cm =-,在Rt ABE ∆中,2224)8(x x -+=,解得5x =,5CE cm ∴=,∴四边形AECF 的面积24520()cm =⨯=.故答案为220cm .【点睛】本题考查了线段垂直平分线的作图,矩形的性质,菱形的判定和性质,勾股定理,准确判定四边形是菱形,灵活用勾股定理是解题的关键.。
2023年中考数学模拟冲刺卷(福建省)

2023年福建省中考数学模拟冲刺卷数学试卷一、单选题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.四个有理数﹣3、﹣1、0、1,其中最小的是()A.﹣3B.﹣1C.0D.12.下列各式运算正确的是()A.(x﹣2)2=x2﹣4B.(x3)2=x5C.2xy2•(﹣x2)=﹣3x3y2D.(π﹣3.14)0=03.如图的一个几何体,其左视图是()A.B.C.D.4.在平面直角坐标系中,将点A(﹣1,2)向下平移3个单位长度,再向右平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣3,﹣1)B.(1,﹣1)C.(﹣1,1)D.(﹣4,4)5.下列调查中,适合抽样调查的是()A.调查本班同学的体育达标情况B.了解“嫦娥五号”探测器的零部件状况C.疫情期间,了解全校师生入校时体温情况D.调查黄河的水质情况6.如图,△ABC与△DEF位似,点O是它们的位似中心,其中OE=3OB,则△ABC与△DEF的面积之比是()A.1:2B.1:4C.1:3D.1:97.如图,第①个图形中共有4个小黑点,第②个图形中共有7个小黑点,第③个图形中共有10个小黑点,第④个图形中共有13个小黑点,…,按此规律排列下去,则第⑥个图形中小黑点的个数为( )A .19B .20C .22D .258.△ABC 的边BC 经过圆心O ,AC 与圆相切于点A ,若∠B =20°,则∠C 的大小等于( )A .50°B .25°C .40°D .20°9. 如图,下列图形都是由同样大小的圆按照一定规律所组成的,其中第①个图形中一共有4个圆,第②个图形中一共有8个圆,第③个图形中一共有14个圆,第④个图形中一共有22个圆,…,按此规律排列下去,第⑨个图形中圆的个数是( )A. 100B. 92C. 90D. 81 10.若二次函数的解析式为()()()115y x m x m =--≤≤.若函数过(),p q 点和()5,p q +点,则q 的取值范围为( )A .92544q ≤≤B .944q -≤≤-C .2524q ≤≤D .924q -≤≤-二、填空题(本题共6小题,每小题4分,共24分)11.如图,菱形ABCD 的对角线,AC BD 相交于点O ,点E 是边AB 的中点,若6OE =,则BC 的长为 _______.12.已知1x =-是一元二次方程2100ax bx +-=的一个解,且a b ≠-,则2222a b a b -+的值为__________.13.在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的锁率稳定在0.5附近,则袋子中红球约有_______个.14.在平面直角坐标系中,以原点为位似中心,将ABC 放大为原来的2倍得到A B C ''',若点A 的坐标为()23,,则A '的坐标为 _____. 15.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为________.16.如图,AD 为∠BAC 的平分线,请你添加一个适当的条件______,使得ABD ACD △≌△.三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.18-21题 每题8分 22题10分 23题10分 24题13分 25题13分)17.已知关于x 的一元二次方程210x ax a -+-=.(1)求证:方程总有两个实数根;(2)若该方程有一实数根大于3,求a 的取值范围.18.如图,在ABC 和ADE 中,AB AC =,AD AE =,且BAC DAE ∠=∠,且B ,D ,E 在同一直线上,连接EC .(1)求证:BD EC =.(2)若55ACB ∠=︒,求BEC ∠的度数.19.如图,点D ,E ,F 分别位于ABC 的三边上,DF CA ∥,70C ∠=︒.(1)求CDF ∠的大小;(2)若70A ∠=︒,DF 平分BDE ∠,求证:DE BA ∥.20.某市政府计划建设一项水利工程,工程需要运送的土石方总量为610立方米,某运输公司承担了运送土石方的任务.(1)设该公司平均每天运送土石方总量为y 立方米,完成运送任务所需时间为t 天. ∠求y 关于t 的函数表达式.∠若080t <≤时,求y 的取值范围.(2)若1辆卡车每天可运送土石方210立方米,工期要求在80天内完成,公司至少要安排多少辆相同型号卡车运输?21.已知,如图(1)在平行四边形ABCD 中,点E F ,分别在,BC CD 上,且AE AF AEC AFC =∠=∠,.(1)求证:四边形ABCD 是菱形.(2)如图(2),若AD AF =,延长AE DC ,交于点G ,求证:2AF AG DF =⋅.(3)在第(2)小题的条件下,连接BD ,交AG 于点H ,若412HE EG ==,,求AH 的长. 22.2023年春节档电影《满江红》和《流浪地球2》上映后,热度持续不减,小明一家想选择其中的一部一起观看:哥哥想看《满江红》,弟弟想看《流浪地球2》,妈妈让哥哥和弟弟用掷骰子(骰子质地均匀)的游戏决定听谁的,游戏规则如下:两人随机各掷一枚骰子,若两枚骰子朝上的点数之和为偶数,则哥哥获胜;若两枚骰子朝上的点数之和为奇数,则弟弟获胜.根据上述规则,解答下列问题:(1)弟弟随机掷一枚骰子,点数“6”朝上的概率为______;(2)请用列表格或画树状图的方法判断此游戏是否公平,并说明理由.23.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆120人次,进馆人次逐月增加,到第三个月末累计进馆570人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.24.如图1,直线AB 的解析式为6y kx =+,D 点坐标为()8,0,O 点关于直线AB 的对称点C 点在直线AD 上.(1)求直线AB 的解析式;(2)如图2,在x 轴上是否存在点F ,使ABC 与ABF △的面积相等,若存在,求出F 点坐标,若不存在,请说明理由;(3)如图3,过点()5,2G 的直线:l y mx b =+,当它与直线AB 夹角等于45︒时,求出相应m 的值.25.如图,已知抛物线y =ax 2+bx +c 经过原点O (0,0)、A (2,0),直线y =2x 经过抛物线的顶点B ,点C 是抛物线上一点,且位于对称轴的右侧,联结BC 、OC 、AB ,过点C 作CE ∥x 轴,分别交线段OB 、AB 于点E 、F .(1)求抛物线的表达式;(2)当BC =CE 时,求证:△BCE ∽△ABO ;(3)当∠CBA =∠BOC 时,求点C 的坐标.。
初三冲刺数学试题及答案

初三冲刺数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14159B. 0.333...C. πD. √22. 如果一个二次方程ax² + bx + c = 0(a ≠ 0)的判别式Δ =b² - 4ac小于0,那么这个方程:A. 有唯一解B. 有两组实数解C. 无实数解D. 无法确定3. 一个圆的半径为5,那么这个圆的面积是:A. 25πB. 50πC. 75πD. 100π4. 已知函数f(x) = 2x - 3,求f(-1)的值:A. 1B. -5C. -1D. 55. 下列哪个是等差数列的通项公式?A. an = a1 + (n-1)dB. an = a1 + ndC. an = a1 - (n-1)dD. an = a1 - nd二、填空题(每题2分,共10分)6. 一个直角三角形的两个直角边长分别为3和4,那么它的斜边长是________。
7. 一个数的平方根是4,那么这个数是________。
8. 一个数的立方根是2,那么这个数是________。
9. 一个数的绝对值是5,那么这个数可以是________或________。
10. 如果一个数的相反数是-7,那么这个数是________。
三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3 + √5)² - 2√5。
12. 解方程:2x + 5 = 15。
13. 计算下列数列的前5项和:1, 3, 5, 7, 9。
四、解答题(每题10分,共20分)14. 已知一个直角三角形的斜边长为13,一个直角边长为5,求另一个直角边的长度。
15. 已知一个等差数列的前三项分别为3,7,11,求这个数列的第20项。
五、证明题(每题15分,共15分)16. 证明:直角三角形的斜边的平方等于两直角边的平方和。
答案一、选择题1. C2. C3. B4. B5. A二、填空题6. 57. 168. 89. 5, -510. 7三、计算题11. 1412. x = 513. 25四、解答题14. 另一个直角边的长度是12。
【中考冲刺】2023年陕西省中考模拟数学试卷(附答案) (2)

2023年陕西省宝鸡市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.2-的相反数是( ) A .2-B .2C .12D .12-2.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )A .B .C .D .3.下列等式从左到右的变形,属于因式分解的是( ) A .2221(1)x x x +-=- B .22()()a b a b a b +-=- C .2244(2)x x x ++=+D .22(1)ax a a x -=-4.如图,下面几何体的俯视图是( )A .B .C .D .5.如图,在ABC ∆中,CD 平分ACB ∠,已知74,46A B ︒︒∠=∠=,则BDC ∠的度数为( )A .104︒B .106︒C .134︒D .136︒6.如图,矩形ABCD 中,AB =3BC =,AE BD ⊥于E ,则EC =( )A B C D 7.在平面直角坐标系中,将直线l 1:y =3x -2平移后得到直线l 2:y =3x +4,则下列平移方法正确的是( ) A .将l 1向上平移2个单位长度 B .将l 1向上平移4个单位长度 C .将l 1向左平移2个单位长度D .将l 1向右平移3个单位长度8.如图,抛物线2y ax bx c =++ 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc >0;①3a +b <0;①﹣43≤a ≤﹣1;①a +b ≥am 2+bm (m 为任意实数);①一元二次方程2ax bx c n ++= 有两个不相等的实数根,其中正确的有( )A .2个B .3个C .4个D .5个二、填空题9.计算:310(5)ab ab ÷-=______. 10.十边形共有_______条对角线.11.如图,在①ABC 中,①B =30°,①C =45°,AD 是BC 边上的高,AB =4cm ,分别以B 、C 为圆心,以BD 、CD 为半径画弧,交边AB 、AC 于点E 、F ,则图中阴影部分的面积是______cm 2.12.如图,过y 轴正半轴上任意一点P ,作x 轴的平行线,分别与反比例函数y =kx与y =2x 的图象交于点A ,B ,若C 为x 轴上任意一点,连接AC ,BC ,若S △ABC =4,则k 的值为____.13.如图,点A 1(1,1)在直线y =x 上,过点A 1分别作y 轴、x 轴的平行线交直线y x =于点B 1,B 2,过点B 2作y 轴的平行线交直线y =x 于点A 2,过点A 2作x 轴的平行线交直线y x =于点B 3,…,按照此规律进行下去,则点An 的横坐标为______.三、解答题14. 计算:3|+(1-π)0.15.解不等式组:212541x x x x -+⎧⎨+<-⎩.16.先化简,再求值:22214()244a a a a a a a a +--+÷--+,其中a =011(()2π-+. 17.如图,在①ABC 中,AB =AC ,①BAC =36°,请用尺规过点B 作一条直线,使其将①ABC 分成两个等腰三角形(保留作图痕迹,不写作法).=.18.已知:如图,点E、F在CD上,且A B∠=∠,AC//BD,CF DE求证:AEC①BFD.19.一书店按定价的五折购进某种图书800本,在实际销售中,500本按定价的七折批发售出,300本按八五折零售,若这种图书最终获利8200元,问该图书批发与零售价分别是多少元?20.现有A、B、C三个不透明的盒子,A盒中装有红球、黄球、蓝球各1个,B盒中装有红球、黄球各1个,C盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A、B、C三个盒子中任意摸出一个球.(1)从A盒中摸出红球的概率为;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.21.如图,码头A、B分别在海岛O的北偏东45°和北偏东60°方向上,仓库C在海岛O的北偏东75°方向上,码头A、B均在仓库C的正西方向,码头B和仓库C的距离BC=50km,若将一批物资从仓库C用汽车运送到A、B两个码头中的一处,再用货船运送到海岛O,若汽车的行驶速度为50km/h,货船航行的速度为25km/h,问这批物资在哪个码头装船,最早运抵海岛O?(两个码头物资装船所用的时间相同,参考数≈1.4)22.如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)这个班级有多少名同学?并补全条形统计图.(2)若该班同学每人每天只饮用一种饮品(每种仅限1瓶,价格如下表),则该班同学用于饮品上的人均花费是多少元?(3)若我市约有初中生4万人,估计我市初中生每天用于饮品上的花费是多少元?23.张琪和爸爸到曲江池遗址公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,张琪继续前行5分钟后也原路返回,两人恰好同时到家张琪和爸爸在整个运动过程中离家的路点y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示(1)求爸爸返问时离家的路程y2(米)与运动时间x(分)之间的函数关系式;(2)张琪开始返回时与爸爸相距多少米?24.如图,在等腰△ABC中,AB=BC,以BC为直径的①O与AC相交于点D,过点D 作DE①AB交CB延长线于点E,垂足为点F.(1)判断DE与①O的位置关系,并说明理由;,求EF的长.(2)若①O的半径R=5,tanC=1225.如图,直线y =﹣2x +4交y 轴于点A ,交抛物线212y x bx c =++ 于点B (3,﹣2),抛物线经过点C (﹣1,0),交y 轴于点D ,点P 是抛物线上的动点,作PE ①DB 交DB 所在直线于点E . (1)求抛物线的解析式;(2)当①PDE 为等腰直角三角形时,求出PE 的长及P 点坐标;(3)在(2)的条件下,连接PB ,将①PBE 沿直线AB 翻折,直接写出翻折点后E 的对称点坐标.26.(1)如图,四边形ABCD 的面积是m ,E ,F ,G ,H 分别是边AB ,BC ,CD ,AD 的中点,则图中阴影部分的面积是 (用含m 的代数式表示).(2)如图,把等腰梯形ABCD 放在平面直角坐标系中,已知三个顶点的坐标分别是A (-2,0),B (6,0),C (4,4),画出经过顶点D 并且平分梯形面积的直线,并求出它的表达式.(3)如图,在四边形ABCD中,AD①BC,AB>CD,是否存在过点A的一条直线将四边形ABCD的面积平分?如果存在,请画出符合条件的直线,并说明你的作法和理由;如果不存在,也请说明理由.参考答案:1.B 【解析】 【分析】根据相反数的定义可得结果. 【详解】因为-2+2=0,所以-2的相反数是2, 故选:B . 【点睛】本题考查求相反数,熟记相反数的概念是解题的关键. 2.B 【解析】 【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合. 【详解】解:A 、不是中心对称图形,不符合题意; B 、是中心对称图形,符合题意; C 、不是中心对称图形,不符合题意; D 、不是中心对称图形,不符合题意; 故选:B . 【点睛】本题考查了中心对称图形,解题的关键是根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合. 3.C 【解析】 【详解】解:A .2221(1)x x x -+=-,故A 不是因式分解; B .22()()a b a b a b -=+-,故B 不是因式分解; C .2244(2)x x x ++=+,故C 正确;D .22(1)ax a a x -=-=a (x +1)(x ﹣1),故D 分解不完全. 故选C . 4.D 【解析】 【详解】解:从上面看有3列,左边一列有2个正方形,中间一列有1个正方形,右边一列有1个正方形. 故选D . 5.A 【解析】 【分析】首先根据三角形内角和为180°以及角平分线性质得出①ACD=①BCD=30°,再利用三角形内角和进一步求出答案即可. 【详解】①74,46A B ︒︒∠=∠=, ①①ACB=180°-74°-46°=60°, ①CD 平分ACB ∠, ①①ACD=①BCD=30°,①①BDC=180°-①B-①BCD=104°, 故选:A. 【点睛】本题主要考查了三角形内角和性质以及角平分线性质的综合运用,熟练掌握相关概念是解题关键. 6.D 【解析】 【分析】作EF BC ⊥于F ,构造Rt CFE △中和Rt BEF △,由已知条件3AB BC ==,可求得①ADB=30°,所以Rt CFE △和Rt BEF △都可解,从而求出BE ,BF 的长,再求出CF 的长,在Rt CFE △中利用勾股定理可求出EC 的长.【详解】作EF ①BC 于F , 四边形ABCD 是矩形,390AD BC AB CD BAD ∴===∠=︒,.AB tan ADB AD ∴∠==30ADB ∴∠=︒,60ABE ∴∠=︒,∴在Rt ABE △中12BE cos ABE AB ∠===,BE ∴=①在Rt BEF △中,BF cos FBE BE ∠== 34BF ∴=,EF ∴==, 39344CF ∴=-=, 在Rt CFE △中,CE = 故选D . 【点睛】本题考查的知识点是矩形的性质,解直角三角形,以及勾股定理的运用,解题关键是运用勾股定理进行解答. 7.C 【解析】 【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【详解】①将直线l 1:y =3x -2平移后,得到直线l 2:y =3x +4,①3(x +a )-2=3x +4,解得:a =2,即将l 1向左平移2个单位长度,得到l 2,①3x -2+b=3x +4,解得:b =6,①将l 1向上平移6个单位长度,得到l 2,故C 正确.故选:C .【点睛】本题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.8.B【解析】【详解】①抛物线开口向下,①a <0,①顶点坐标(1,n ),①对称轴为直线x =1, ①2b a=1,①b =﹣2a >0, ①与y 轴的交点在(0,3),(0,4)之间(包含端点),①3≤c ≤4,①abc <0,故①错误;3a +b =3a +(﹣2a )=a <0,故①正确;①与x 轴交于点A (﹣1,0),①a ﹣b +c =0,①a ﹣(﹣2a )+c =0,①c =﹣3a ,①3≤﹣3a ≤4,①﹣43≤a ≤﹣1,故①正确; ①顶点坐标为(1,n ),①当x =1时,函数有最大值n ,①a+b+c≥am2+bm+c,①a+b≥am2+bm,故①正确;一元二次方程2ax bx c n++=有两个相等的实数根x1=x2=1,故①错误.综上所述,结论正确的是①①①共3个.故选B.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,主要利用了二次函数的开口方向,对称轴,最值问题,以及二次函数图象上点的坐标特征,关键在于根据顶点横坐标表示出a、b的关系.9.22b-.【解析】【详解】解:原式=22b-,故答案为22b-.10.35【解析】【分析】从n边形的一个顶点出发可以引(n-3)条对角线,即可求出十边形的对角线数量.【详解】从10边形的一个顶点出发可以引7条对角线,①十边形的对角线数量为7×10÷2=35.故答案为:35.【点睛】本题考查了多边形的对角线,熟记有关公式是解题的关键,需要注意一条对角线会计算两次需要除以2.11.322π-.【解析】【详解】解:①AD是BC边上的高,①①ADB=①ADC=90°,①①B=30°,①AD =12AB =2cm ,①BD =cm ), ①①C =45°,①①DAC =45°,①AD =CD =2cm ,①BC =()cm ,①S 阴影=12×()×2﹣3012360π⨯﹣454360π⨯=122ππ--=322π-,故答案为(322π-). 【点睛】此题主要考查了扇形的面积计算,以及勾股定理,关键是正确计算出AD 、BD 、CD 长. 12.-6【解析】【分析】根据AB 平行x 轴设出AB 坐标,再表示出S △ABC ,最后列方程计算即可.【详解】①点B 在y =2x上,则设点B (2m ,m ), ①点A 在y =k x上,则点A (k m ,m ), 则AB =2m -k m =2k m -, 则S △ABC =12×AB ×m =12×2k m-•m =4, 解得:k =-6,故答案为:-6.【点睛】 本题考查了反比例函数图象上点的坐标特征.通过设坐标表示出面积是解题的关键.本知识点是中考的重要考点,同学们应高度关注.13.1n -. 【解析】【详解】解:①AnBn+1①x轴,①tan①AnBn+1Bn当x=1时,y x=①点B1的坐标为(1,①A1B1=1A1B21.①1+A1B2①点A2,点B21),①A2B21,A2B343,①点A3的坐标为(43,43),点B3的坐标为(43.同理,可得:点An的坐标为(1n-,1n-).故答案为1n-.【点睛】本题考查了一次函数图象上点的坐标特征、解直角三角形以及规律型,通过解直角三角形找出点A2、A3、…、An的坐标是解题的关键.14.2--【解析】【分析】根据立方根、实数绝对值、零指数幂化简后计算即可【详解】解:原式=-3×2+3- 1=2--【点睛】本题考查了实数的混合运算,解题的关键是先把各式化简再进行运算.也考查了零指数幂、负整数指数幂.15.x≥3【解析】【分析】根据解不等式组的解法步骤解出即可.【详解】212541x x x x -+⎧⎨+<-⎩①② 由①可得x ≥3,由①可得x>2,①不等式的解集为:x ≥3.【点睛】本题考查解不等式组,关键在于熟练掌握解法步骤.16.21(2)a -,1. 【解析】【分析】根据分式的加法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.【详解】解:原式=2(2)(2)(1)(2)4a a a a a a a a +-+-⋅-- =241(2)4a a a -⋅-- =21(2)a -,①a =011(()2π-+=1+2=3, ①当a =3时,原式=21(32)-=1. 【点睛】此题考查了分式的化简求值,零指数幂定义,负指数幂定义,正确掌握分式的混合运算法则及运算顺序是解题的关键.17.见解析【解析】【分析】作ABC ∠的角平分线与AC 交点即为D .【详解】解:如图,作ABC ∠的角平分线与AC 交于点D ,此时36A ABD CBD ∠=∠=∠=︒, 72C BDC ∠=∠=︒①①ABD 和①DBC 都是等腰三角形直线BD 即为所求.【点睛】本题考查尺规作图中的作角平分线,根据等腰三角形的性质推导出作角平分线是解题的关键.18.见解析【解析】【分析】利用平行线的性质可得①C =①D ,然后再利用等式的性质可得CE =DF ,再利用AAS 判定①AEC①①BFD 即可.【详解】证明:AC //BD ,C D ∠∠∴=,CF DE =,CF EF DE EF ∴+=+,即CE DF =,在AEC 和BFD 中A B C D CE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,AEC ∴①()BFD AAS .【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .19.图书批发价为28元,零售价为34元【解析】【分析】设这种图书定价x 元,根据“总利润=批发收入+零售收入-购书总支出”列方程,求解即可.【详解】设这种图书定价x 元,根据题意得:5000.73000.858000.58200x x x ⨯+⨯-⨯=2058200x =40x =.当40x =时,0.728x =,0.8534x =.答:该图书批发价为28元,零售价为34元.【点睛】本题考查了一元一次方程的应用-利润问题.找准相等关系是解答本题的关键.20.(1)从A 盒子中摸出红球的概率为13;(2)摸出的三个球中至少有一个红球的概率是56. 【解析】【分析】(1)从A 盒中摸出红球的结果有一个,由概率公式即可得出结果;(2)画树状图展示所有12种等可能的结果数,摸出的三个球中至少有一个红球的结果有10种,由概率公式即可得出结果.【详解】(1)根据概率公式,从A 盒子中摸出红球的概率为13; (2)列出树状图如图所示:由图可知,共有12种等可能结果,其中至少有一个红球的结果有10种.所以,P (摸出的三个球中至少有一个红球)105126==. 答:摸出的三个球中至少有一个红球的概率是56. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率. 21.这批物资在A 码头装船,最早运抵海岛O .【解析】【分析】延长CA 交OM 于K .先根据方位角、等腰三角形的定义求出OB 的长,再利用直角三角形的性质、线段的和差求出OA 、AB 的长,然后分别求出时间即可判断.【详解】解:如图,延长CA 交O M 于K,由题意得,75,60,45,90COK BOK AOK CKO ∠=︒∠=︒∠=︒∠=︒,9015,9030,C COK KBO BOK OK AK ∴∠=︒-∠=︒∠=︒-∠=︒=.KBO C BOC ∠=∠+∠,即3015BOC ︒=︒+∠,15BOC C ∴∠=∠=︒,50()OB BC km ∴==.在Rt OBK ∆中,125(),)2OK OB km BK km ====,在Rt AOK ∆中,25(),35()AK OK km OA km ====,2517.5()AB BK AK km ∴=-=≈,5017.567.5()AC BC AB km =+≈+=. 则若在A 码头装船,所需时间为67.535 2.75()50255025AC OA h +=+=, 若在B 码头装船,所需时间为50503()50255025BC OB h +=+=, 因2.753h h <, 故这批物资在A 码头装船,能最早运抵海岛O .【点睛】本题考查了解直角三角形的应用、勾股定理、速度、时间、路程之间的关系等知识点,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.22.(1)50人,画图见解析(2)2.6元(3)104000元【解析】【分析】对于(1),根据购买瓶装矿泉水的人数和所占百分比求出总数,再用总数分别减去三类的人数,可求出C类的人数,最后补充统计图即可;对于(2),根据总钱数÷总人数可得人均花费;对于(3),根据(2)中样本的人均花费估算4万人的花费即可.(1)①抽查的总人数为:20÷40%=50人,①C类人数=50﹣20﹣5﹣15=10人,补全条形统计图如下:(2)该班同学用于饮品上的人均花费=(5×0+20×2+3×10+4×15)÷50=2.6元;(3)我市初中生每天用于饮品上的花费=40000×2.6=104000元.【点睛】本题主要考查了应用统计图解决问题,掌握样本估计总体的思想是解题的关键. 23.(1)y 2=−100x +4500;(2)1500米.【解析】【分析】(1)设爸爸返回的解析式为y 2=kx+b ,把(15,3000)(45,0)代入进一步求解即可; (2)求出线段OB 的解析式,根据题意列方程解答即可.【详解】(1)设爸爸返回的解析式为y 2=kx+b ,把(15,3000)(45,0)代入得:15k b 3000+=……①,45k b 0+=……①,结合①①解得:k 100=,b 4500=,①y 2=−100x+4500,即爸爸返问时离家的路程y 2(米)与运动时间x (分)之间的函数关系式为:y 2=−100x+4500;(2)设线段OB 表示的函数关系式为y 1=k′x ,把(15,3000)代入得k′=200, ①线段OB 表示的函数关系式为y 1=200x ,当x =20时,y 1−y 2=200x −(−100x +4500)=300x −4500=300×20−4500=1500, ①张琪开始返回时与爸爸相距1500米.【点睛】本题主要考查了一次函数的实际应用,熟练掌握相关方法是解题关键.24.(1)证明见解析(2)83【解析】【分析】(1)连接圆心和切点,利用平行,DE ①AB 可证得①ODF =90°;(2)过D 作DH ①BC 于H ,设BD =k ,CD =2k ,求得BD 、CD 的长,根据三角形的面积公式得到DH 的长,由勾股定理得到OH 的长,根据射影定理得到OD 2=OH •OE ,求得OE 的长,从而得到BE 的长,根据相似三角形的性质得到BF =2,根据勾股定理即可得到结论.【详解】解:(1)证明:如图,连接OD,BD,①AB是①O的直径,①①ADB=①90°,①BD①AC.①AB=BC,①AD=DC.①OA=OB,①OD①BA,①DE①BA,①DE①OD,①直线DE是①O的切线.(2)过D作DH①BC于H①①O的半径R=5,tanC=12,①BC=10,设BD=k,CD=2k,①BC=10,①k①BD CD①DH=CD BDBC⋅=4,①OH,①DE①OD,DH①OE,①OD2=OH•OE,①OE=253,①BE=103,①DE①AB,①BF①OD,①①BFE①①ODE,①BF BE OD OE=, 即1032553BF =, ①BF =2,①EF=83.【点睛】本题考查了直线与圆的位置关系,等腰直角三角形的性质以及解直角三角形.当题中已有垂直时,证直线为圆的切线,通常选用平行来进行证明;而求相关角的余弦值,应根据所给条件进行适当转移,注意利用直角三角形面积的不同方式求解.25.(1)213222y x x =--;(2)PE =5或1,P (1,﹣3)或(5,3);(3)E 的对称点坐标为(1.8,-3.6)或(3.6,﹣1.2).【解析】【分析】(1)把B (3,﹣2),C (﹣1,0)代入212y x bx c =++即可得到结论; (2)由213222y x x =--求得D (0,﹣2),根据等腰直角三角形的性质得到DE =PE ,列方程即可得到结论;(3)①当P 点在直线BD 的上方时,如图1,设点E 关于直线AB 的对称点为E ′,过E ′作E ′H ①DE 于H ,求得直线EE ′的解析式为1922y x =-,设E ′(m ,1922m -),根据勾股定理即可得到结论;①当P 点在直线BD 的下方时,如图2,设点E 关于直线AB 的对称点为E ′,过E ′作E ′H ①DE 于H ,得到直线EE ′的解析式为132y x =-,设E ′(m ,132m -),根据勾股定理即可得到结论.【详解】解:(1)把B (3,﹣2),C (﹣1,0)代入212y x bx c =++得: 19322102b c b c ⎧⨯++=-⎪⎪⎨⎪-+=⎪⎩,①322b c ⎧=-⎪⎨⎪=-⎩, ①抛物线的解析式为213222y x x =--; (2)设P (m ,213222m m --), 在213222y x x =--中,当x =0时,y =﹣2,①D (0,﹣2), ①B (3,﹣2),①BD ①x 轴,①PE ①BD ,①E (m ,﹣2),①DE =m ,PE =2132222m m --+,或PE =2132222m m --++, ①①PDE 为等腰直角三角形,且①PED =90°,①DE =PE ,①m =21322m m -,或m =21322m m -+, 解得:m =5,m =1,m =0(不合题意,舍去),①PE =5或2,P (1,﹣3)或(5,3);(3)①当P 点在直线BD 的上方时,如图1,设点E 关于直线AB 的对称点为E ′,过E ′作E ′H ①DE 于H ,由(2)知,此时,E (5,﹣2),①DE =5,①BE ′=BE =2,①EE ′①AB ,①设直线EE ′的解析式为12y x b =+ ,①﹣2=12×5+b ,①b =﹣92,①直线EE ′的解析式为1922y x =-, 设E ′(m ,1922m -), ①E ′H =﹣2﹣1922m +=5122m -,BH =3﹣m , ①E ′H 2+BH 2=BE ′2,①(5122m -)2+(3﹣m )2=4, ①m =1.8,m =5(舍去),①E ′(1.8,-3.6);①当P 点在直线BD 的下方时,如图2,设点E 关于直线AB 的对称点为E ′,过E ′作E ′H ①DE 于H ,由(2)知,此时,E (2,﹣2),①DE =2,①BE ′=BE =1,①EE ′①AB ,①设直线EE ′的解析式为12y x b =+,①﹣2=12×2+b , ①b =﹣3,①直线EE ′的解析式为132y x =-,设E ′(m ,132m -), ①EH =1322m -+=112m -,BH=m -3, ①E ′H 2+BH 2=BE ′2,①(112m -)2+(m ﹣3)2=1, ①m =3.6,m =2(舍去),①E ′(3.6,﹣1.2).综上所述,E 的对称点坐标为(1.8,-3.6)或(3.6,﹣1.2).【点睛】本题考查了待定系数法求二次函数解析式,等腰直角三角形的性质,勾股定理,折叠的性质,正确的作出辅助线是解题的关键.26.(1)12m ; (2)画图见解析,y =-x +4;(3)存在,画图、作法及理由见解析【解析】【分析】(1)利用三角形中线把三角形面积等分,得到12OFC OBC S S = , 12OGC ODC S S =,12OAH OAD S S =,12OAE OAB S S =,求出阴影部分面积和四边形ABCD 面积之间关系; (2)首先根据(1)的思路得到DQ ,然后利用待定系数法求解;(3)取CD 的中点M ,连接AM 并延长交BC 的延长线于点N ,取BN 的中点E ,则过点A ,E 的直线将四边形ABCD 的面积平分,然后进行说明.【详解】(1)连接AO ,BO 、CO 、DO ①BF =CF ,①12OFC OBC S S = , 同理:12OGC ODC SS =,12OAH OAD S S =,12OAE OAB S S =, ①S 阴影=11112222OFC OGC OAH OAE OBC ODC OAD OAB SS S S S S S S +++=+++ =()12OBC OBA ODC OAD S S S S +++=12S 四边形ABCD =12m(2) 解:如答图,取CD ,AB 的中点M ,N ,连接MN ,过点D 与MN 的中点P 作直线DP 交AB 于点Q ,则直线DQ 平分梯形ABCD 的面积.①N (2,0),M (2,4),D (0,4),①P (2,2).设直线DQ 的表达式为y =kx +b ,将点D (0,4),P (2,2)代入y =kx +b 得,224k b b =+⎧⎨=⎩, 解得14k b =-⎧⎨=⎩. ①直线DQ 的表达式为y =-x +4.(3)解:如图,取CD 的中点M ,连接AM 并延长交BC 的延长线于点N ,取BN 的中点E ,则过点A ,E 的直线将四边形ABCD 的面积平分.理由:①AD ①BC ,①①DAM =①N ,在①ADM 和①NCM 中,DAM N AMD CM DM CM ∠=∠⎧⎪∠=∠⎨⎪=⎩①①ADM ①①CNM (AAS ),①S 四边形ABCD =S △ABN ,①E 是BN 的中点,①S △ABE =S △AEN ,①S 四边形AECD =S △ABE .【点睛】本题考查平分四边形面积的作法,解决问题的关键是利用中点的性质进行求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考冲刺数学模拟试卷(二)一、选择题(每小题3分,共24分)1.下来各数中,比﹣1小的数是( )A.0 B.1 C.﹣1 D.﹣2.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是( )A.155°B.145°C.110°D.35°3.2014年12月12日南水北调中线工程正式通水,每年可向北方输送95亿立方米的水量,95亿用科学记数法表示为( )A.9.5×107B.9.5×108C.9.5×109D.9.5×10104.解分式方程+=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)5.若某几何体的三视图如图,则这个几何体是( )A.B.C. D.6.下列数据是某班六位同学定点投篮(每人投10个)的情况,投进篮筐的个数为6,9,8,4,0,3,这组数据的平均数、中位数和极差分别是( )A.6,6,9 B.6,5,9 C.5,6,6 D.5,5,97.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为( )A.40°B.45°C.50°D.55°8.如图所示,在平面直角坐标系中,直线OM是正比例函数y=﹣x的图象,点A的坐标为(1,0),在直线OM上找点N,使△ONA是等腰三角形,符合条件的点N的个数是( )A.2个B.3个C.4个D.5个二、填空题(每小题3分,共21分)9.﹣4的绝对值是__________.10.计算:(﹣a3)2•a4=__________.11.从1,2,3,4中任取两个不同的数,其乘积大于4的概率是__________.12.写出一个开口向下,对称轴是直线x=1的抛物线解析式__________.13.不等式组的最小整数解是__________.14.如图,正方形ABCD的边长为1,分别以A、D为圆心,1为半径画弧BD、AC,则图中阴影部分的面积__________.15.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是__________.三、解答题(本大题8个小题,共75分)16.先化简,再求值:(﹣)•(﹣),其中x=2+,y=2﹣.17.如图,△ABC中AB=AC,点D从点B出发沿射线BA移动,同时,点E从点C出发沿线段AC的延长线移动,已点知D、E移动的速度相同,DE与直线BC相交于点F.(1)如图1,当点D在线段AB上时,过点D作AC的平行线交BC于点G,连接CD、GE,判定四边形CDGE的形状,并证明你的结论;(2)过点D作直线BC的垂线垂足为M,当点D、E在移动的过程中,线段BM、MF、CF 有何数量关系?请直接写出你的结论.18.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.19.周末,甲从家出发前往与家相距100千米的旅游景点旅游,以10千米/时的速度步行1小时后,改骑自行车以30千米/时的速度继续向目的地出发,乙在甲前面40千米处,在甲出发3小时后开车追赶甲,两人同时到达目的地.设甲、乙两人离甲家的距离y(千米)与甲出发的时间x(小时)之间的函数关系如图所示.(1)求乙的速度;(2)求甲出发多长时间后两人第一次相遇;(3)求甲出发几小时后两人相距12千米.20.某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:课题测量教学楼高度方案一图示测得数据CD=6.9m,∠ACG=22°,∠BCG=13°,参考数据sin22°≈0.37,cos22°≈0.93,tan22°≈0.40sin13°≈0.22,cos13°≈0.97tan13°≈0.23请你选择其中的一种方法,求教学楼的高度(结果保留整数)21.如图,直线y=kx+b与坐标轴分别交于点E、F,与双曲线y=﹣(x<0)交于点P(﹣1,4),且F是PE的中点.(1)求双曲线y=﹣和直线y=kx+b的解析式;(2)若平行于y轴的直线x=a与直线y=kx+b交于点A,与双曲线交于点B(A与B不重合),问a为何值时,PA=BA?22.如图,正方形ABCD的边长为6,点E是射线BC上的一个动点,连接AE并延长,交射线DC于点F,将△ABE沿直线AE翻折,点B坐在点B′处.自主探究:(1)当=1时,如图1,延长AB′,交CD于点M.①CF的长为__________;②判断AM与FM的数量关系,并证明你的结论.(2)当点B′恰好落在对角线AC上时,如图2,此时CF的长为__________,=__________.拓展运用:(3)当=2时,求sin∠DAB′的值.23.如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B 在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.(1)求抛物线的解析式;=2S△BPD;(2)当m为何值时,S四边形OBDC(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.2015年河南省中招权威预测数学模拟试卷(四)一、选择题(每小题3分,共24分)1.下来各数中,比﹣1小的数是( )A.0 B.1 C.﹣1 D.﹣【考点】实数大小比较.【分析】先比较每个数和﹣1的大小,即可得出选项.【解答】解:∵0>﹣1,1>﹣1,﹣1=﹣1,﹣<﹣1,∴比﹣1小的数是﹣,故选D.【点评】本题考查了实数的大小比较的应用,能熟记实数的大小比较法则是解此题的关键.2.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是( )A.155°B.145°C.110°D.35°【考点】平行线的性质.【专题】计算题.【分析】首先,由平行线的性质得到∠BAC=∠ECF=70°;然后利用邻补角的定义、角平分线的定义来求∠FAG的度数.【解答】解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.故选:B.【点评】本题考查了平行线的性质.根据“两直线平行,内错角相等”求得∠BAC的度数是解题的难点.3.2014年12月12日南水北调中线工程正式通水,每年可向北方输送95亿立方米的水量,95亿用科学记数法表示为( )A.9.5×107B.9.5×108C.9.5×109D.9.5×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将95亿用科学记数法表示为9.5×109.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.解分式方程+=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)【考点】解分式方程.【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选D.【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.5.若某几何体的三视图如图,则这个几何体是( )A.B.C. D.【考点】由三视图判断几何体.【分析】如图:该几何体的正视图与俯视图均为矩形,侧视图为三角形和一个矩形,易得出该几何体的形状.【解答】解:该几何体的正视图为矩形,俯视图亦为矩形,侧视图是一个三角形和一个矩形,故选:C.【点评】本题是个简单题,主要考查的是三视图的相关知识.6.下列数据是某班六位同学定点投篮(每人投10个)的情况,投进篮筐的个数为6,9,8,4,0,3,这组数据的平均数、中位数和极差分别是( )A.6,6,9 B.6,5,9 C.5,6,6 D.5,5,9【考点】中位数;算术平均数;众数;方差.【专题】计算题.【分析】根据平均数、众数与方差的定义分别求出即可解答.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.极差就是这组数中最大值与最小值的差.【解答】解:平均数为(6+9+8+4+0+3)÷6=5,排列为9,8,6,4,3,0中位数为(6+4)÷2=5,极差为9﹣0=9.故选D.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为( )A.40°B.45°C.50°D.55°【考点】圆周角定理;平行线的性质.【分析】连接OC,由AO∥DC,得出∠ODC=∠AOD=70°,再由OD=OC,得出∠ODC=∠OCD=70°,求得∠COD=40°,进一步得出∠AOC,进一步利用圆周角定理得出∠B 的度数即可.【解答】解:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选:D.【点评】此题考查平行线的性质,等腰三角形的性质,三角形的内角和,圆周角定理,正确作出辅助线是解决问题的关键.8.如图所示,在平面直角坐标系中,直线OM是正比例函数y=﹣x的图象,点A的坐标为(1,0),在直线OM上找点N,使△ONA是等腰三角形,符合条件的点N的个数是( )A.2个B.3个C.4个D.5个【考点】一次函数综合题.【专题】压轴题.【分析】本题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,AN=OA=1,共有2个,AO=ON=1时,有一个点,若OA是底边时,N是OA的中垂线与x轴的交点,有1个,再利用直线OM是正比例函数y=﹣x的图象,得出∠AON2=60°,即可得出答案.【解答】解:∵直线OM是正比例函数y=﹣x的图象,∴图形经过(1,﹣),∴tan∠AON2=.∴∠AON2=60°,若AO作为腰时,有两种情况,当A是顶角顶点时,N是以A为圆心,以OA为半径的圆与OM的交点,共有1个,当O是顶角顶点时,N是以O为圆心,以OA为半径的圆与MO的交点,有2个;此时2个点重合,若OA是底边时,N是OA的中垂线与直线MO的交点有1个.以上4个交点有2个点重合.故符合条件的点有2个.故选:A.【点评】此题考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.二、填空题(每小题3分,共21分)9.﹣4的绝对值是4.【考点】绝对值.【专题】计算题.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣4|=4.故答案为:4.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.计算:(﹣a3)2•a4=a10.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据积的乘方、同底数幂的乘法,即可解答.【解答】解:(﹣a3)2•a4=a6•a4=a10,故答案为:a10.【点评】本题考查了积的乘方、同底数幂的乘法,解决本题的关键是熟记相关法则.11.从1,2,3,4中任取两个不同的数,其乘积大于4的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其乘积大于4的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,任取两个不同的数,其乘积大于4的有6种情况,∴从1、2、3、4中任取两个不同的数,其乘积大于4的概率是:=.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.12.写出一个开口向下,对称轴是直线x=1的抛物线解析式y=﹣(x﹣1)2(答案不唯一).【考点】二次函数的性质.【专题】开放型.【分析】开口向下,二次项系数为负,对称轴为直线x=1,可根据顶点式写出满足条件的函数解析式.【解答】解:依题意可知,抛物线解析式中二次项系数为负,已知对称轴为直线x=1, 根据顶点式,得抛物线解析式为y=﹣(x ﹣1)2.本题答案不唯一, 故答案为:y=﹣(x ﹣1)2(答案不唯一).【点评】主要考查了抛物线的对称轴、开口方向与抛物线顶点式的关系:顶点式y=a (x ﹣h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .a >0时,开口向上,a <0时,开口向下.13.不等式组的最小整数解是3.【考点】一元一次不等式组的整数解.【分析】首先分别解出两个不等式,再根据大小小大中间找确定不等式组的解集,再找出符合条件的整数解即可. 【解答】解:,由①得:x ≥1, 由②得:x >2,不等式组的解集为:x >2, 不等式组的最小整数解为3. 故答案为3.【点评】此题主要考查了一元一次不等式组的解法,关键是熟练掌握确定不等式组解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.如图,正方形ABCD 的边长为1,分别以A 、D 为圆心,1为半径画弧BD 、AC ,则图中阴影部分的面积﹣.【考点】扇形面积的计算.【分析】过点F 作FE ⊥AD 于点E ,则AE=AD=AF ,故∠AFE=∠BAF=30°,再根据勾股定理求出EF 的长,由S 弓形AF =S 扇形ADF ﹣S △ADF 可得出其面积,再根据S 阴影=2(S 扇形BAF ﹣S 弓形AF )即可得出结论.【解答】解:如图所示,过点F 作FE ⊥AD 于点E , ∵正方形ABCD 的边长为1, ∴AE=AD=AF=1, ∴∠AFE=∠BAF=30°, ∴EF=.∴S 弓形AF =S 扇形ADF ﹣S △ADF =﹣×1×=﹣,∴S 阴影=2(S 扇形BAF ﹣S 弓形AF )=2(﹣+)=2(﹣+)=﹣.故答案为:﹣.【点评】本题考查了扇形的面积公式和长方形性质的应用,关键是根据用图形的对称性分析,主要考查学生的计算能力.15.如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是﹣1.【考点】菱形的性质;翻折变换(折叠问题).【分析】根据题意,在N 的运动过程中A ′在以M 为圆心、AD 为直径的圆上的弧AD 上运动,当A ′C 取最小值时,由两点之间线段最短知此时M 、A ′、C 三点共线,得出A ′的位置,进而利用锐角三角函数关系求出A ′C 的长即可.【解答】解:如图所示:∵MA ′是定值,A ′C 长度取最小值时,即A ′在MC 上时, 过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60°,M 为AD 中点, ∴2MD=AD=CD=2,∠FDM=60°, ∴∠FMD=30°,∴FD=MD=, ∴FM=DM ×cos30°=, ∴MC==, ∴A ′C=MC ﹣MA ′=﹣1.故答案为:﹣1.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.三、解答题(本大题8个小题,共75分)16.先化简,再求值:(﹣)•(﹣),其中x=2+,y=2﹣.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x、y的值代入进行计算即可.【解答】解:原式=•=•=﹣.当x=2+,y=2﹣时,原式=﹣=﹣4.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.如图,△ABC中AB=AC,点D从点B出发沿射线BA移动,同时,点E从点C出发沿线段AC的延长线移动,已点知D、E移动的速度相同,DE与直线BC相交于点F.(1)如图1,当点D在线段AB上时,过点D作AC的平行线交BC于点G,连接CD、GE,判定四边形CDGE的形状,并证明你的结论;(2)过点D作直线BC的垂线垂足为M,当点D、E在移动的过程中,线段BM、MF、CF 有何数量关系?请直接写出你的结论.【考点】平行四边形的判定与性质;等腰三角形的性质.【分析】(1)由题意得出BD=CE,由平行线的性质得出∠DGB=∠ACB,由等腰三角形的性质得出∠B=∠ACB,得出∠B=∠DGB,证出BD=GD=CE,即可得出结论;(2)由(1)得:BD=GD=CE,由等腰三角形的三线合一性质得出BM=GM,由平行线得出GF=CF,即可得出结论.【解答】解:(1)四边形CDGE是平行四边.理由如下:如图1所示:∵D、E移动的速度相同,∴BD=CE,∵DG∥AE,∴∠DGB=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠DGB,∴BD=GD=CE,又∵DG∥CE,∴四边形CDGE是平行四边形;(2)BM+CF=MF;理由如下:如图2所示:由(1)得:BD=GD=CE,∵DM⊥BC,∴BM=GM,∵DG∥AE,∴GF=CF,∴BM+CF=GM+GF=MF.【点评】本题考查了等腰三角形的判定与性质、平行四边形的判定与性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.18.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.【考点】频数(率)分布直方图;频数(率)分布表;列表法与树状图法.【专题】图表型.【分析】(1)用总人数减去第1、2、3、5组的人数,即可求出a的值;(2)根据(1)得出的a的值,补全统计图;(3)用成绩不低于40分的频数乘以总数,即可得出本次测试的优秀率;(4)用A表示小宇,B表示小强,C、D表示其他两名同学,画出树状图,再根据概率公式列式计算即可.【解答】解:(1)表中a的值是:a=50﹣4﹣8﹣16﹣10=12;(2)根据题意画图如下:(3)本次测试的优秀率是=0.44.答:本次测试的优秀率是0.44;(4)用A表示小宇,B表示小强,C、D表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有2种,则小宇与小强两名男同学分在同一组的概率是.【点评】本题考查了频数分布直方图和概率,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,概率=所求情况数与总情况数之比.19.周末,甲从家出发前往与家相距100千米的旅游景点旅游,以10千米/时的速度步行1小时后,改骑自行车以30千米/时的速度继续向目的地出发,乙在甲前面40千米处,在甲出发3小时后开车追赶甲,两人同时到达目的地.设甲、乙两人离甲家的距离y(千米)与甲出发的时间x(小时)之间的函数关系如图所示.(1)求乙的速度;(2)求甲出发多长时间后两人第一次相遇;(3)求甲出发几小时后两人相距12千米.【考点】一次函数的应用.【分析】(1)先求出甲走完全程的时间就可以求出乙行驶的时间,由速度=路程÷时间就可以得出结论;(2)设直线AB的解析式为y=kx+b,由待定系数法求出解析式,当y=40时,代入解析式求出其值即可;(3)分类讨论由(2)的解析式,当y﹣40=12或40﹣y=12建立方程求出其解即可【解答】解:(1)甲行驶完全程的时间为:1+(100﹣10)÷30=4小时.乙的速度为:60÷(4﹣3)=60千米/时.答:乙的速度为60千米/时;(2)设直线AB的解析式为y=kx+b,由题意,得,解得:,y=30x﹣20.当y=40时,40=30x﹣20,x=2.答:甲出发2小时后两人第一次相遇;(3)当乙不动时,当40﹣(30x﹣20)=12时,解得:x=1.6.当30x﹣20﹣40=12时解得:x=2.4.当甲乙均在运动时,设运动的时间为t,则10×1+30(t﹣1)﹣60(t﹣3)﹣40=12(60为乙的速度),解的t=3.6(3.6<4).答:甲出发1.6小时或2.4小时或3,6小时后两人相距12千米.【点评】本题考查了行程问题的数量关系路程÷速度=时间的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出函数的解析式是关键.20.某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:课题测量教学楼高度方案一图示测得数据CD=6.9m,∠ACG=22°,∠BCG=13°,参考数据sin22°≈0.37,cos22°≈0.93,tan22°≈0.40sin13°≈0.22,cos13°≈0.97 tan13°≈0.23请你选择其中的一种方法,求教学楼的高度(结果保留整数)【考点】解直角三角形的应用.【分析】若选择方法一,在Rt△BGC中,根据CG=即可得出CG的长,同理,在Rt△ACG中,根据tan∠ACG=可得出AG的长,根据AB=AG+BG即可得出结论.若选择方法二,在Rt△AFB中由tan∠AFB=可得出FB的长,同理,在Rt△ABE中,由tan∠AEB=可求出EB的长,由EF=EB﹣FB且EF=10,可知﹣=10,故可得出AB的长.【解答】解:若选择方法一,解法如下:在Rt△BGC中,∠BGC=90°,∠BCG=13°,BG=CD=6.9,∵CG=≈=30,在Rt△ACG中,∠AGC=90°,∠ACG=22°,∵tan∠ACG=,∴AG=30×tan22°≈30×0.40=12,∴AB=AG+BG=12+6.9≈19(米).答:教学楼的高度约19米.若选择方法二,解法如下:在Rt△AFB中,∠ABF=90°,∠AFB=43°,∵tan∠AFB=,∴FB=≈,在Rt△ABE中,∠ABE=90°,∠AEB=32°,∵tan∠AEB=,∴EB=≈,∵EF=EB﹣FB且EF=10,∴﹣=10,解得AB=18.6≈19(米).答:教学楼的高度约19米.【点评】本题考查的是解直角三角形的应用,熟知锐角三角函数的定义是解答此题的关键.21.如图,直线y=kx+b与坐标轴分别交于点E、F,与双曲线y=﹣(x<0)交于点P(﹣1,4),且F是PE的中点.(1)求双曲线y=﹣和直线y=kx+b的解析式;(2)若平行于y轴的直线x=a与直线y=kx+b交于点A,与双曲线交于点B(A与B不重合),问a为何值时,PA=BA?【考点】反比例函数与一次函数的交点问题.【分析】(1)把P代入y=﹣(x<0),根据待定系数法即可求得双曲线的解析式,再根据F为PE中点,求出F的坐标,把P,F的坐标代入求出直线l的解析式;(2)过P作PD⊥AB,垂足为点D,由A点的纵坐标为﹣2a+2,B点的纵坐标为﹣,D 点的纵坐标为4,列出方程求解即可.【解答】解:(1)∵y=﹣(x<0)经过点P(﹣1,4),∴4=﹣∴m=1×4=4,∴双曲线为y=﹣,∵F是PE的中点,∴OF=×4=2,∴F(0,2),∴,解得,∴直线l的解析式为y=﹣2x+2;(2)如图,过P作PD⊥AB,垂足为点D,∵PA=PB,∴点D为AB的中点,又∵由题意知A点的纵坐标为﹣2a+2,B点的纵坐标为﹣,D点的纵坐标为4,∴得方程﹣2a+2﹣(﹣)=2×4,解得a1=﹣2,a2=﹣1(舍去).∴当a=﹣2时,PA=PB.【点评】本题主要考查了反比例函数与一次函数的交点,解题的重点是求出双曲线和直线l 的解析式.22.如图,正方形ABCD的边长为6,点E是射线BC上的一个动点,连接AE并延长,交射线DC于点F,将△ABE沿直线AE翻折,点B坐在点B′处.自主探究:(1)当=1时,如图1,延长AB′,交CD于点M.①CF的长为6;②判断AM与FM的数量关系,并证明你的结论.(2)当点B′恰好落在对角线AC上时,如图2,此时CF的长为6,=.拓展运用:(3)当=2时,求sin∠DAB′的值.【考点】几何变换综合题.【分析】(1)①利用相似三角形的判定与性质得出FC=AB即可得出答案;②利用翻折变换的性质得出∠BAF=∠MAF,进而得出AM=FM;(2)根据翻折变换的性质得出∠BAE=∠MAF,进而得出AM=MF,利用△ABE∽FCE得出答案即可;(3)根据①如图1,当点E在线段BC上时,延长AB′交DC边于点M,②如图3,当点E在线段BC的延长线上时,延长AD交B′E于点N,分别利用勾股定理求出即可.【解答】解:(1)①当=1时,∵AB∥FC,∴△ABE∽FCE,∴==1,∴FC=AB=6,②AM=FM,理由如下:∵四边形ABCD是正方形,∴AB∥DC,∴∠BAF=∠AFC,∵△ABE沿直线AE翻折得到△AB′E,∴∠BAF=∠MAF,∴∠MAF=∠AFC,∴AM=FM;(2)如图2,∵当点B′恰好落在对角线AC上时,∴∠1=∠2,∵AB∥FC,∴∠1=∠F,∴∠2=∠F,∴AC=FC,∵AB=BC=6,∴AC=FC=6,∵AB∥FC,∴△ABE∽FCE,∴===,(3)①如图1,当点E在线段BC上时,延长AB′交DC边于点M,∵AB∥CF,∴△ABE∽△FCE,∴==2,∵AB=6,∴CF=3,∴DF=CD+CF=9,由(1)知:AM=FM,∴AM=FM=9﹣DM,在Rt△ADM中,由勾股定理得:DM′2=(9﹣DM)2﹣62,解得:DM=,则MA=,∴sin∠DAB′==,②如图3,当点E在线段BC的延长线上时,延长AD交B′E于点N,由(1)知:AN=EN,又BE=B′E=12,∴NA=NE=12﹣B′N,在Rt△AB′N中,由勾股定理得:B′N2=(12﹣B′N)2﹣62,解得:B′N=,AN=,∴sin∠DAB′==.故答案为:6;6,.【点评】此题主要考查了翻折变换的性质以及相似三角形的判定与性质和勾股定理等知识,熟练利用相关性质和进行分类讨论得出是解题关键.23.如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B 在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.(1)求抛物线的解析式;=2S△BPD;(2)当m为何值时,S四边形OBDC(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)将x=0代入y=x﹣1求出B的坐标,将x=﹣3代入y=x﹣1求出A的坐标,由待定系数法就可以求出抛物线的解析式;和(2)连结OP,由P点的横坐标为m可以表示出P、D的坐标,由此表示出S四边形OBDC2S△BPD建立方程求出其解即可.(3)如图2,当∠APD=90°时,设出P点的坐标,就可以表示出D的坐标,由△APD∽△FCD 列出比例式求解即可;如图3,当∠PAD=90°时,作AE⊥x轴于E,根据比例式表示出AD,再由△PAD∽△FEA列出比例式求解.【解答】解:(1)∵y=x﹣1,当x=0时,y=﹣1,∴B(0,﹣1).当x=﹣3时,y=﹣4,∴A(﹣3,﹣4).∵y=x2+bx+c与直线y=x﹣1交于A、B两点,∴,∴,∴抛物线的解析式为:y=x2+4x﹣1;(2)∵P点横坐标是m(m<0),∴P(m,m2+4m﹣1),D(m,m﹣1)如图1①,作BE⊥PC于E,∴BE=﹣m.CD=1﹣m,OB=1,OC=﹣m,CP=1﹣4m﹣m2,∴PD=1﹣4m﹣m2﹣1+m=﹣3m﹣m2,∴,解得:m1=0(舍去),m2=﹣2,m3=﹣;如图1②,作BE⊥PC于E,∴BE=﹣m.PD=m2+4m﹣1+1﹣m=3m+m2,∴=2×,解得:m=0(舍去)或m=(舍去)或m=,=2S△BPD;∴m=﹣,﹣2或时,S四边形OBDC(3)如图2,当∠APD=90°时,设P(m,m2+4m﹣1),则D(m,m﹣1),∴AP=m+3,CD=1﹣m,OC=﹣m,CP=1﹣4m﹣m2,∴DP=1﹣4m﹣m2﹣1+m=﹣3m﹣m2.在y=x﹣1中,当y=0时,x=1,∴F(1,0),∴OF=1,∴CF=1﹣m.AF=4.∵PC⊥x轴,∴∠PCF=90°,∴∠PCF=∠APD,∴CF∥AP,∴△APD∽△FCD,,∴,解得:m=﹣1或m=﹣3(舍去),∴P(﹣1,﹣4)如图3,当∠PAD=90°时,作AE⊥x轴于E,∴∠AEF=90°,CE=m+3,EF=4,AF=4,PD=m﹣1﹣(﹣1+4m+m2)=﹣3m﹣m2.∵PC⊥x轴,∴∠DCF=90°,∴∠DCF=∠AEF,∴AE∥CD.∴,∴AD=(3+m).∵△PAD∽△FEA,∴,∴,∴m=﹣2或m=﹣3(舍去)∴P(﹣2,﹣5).当∠APD=90°时∴点A与点P关于对称轴对称∵A(﹣3,﹣4)∴P(﹣1,﹣4)综上,存在点P(﹣2,﹣5)或P(﹣1,﹣4)使△PAD是直角三角形.【点评】本题考查了待定系数法求二次函数的解析式的运用,四边形的面积公式的运用,三角形的面积公式的运用,相似三角形的判定及性质的运用,解答时函数的解析式是关键,用相似三角形的性质求解是难点.。