哈工大选修课 LINEAR ALGEBRA 试卷及答案
(完整版)哈工大选修课LINEARALGEBRA试卷及答案,推荐文档

LINEAR ALGEBRAANDITS APPLICATIONS 姓名:易学号:成绩:1. Definitions(1) Pivot position in a matrix;(2) Echelon Form;(3) Elementary operations;(4) Onto mapping and one-to-one mapping;(5) Linearly independence.2. Describe the row reduction algorithm which produces a matrix in reduced echelon form.3. Find the matrix that corresponds to the composite transformation of a scaling by 0.3, 33⨯a rotation of , and finally a translation that adds (-0.5, 2) to each point of a figure.90︒4. Find a basis for the null space of the matrix 361171223124584A ---⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦5. Find a basis for Col of the matrixA 1332-9-2-22-822307134-111-8A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦6. Let and be positive numbers. Find the area of the region bounded by the ellipse a b whose equation is22221x y a b +=7. Provide twenty statements for the invertible matrix theorem.8. Show and prove the Gram-Schmidt process.9. Show and prove the diagonalization theorem.10. Prove that the eigenvectors corresponding to distinct eigenvalues are linearly independent.Answers:1. Definitions(1) Pivot position in a matrix:A pivot position in a matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form of A. A pivot column is a column of A that contains a pivot position.(2) Echelon Form:A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties:1. All nonzero rows are above any rows of all zeros.2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.3. All entries in a column below a leading entry are zeros.If a matrix in a echelon form satisfies the following additional conditions, then it is in reduced echelon form (or reduced row echelon form):4. The leading entry in each nonzero row is 1.5. Each leading 1 is the only nonzero entry in its column.(3) Elementary operations:Elementary operations can refer to elementary row operations or elementary column operations.There are three types of elementary matrices, which correspond to three types of row operations (respectively, column operations):1. (Replacement) Replace one row by the sum of itself anda multiple of another row.2. (Interchange) Interchange two rows.3. (scaling) Multiply all entries in a row by a nonzero constant.(4) Onto mapping and one-to-one mapping:A mapping T : R n → R m is said to be onto R m if each b in R m is the image of at least one x in R n.A mapping T : R n → R m is said to be one-to-one if each b in R m is the image of at most one x in R n.(5) Linearly independence:An indexed set of vectors {V1, . . . ,V p} in R n is said to be linearly independent if the vector equationx 1v 1+x 2v 2+ . . . +x p v p = 0Has only the trivial solution. The set {V 1, . . . ,V p } is said to be linearly dependent if there exist weights c 1, . . . ,c p , not all zero, such thatc 1v 1+c 2v 2+ . . . +c p v p = 02. Describe the row reduction algorithm which produces a matrix in reduced echelon form.Solution:Step 1:Begin with the leftmost nonzero column. This is a pivot column. The pivot position is at the top.Step 2:Select a nonzero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry into the pivot position.Step 3:Use row replacement operations to create zeros in all positions below the pivot.Step 4:Cover (or ignore) the row containing the pivot position and cover all rows, if any, above it. Apply steps 1-3 to the submatrix that remains. Repeat the process until there all no more nonzero rows to modify.Step 5:Beginning with the rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot is not 1, make it 1 by scaling operation.3. Find the matrix that corresponds to the composite transformation of a scaling by 0.3, 33⨯a rotation of , and finally a translation that adds (-0.5, 2) to each point of a figure.90︒Solution:If ψ=π/2, then sin ψ=1 and cos ψ=0. Then we have⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110003.00003.01y x y x scale ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−→−110003.00003.010*******y x Rotate⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−−→−110003.00003.0100001010125.0010001y x Translate The matrix for the composite transformation is⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10003.00003.0100001010125.0010001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=10003.00003.0125.0001010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=125.0003.003.004. Find a basis for the null space of the matrix361171223124584A ---⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦Solution:First, write the solution of A X=0 in parametric vector form:A ~ , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---000023021010002001x 1-2x 2 -x 4+3x 5=0x 3+2x 4-2x 5=00=0The general solution is x 1=2x 2+x 4-3x 5, x 3=-2x 4+2x 5, with x 2, x 4, and x 5 free.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+--+=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡10203012010001222325425454254254321x x x x x x x x x x x x x x x xu v w=x 2u+x 4v+x 5w (1)Equation (1) shows that Nul A coincides with the set of all linear conbinations of u, v and w. That is, {u, v, w}generates Nul A. In fact, this construction of u, v and w automatically makes them linearly independent, because (1) shows that 0=x 2u+x 4v+x 5w only if the weightsx 2, x 4, and x 5 are all zero.So {u, v, w} is a basis for Nul A.5. Find a basis for Col of the matrix A 1332-9-2-22-822307134-111-8A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦Solution:A ~ , so the rank of A is 3.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---07490012002300130001Then we have a basis for Col of the matrix:A U = , v = and w = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0001⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0013⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--07496. Let and be positive numbers. Find the area of the region bounded by the ellipse a b whose equation is22221x y a b+=Solution:We claim that E is the image of the unit disk D under the linear transformation Tdetermined by the matrix A=, because if u= , x=, and x = Au, then ⎥⎦⎤⎢⎣⎡b a 00⎥⎦⎤⎢⎣⎡21u u ⎥⎦⎤⎢⎣⎡21x x u 1 =and u 2 = a x 1bx 2It follows that u is in the unit disk, with , if and only if x is in E , with 12221≤+u u1)()(2221≤+x a x . Then we have{area of ellipse} = {area of T (D )}= |det A| {area of D} = ab π(1)2 = πab7. Provide twenty statements for the invertible matrix theorem.Let A be a square matrix. Then the following statements are equivalent. That is, for a n n ⨯given A, the statements are either all true or false.a. A is an invertible matrix.b. A is row equivalent to the identity matrix.n n ⨯c. A has n pivot positions.d. The equation Ax = 0 has only the trivial solution.e. The columns of A form a linearly independent set.f. The linear transformation x Ax is one-to-one.→g. The equation Ax = b has at least one solution for each b in R n .h. The columns of A span R n .i. The linear transformation x Ax maps R n onto R n .→j. There is an matrix C such that CA = I.n n ⨯k. There is an matrix D such that AD = I.n n ⨯l. A T is an invertible matrix.m. If , then 0A ≠()()T11T A A --=n. If A, B are all invertible, then (AB)* = B *A *o. T**T )(A )(A =p. If , then 0A ≠()()*11*A A--=q. ()*1n *A 1)(A --=-r. If , then ( L is a natural number )0A ≠()()L 11L A A--=s. ()*1n *A K)(KA --=-t. If , then 0A ≠*1A A1A =-8. Show and prove the Gram-Schmidt process.Solution:The Gram-Schmidt process:Given a basis {x 1, . . . , x p } for a subspace W of R n , define11x v = 1112222v v v v x x v ⋅⋅-= 222231111333v v v v x v v v v x x v ⋅⋅-⋅⋅-=. ..1p 1p 1p 1p p 2222p 1111p p p v v v v x v v v v x v v v v x x v ----⋅-⋅⋅⋅-⋅⋅-⋅⋅-=Then {v 1, . . . , v p } is an orthogonal basis for W. In additionSpan {v 1, . . . , v p } = {x 1, . . . , x p } for pk ≤≤1PROOFFor , let W k = Span {v 1, . . . , v p }. Set , so that Span {v 1} = Span p k ≤≤111x v ={x 1}.Suppose, for some k < p, we have constructed v 1, . . . , v k so that {v 1, . . . , v k } is an orthogonal basis for W k . Define1k w 1k 1k x proj x v k +++-=By the Orthogonal Decomposition Theorem, v k+1 is orthogonal to W k . Note that proj Wk x k+1 is in W k and hence also in W k+1. Since x k+1 is in W k+1, so is v k+1 (because W k+1 is a subspace and is closed under subtraction). Furthermore, because x k+1 is not in W k = Span {x 1, . . . , 0v 1k ≠+x p }. Hence {v 1, . . . , v k } is an orthogonal set of nonzero vectors in the (k+1)-dismensional space W k+1. By the Basis Theorem, this set is an orthogonal basis for W k+1. Hence W k+1 = Span {v 1, . . . , v k+1}. When k + 1 = p, the process stops.9. Show and prove the diagonalization theorem.Solution:diagonalization theorem:If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.PROOFLet v 1 and v 2 be eigenvectors that correspond to distinct eigenvalues, say, and . To 1λ2λshow that , compute0v v 21=⋅ Since v 1 is an eigenvector2T 12T 11211v )(Av v )v (λv v λ==⋅()()2T 12T T 1Av v v A v ==)(221v v Tλ= 2122T 12v v λv v λ⋅==Hence , but , so ()0v v λλ2121=⋅-()0λλ21≠-0v v 21=⋅10. Prove that the eigenvectors corresponding to distinct eigenvalues are linearly independent.Solution:If v 1, . . . , v r are eigenvectors that correspond to distinct eignvalues λ1, . . . , λr of an n n ⨯matrix A.Suppose {v 1, . . . , v r } is linearly dependent. Since v 1 is nonzero, Theorem, Characterization of Linearly Dependent Sets, says that one of the vectors in the set is linear combination of the preceding vectors. Let p be the least index such that v p +1 is a linear combination of he preceding (linearly independent) vectors. Then there exist scalars c 1, . . . ,c p such that (1)1p p p 11v v c v c +=+⋅⋅⋅+Multiplying both sides of (1) by A and using the fact that Av k = λk v k for each k, we obtain111+=+⋅⋅⋅+p p p Av Av c Av c (2)11111++=+⋅⋅⋅+p p p p p v v c v c λλλMultiplying both sides of (1) by and subtracting the result from (2), we have1+p λ (3)0)()(11111=-+⋅⋅⋅+-++p p p p c v c λλλλSince {v 1, . . . , v p } is linearly independent, the weights in (3) are all zero. But none of thefactors are zero, because the eigenvalues are distinct. Hence for i = 1, . . . , p. 1+-p i λλ0=icBut when (1) says that , which is impossible. Hence {v 1, . . . , v r } cannot be linearly 01=+p v dependent and therefore must be linearly independent.。
哈工大集合论习题课第六章树及割集习题课(学生)

第六章树及割集习题课 1讲堂例题例1 设 T 是一棵树, T 有 3 个度为 3 极点, 1 个 2 度极点,其余均是 1 度极点。
则( 1)求 T 有几个 1 度极点?( 2)画出知足上述要求的不一样构的两棵树。
剖析:关于任一棵树 T ,其极点数 p 和边数 q 的关系是:q p 1且pdeg(v i )2q ,依据这些性质简单求解。
i 1解:(1)设该树T的极点数为p,边数为q,并设树T中有x个 1 度极点。
于是pdeg(v i ) 3 3 1 2 x 2q 且 p 3 1 x, q p 1,得x 5 。
i 1( 2)知足上述要求的两棵不一样构的无向树,如图 1 所示。
图1例 2 设 G 是一棵树且(G ) k ,证明G中起码有k个度为1极点。
证:设T 中有 p 个极点,s个树叶,则 T 中其余 p s 个极点的度数均大于等于 2,且起码有一个极点的度大于等于k 。
由握手定理可得:ps ,有s k 。
2q 2 p 2deg( v i ) 2( p s 1) ki 1所以 T 中起码有 k 个树叶。
习题例1 若无向图G中有p个极点,p 1条边,则G为树。
这个命题正确吗?为何?解:不正确。
K 3与平庸图构成的非连通图中有四个极点三条边,明显它不是树。
例2 设树T中有2n个度为 1 的极点,有3n个度为 2 的极点,有n个度为 3 的极点,则这棵树有多少个极点和多少条边?解:设 T 有 p 个极点, q 条边,则q p 12n 3n n 1 6n 1。
由deg(v) 2q 有: 1 2n 2 3n 3 n 2q 2(6n 1)12n 2 ,解得: n =2。
v V故 q 11, p12 。
例 3 证明恰有两个极点度数为 1 的树必为一条通路。
证:设 T 是一棵拥有两个极点度数为 1 的( p,q)树,则q p 1且p2( p 1) 。
deg(v i ) 2qi 1又 T 除两个极点度数为 1 外,其余极点度均大于等于 2,故p p 22( p 1) ,即deg(v i )2deg(v i )i 1i 1p22) 。
哈工大深圳研究生院组合数学部分作业题答案习题课6,8

Homework 613.Let A={A1,A2,A3,A4,A5,A6} whereA1={1,2} A2={2,3} A3={3,4} A4={4,5} A5={5,6} A6={6,1}Determine the number of different SDR’s that A has. Generalize to n sets.Solution: When we choose 1 in A 1, if we choose 3 in A 2, we can choose 4 only in A 3, we can choose 5 only in A 4, and we can choose 6 only in A 5, however, we can choose 1 only in A 6,it will contract with 1 in A 1Hence, we can choose only 2 in A .2 if we choose 1 in A 1,3 in A 3,4 in A 4,5 in A 5,6 in A When we choose 2 in A 6.1, we can only choose 3 in A 3, 4 in A 4, 5 in A 5, 1 in A 1That is SDR . Hence, there are only two SDRs in A . 1={1,2,3,4,5,6}and SDR 2Similarity, we can generalize to n sets. There are only two SDRs in n-sets the same.={2,3,4,5,6,1}That is SDR 1={1,2,…,n} and SDR 2={2,3,4,…,n,1}23. Use the deferred acceptance algorithm to obtain both the women-optimal and men-optimal stable complete marriage for the preferential ranking matrix.Conclude that for the given preferential ranking matrix there is onlyone stable complete marriage.a b c dAA BB CC DD�1,32,3 1,44,13,24,33,32,2 2,21,4 4,12,23,44,13,11,4�Solution:(1) women-optimalThe results of the algorithm are as follows:1)A choose a, B choose a, C choose b, D choose d; a rejects B2)B choose d; d rejects D.3)D choose b; b rejects C.4)C choose a; a rejects A.5)A choose c.In 5), there are no rejections, and(2) men-optimalThe results of the algorithm are as follows:1)a choose D, b choose B, c choose D, d choose C; D rejects a.2)a choose C, C rejects d.3)d choose B, B rejects b.4)b choose D, D reject c.5)c choose A.In 5), there are no rejections, anda C,b D,c A,d B.Conclude that, for given preferential ranking matrix, there is only one stable complete marriage.3. Consider an m-by-n chessboard where at least one of m and n is even. The board has an equal number of white and black squares. Show that if m and n are at least 2 and if exactly one white and exactly one black square are forbidden, the resulting board has a perfect cover with dominoes.Solution:Let n be even, there are even numbers of columns. From top row, if the top row has no squares forbidden, then that row can be covered by dominoes. So we can remove this row. Repeat this till the new top row has a forbidden square. Do the same thing from the bottom row. So we can assume that forbidden squares are on the top and bottom rows.Let’s consider the first two columns from the left. If there is nofirst two columns, they can be covered by forbidden square in thedominoes and we can remove them. Repeat this till there is a forbidden square in the first two columns. Do the same from the right side so we ca n also assume the forbidden squares lie in the first two columns and the last two columns. After the above have been done, we can assume that chessflip board is of one of the following three situations (with rotation or ofover the chess board if needed). In each of the case, there are even numbers of columns.(A) (B) (C)So the two forbidden squares have one black and the other white, there are even numbers of columns. We draw the figures, in the cases (A) and (B), there has to be odd number of rows while in the case (C), there are even number of rows. Then we divide the board into pieces as shown in the following such each piece is rectangular with at least one side being even, thus can be covered by dominoes respectively.So the entire board has a perfect cover by dominoes.(A) (B) (C)4. Determine the max-matching and the min-cover of the right graph by applying the matching algorithm. We choose the red edges and obtain a matching M1.Find a minimum edge cover for the right graph.Answer:Now we get the matching )},(),,{(44121y x y x M = and U 131,x x = {}. (i) The vertices 31,x x are labeled (*).x 1y 1x x y 2 y 3 y 4y 5(ii) Scan the vertices in U 154321,,,,y y y y y in turn, and label with (1x ), since all vertices incident to 3x .already have a label, no vertex of Y get label (3x ).(iii) Scan the vertices 5431,,,y y y y labeled in (ii), and label 2x with (1y ), label 4x with (4y ).(*)x 1y 1(1x )x(*)x 3x y 2 y 3(1x ) y 4(1x )y 5(1x )(*)x 1 y1x (*)x 3x y 2 y 3 y 4y 5(iv) We scan the vertices 2x and 4x labeled in (iii), and label 2y with (2x ).(v) Scan the vertices 2y labeled in (iv), and find that no new labels are possible.We have achieved breakthrough. We find the 1M -augmenting path11221x y x y r = using the labels as a guide. Then )},(),,(),,{(4411222y x y x y x M =(*)x 1y 1(1x )(1y )x 2(*)x 3(4y )x y 2(2x ) y 3(1x ) y 4(1x )y 5(1x )(*)x 1 y 1(1x )(1y )x 2(*)x 3(4y )x y 2 y 3(1x ) y 4(1x )y 5(1x )and }{32x U =.(vi) The vertices 3x are labeled (*).(vii) Scan the vertices in U 25y in turn, and label with (3x )x 1y 1x 2(*)x 3x 4y 2 y 3 y 4y 5x 1y 1x 2x 3x 4y 2 y 3 y 4y 5(Viii) Scan the vertex 5y labeled in (vii), and find that no new labels are possible.We have achieved breakthrough. We find the 2M -augmenting path352x y r = using the labels as a guide. Then)},(),,(),,(),,{(441122533y x y x y x y x M =is a matching of four edges.Now we can get thatx 1 y 1x 2x 3x 4y 2 y 3 y 4y 5x 1 y 1x 2(*)x 3x 4y 2 y 3 y 4y 5(3x )the max-matching )},(),,(),,(),,{(44112253y x y x y x y x M = and the min-cover= {54321,,,,y y y y y }.2) Find a minimum edge cover for the right graph.Follow the steps above; we can get a max-matching)},(),,(),,(),,{(44112253y x y x y x y x M =.And we can find that there are also some vertices uncovered by the max-matching. Obviously, the vertex 3y Now we can construct a subgraph composed of edges incident to the vertex is uncovered.3y , we find the max-matching of the subgraph, and add it to the max-matching of M, then we can get a minimum edge cover.Fig The subgraphThe max-matching of the subgraph is {(x 1,y 3)}. Now we can get a minimum edgecover={(x 1,y 3)}∪M ={(x 1,y 3)(x 3,y 5)(x 2,y 2)(x 1,y 1)(x 4,y 4)}x 1y 1x 2x 3x 4y 2 y 3y 4y 5x1y1x2 x3 x4y2 y3 y4y5Fig The minimum edge cover第八次作业16. Apply the algorithm for the GCD in Section 10.1 to 15 and 46, and then use the results to determine the multiplicative inverse of 15 in Z46Answer:.The result for Computing the GCD of 15 and 46 are displayed in the following:Now ,we write as a linear combination of 15 and 46:1=46-3*15From the above, 1 is the GCD of 15 and 46.Thus, we can get the multiplicative inverse of 15 in Z4615:-121. Determine the complementary design of the BIBD with parameters bb=vv=77,kk=rr=33,λλ=11in Section 10.2= – 3 = 43.•b: the number of blocks;•v: the number of varieties;•k: the number of varieties in each block;• r : the number of blocks containing each variety• λλ: the number of blocks containing each pair of varieties. Answer:Apply ()11−−=k v r λ to this case, now we have b =v =7,k =r =3,λ=1.Hence, we can get ()()311717111≠=−−×=−−=k v r λ. Thus, we can design such a complementary.We can get the complementary design of the BIBD withparametersb’ = b = 7, v’ = v = 7, k’ = v-k = 4, r’ = b-r = 4 ,213272'=+×−=+−=λλr b .28. Show that BB={00,11,33,99}is a difference set in Z13 Answer:, and use thisdifference set as a starter block to construct an SBIBD. Identify the parameters of the block design.We compute the subtraction table and obtain:We can find that non-zero integers in Z13}{9,3,1,0=B occur exactly once as adifference, hence is a difference set in Z1332. Use Theorem 10.3.2 to construct a Steiner triple system of index 1 having 21 varieties..•Hints:• 1. construct two Steiner triple systems B1 and B2• 2. construct B based on B with 3 and 7varieties, respectively.1and B2. Answer:1)Construct two Steiner triple systems B1 and B2 with 3 and 7 varieties, respectively.Let X={a0,a1,a2}and Y={b0,b1,b2,b3,b4,b5,b6}be two sets of varieties.Let B1={a0,a1,a2}and B2=�{b0,b1,b3},{b1,b2,b4}, {b2,b3,b5},{b3,b4,b6},{b4,b5,b0},{b5,b6,b1},{b6,b0,b2}�be the Steiner triple systems of X and Y, respectively.2)Construct B based on B1 and B2.We define a set B of triples of the elements of X. Let {c ir, c js, c kt} be a set of 3 elements of X. then {c ir, c js, c kt} is a triple of B iff one of the following holds:i) r = s = tIf r=s=t=1, we can get {0,3,9}, {3,6,12}, {6,9,15}, {9,12,18}, {12,15,0},{15,18,3}, {18,0,6};If r=s=t=2, we can get {1,4,10}, {4,7,13}, {7,10,16}, {10,13,19},{13,16,1}, {16,19,4}, {20,1,7};If r=s=t=3, we can get {2,5,11}, {5,8,14}, {8,11,17}, {11,14,20},{14,17,2}, {17,20,5}, {20,2,8};ii) i = j = k, We can get {0, 1, 2}, {3, 4, 5}, {6, 7, 8},{9, 10, 11}, {12, 13,14}, {15, 16, 17}, {18, 19, 20};(iii) i, j and k are all different and {a i, a j, a k} is a triple of B1, and r, s and t are all different and {b r, b s, b t} is a triple of B2. Put another way, c ir, c js, and c kt are in 3 different rows and 3 different columns of the array, and the rows in which they lie correspond to a triple of B1 and the columns inwhich they lie correspond to a triple of B2 If {a .i, a j, a k If {a }={0, 1, 3},we can get {0, 4, 11}, {0, 10, 5}, {3, 1, 11}, {3, 10, 2}, {9, 1, 5}, {9, 4, 2};i, a j, a k If {a }={1, 2, 4}, we can get {3, 7, 14}, {3, 13, 8}, {6, 4, 14}, {6, 13, 5}, {12, 4, 8}, {12, 7, 5};i, a j, a k If{a }={2, 3, 5},we can get {6, 10, 17}, {6, 16, 11}, {9, 7, 17}, {9, 16,8},{15,7,11},{15,10, 8};i, a j, a k If {a }={3,4,6}, we can get {9,13,20},{9,19,14},{12,10, 20},{12,19,11},{18,10,14},{18,13,11};i, a j, a k If {a }={4, 5, 0},we can get {12,16,2}, {12, 1,17}, {15,13,2},{15,1,14}, {0,13,17}, {0,16,14};i, a j, a k If {a }={5,6, 1},we can get {15, 19, 5},{15,4,20},{18, 16, 5},{18, 4, 17},{3,16,20},{3,19,17};i, a j, a k}={6,0, 2},we can get {18, 1, 8}, {18, 7, 2}, {0, 19, 8}, {0, 7,20}, {6, 19, 2}, {6, 1, 20};52. Construct a completion of the 3-by-6 Latin rectangleAnswer:According to theorem 10.4.11(390页), this 3-by-6 Latin rectangle has a completion. Let X={x 0, x 1, x 2, x 3, x 4, x 5} representing the 6 elements, and Y= {y 0, y 1, y 2, y 3, y 4, y 5} representing the columns. An edge (x i, yj ) in denotes element i doesn’t appear in column j. Then we construct a regular of degree 3 Bipartite graph of X and Y ,G=(X, Δ, Y) as follows.y 2x 0x 2x 3x 4y 1y 3x 1y 5y 4y0x 5(1)Computing the perfect matching using the matching algorithm (312页) and the results are as follows. The red lines represent the maximum matching. (找出一个完美匹配即可,不必写出寻找的步骤,建议通过观察得出完美匹配最好,匹配算法太麻烦了)0 1 2 3 4 5 4 3 1 5 2 0 54312y 2x 0x 2x 3x 4y 1y 3x 1y 5y 4y0x 5So a new row is{x 2, x 0, x 4, x 1, x 5, x 3Similarly, we can draw the graph for the above matrix as follows.} could be added to the original matrix as follows.�01243134552054324012153� y 2x 0x 2x 3x 4y 1y 3x 1y 5y 4y0x 5(2)Computing the perfect matching and the results are as follows. The red lines represent the maximum matching.y 2x 0x 2x 3x 4y 1y 3x 1y 5y 4y0x 5Hence a new row is{x 1, x 5, x 0, x 2, x 3, x 4Similarly, we can draw the graph for the above matrix as follows.} and the new Latin rectangle is⎣⎢⎢⎢⎡012431345520543204150012153234⎦⎥⎥⎥⎤ y 2x 0x 2x 3x 4y 1y 3x 1y 5y 4y0x 5From the graph, we can easily know that all the lines construct a perfect matching. So we the final answer as follows⎣⎢⎢⎢⎢⎡012431543335520012204150325153234401⎦⎥⎥⎥⎥⎤58. Construct a completion of the semi-Latin squareAnswer :思路:构造二分图,找完美匹配(匹配算法)。
(完整版)哈工大选修课LINEARALGEBRA试卷及答案,推荐文档

LINEAR ALGEBRAANDITS APPLICATIONS 姓名:易学号:成绩:1. Definitions(1) Pivot position in a matrix;(2) Echelon Form;(3) Elementary operations;(4) Onto mapping and one-to-one mapping;(5) Linearly independence.2. Describe the row reduction algorithm which produces a matrix in reduced echelon form.3. Find the matrix that corresponds to the composite transformation of a scaling by 0.3, 33⨯a rotation of , and finally a translation that adds (-0.5, 2) to each point of a figure.90︒4. Find a basis for the null space of the matrix361171223124584A ---⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦5. Find a basis for Col of the matrixA 1332-9-2-22-822307134-111-8A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦6. Let and be positive numbers. Find the area of the region bounded by the ellipse a b whose equation is22221x y a b +=7. Provide twenty statements for the invertible matrix theorem.8. Show and prove the Gram-Schmidt process.9. Show and prove the diagonalization theorem.10. Prove that the eigenvectors corresponding to distinct eigenvalues are linearly independent.Answers:1. Definitions(1) Pivot position in a matrix:A pivot position in a matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form of A. A pivot column is a column of A that contains a pivot position.(2) Echelon Form:A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties:1. All nonzero rows are above any rows of all zeros.2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.3. All entries in a column below a leading entry are zeros.If a matrix in a echelon form satisfies the following additional conditions, then it is in reduced echelon form (or reduced row echelon form):4. The leading entry in each nonzero row is 1.5. Each leading 1 is the only nonzero entry in its column.(3) Elementary operations:Elementary operations can refer to elementary row operations or elementary column operations.There are three types of elementary matrices, which correspond to three types of row operations (respectively, column operations):1. (Replacement) Replace one row by the sum of itself anda multiple of another row.2. (Interchange) Interchange two rows.3. (scaling) Multiply all entries in a row by a nonzero constant.(4) Onto mapping and one-to-one mapping:A mapping T : R n → R m is said to be onto R m if each b in R m is the image of at least one x in R n.A mapping T : R n → R m is said to be one-to-one if each b in R m is the image of at most one x in R n.(5) Linearly independence:An indexed set of vectors {V1, . . . ,V p} in R n is said to be linearly independent if the vector equationx 1v 1+x 2v 2+ . . . +x p v p = 0Has only the trivial solution. The set {V 1, . . . ,V p } is said to be linearly dependent if there exist weights c 1, . . . ,c p , not all zero, such thatc 1v 1+c 2v 2+ . . . +c p v p = 02. Describe the row reduction algorithm which produces a matrix in reduced echelon form.Solution:Step 1:Begin with the leftmost nonzero column. This is a pivot column. The pivot position is at the top.Step 2:Select a nonzero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry into the pivot position.Step 3:Use row replacement operations to create zeros in all positions below the pivot.Step 4:Cover (or ignore) the row containing the pivot position and cover all rows, if any, above it. Apply steps 1-3 to the submatrix that remains. Repeat the process until there all no more nonzero rows to modify.Step 5:Beginning with the rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot is not 1, make it 1 by scaling operation.3. Find the matrix that corresponds to the composite transformation of a scaling by 0.3, 33⨯a rotation of , and finally a translation that adds (-0.5, 2) to each point of a figure.90︒Solution:If ψ=π/2, then sin ψ=1 and cos ψ=0. Then we have⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110003.00003.01y x y x scale ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−→−110003.00003.010*******y x Rotate⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−−→−110003.00003.0100001010125.0010001y x Translate The matrix for the composite transformation is⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10003.00003.0100001010125.0010001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=10003.00003.0125.0001010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=125.0003.003.004. Find a basis for the null space of the matrix361171223124584A ---⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦Solution:First, write the solution of A X=0 in parametric vector form:A ~ , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---000023021010002001x 1-2x 2 -x 4+3x 5=0x 3+2x 4-2x 5=00=0The general solution is x 1=2x 2+x 4-3x 5, x 3=-2x 4+2x 5, with x 2, x 4, and x 5 free.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+--+=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡10203012010001222325425454254254321x x x x x x x x x x x x x x x xu v w=x 2u+x 4v+x 5w (1)Equation (1) shows that Nul A coincides with the set of all linear conbinations of u, v and w. That is, {u, v, w}generates Nul A. In fact, this construction of u, v and w automatically makes them linearly independent, because (1) shows that 0=x 2u+x 4v+x 5w only if the weights x 2, x 4, and x 5 are all zero.So {u, v, w} is a basis for Nul A.5. Find a basis for Col of the matrixA 1332-9-2-22-822307134-111-8A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦Solution:A ~ , so the rank of A is 3.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---07490012002300130001Then we have a basis for Col of the matrix:A U = , v = and w = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0001⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0013⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--07496. Let and be positive numbers. Find the area of the region bounded by the ellipse a b whose equation is22221x y a b+=Solution:We claim that E is the image of the unit disk D under the linear transformation Tdetermined by the matrix A=, because if u= , x=, and x = Au, then ⎥⎦⎤⎢⎣⎡b a 00⎥⎦⎤⎢⎣⎡21u u ⎥⎦⎤⎢⎣⎡21x x u 1 = and u 2 = a x 1bx 2It follows that u is in the unit disk, with , if and only if x is in E , with12221≤+u u1)()(2221≤+x a x . Then we have{area of ellipse} = {area of T (D )}= |det A| {area of D} = ab π(1)2 = πab7. Provide twenty statements for the invertible matrix theorem.Let A be a square matrix. Then the following statements are equivalent. That is, for a n n ⨯given A, the statements are either all true or false.a. A is an invertible matrix.b. A is row equivalent to the identity matrix.n n ⨯c. A has n pivot positions.d. The equation Ax = 0 has only the trivial solution.e. The columns of A form a linearly independent set.f. The linear transformation x Ax is one-to-one.→g. The equation Ax = b has at least one solution for each b in R n .h. The columns of A span R n .i. The linear transformation x Ax maps R n onto R n .→j. There is an matrix C such that CA = I.n n ⨯k. There is an matrix D such that AD = I.n n ⨯l. A T is an invertible matrix.m. If , then 0A ≠()()T11T A A --=n. If A, B are all invertible, then (AB)* = B *A *o. T**T )(A )(A =p. If , then 0A ≠()()*11*A A--=q. ()*1n *A 1)(A --=-r. If , then ( L is a natural number )0A ≠()()L 11L A A--=s. ()*1n *A K)(KA --=-t. If , then 0A ≠*1A A1A =-8. Show and prove the Gram-Schmidt process.Solution:The Gram-Schmidt process:Given a basis {x 1, . . . , x p } for a subspace W of R n , define11x v = 1112222v v v v x x v ⋅⋅-= 222231111333v v v v x v v v v x x v ⋅⋅-⋅⋅-=. ..1p 1p 1p 1p p 2222p 1111p p p v v v v x v v v v x v v v v x x v ----⋅-⋅⋅⋅-⋅⋅-⋅⋅-=Then {v 1, . . . , v p } is an orthogonal basis for W. In additionSpan {v 1, . . . , v p } = {x 1, . . . , x p } for pk ≤≤1PROOFFor , let W k = Span {v 1, . . . , v p }. Set , so that Span {v 1} = Span p k ≤≤111x v ={x 1}.Suppose, for some k < p, we have constructed v 1, . . . , v k so that {v 1, . . . , v k } is an orthogonal basis for W k . Define1k w 1k 1k x proj x v k +++-=By the Orthogonal Decomposition Theorem, v k+1 is orthogonal to W k . Note that proj Wk x k+1 is in W k and hence also in W k+1. Since x k+1 is in W k+1, so is v k+1 (because W k+1 is a subspace and is closed under subtraction). Furthermore, because x k+1 is not in W k = Span {x 1, . . . , 0v 1k ≠+x p }. Hence {v 1, . . . , v k } is an orthogonal set of nonzero vectors in the (k+1)-dismensional space W k+1. By the Basis Theorem, this set is an orthogonal basis for W k+1. Hence W k+1 = Span {v 1, . . . , v k+1}. When k + 1 = p, the process stops.9. Show and prove the diagonalization theorem.Solution:diagonalization theorem:If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.PROOFLet v 1 and v 2 be eigenvectors that correspond to distinct eigenvalues, say,and . To 1λ2λshow that , compute0v v 21=⋅ Since v 1 is an eigenvector2T 12T 11211v )(Av v )v (λv v λ==⋅()()2T 12T T 1Av v v A v ==)(221v v Tλ= 2122T 12v v λv v λ⋅==Hence , but , so ()0v v λλ2121=⋅-()0λλ21≠-0v v 21=⋅10. Prove that the eigenvectors corresponding to distinct eigenvalues are linearly independent.Solution:If v 1, . . . , v r are eigenvectors that correspond to distinct eignvalues λ1, . . . , λr of an n n ⨯matrix A.Suppose {v 1, . . . , v r } is linearly dependent. Since v 1 is nonzero, Theorem, Characterization of Linearly Dependent Sets, says that one of the vectors in the set is linear combination of the preceding vectors. Let p be the least index such that v p +1 is a linear combination of he preceding (linearly independent) vectors. Then there exist scalars c 1, . . . ,c p such that (1)1p p p 11v v c v c +=+⋅⋅⋅+Multiplying both sides of (1) by A and using the fact that Av k = λk v k for each k, we obtain111+=+⋅⋅⋅+p p p Av Av c Av c (2)11111++=+⋅⋅⋅+p p p p p v v c v c λλλMultiplying both sides of (1) by and subtracting the result from (2), we have1+p λ (3)0)()(11111=-+⋅⋅⋅+-++p p p p c v c λλλλSince {v 1, . . . , v p } is linearly independent, the weights in (3) are all zero. But none of the factors are zero, because the eigenvalues are distinct. Hence for i = 1, . . . , p.1+-p i λλ0=i cBut when (1) says that , which is impossible. Hence {v 1, . . . , v r } cannot be linearly 01=+p v dependent and therefore must be linearly independent.。
线性代数习题 1解析【哈工大版】

·1·习 题 一1.按自然数从小到大的自然次序,求解各题. (1) 求1至6的全排列241356的逆序数. 解:(241356)0021003t =+++++=.(2) 求1至2n 的全排列135(21)246(2)n n - 的逆序数.解:(1)(13(21)242)000(1)(2)2102n n t n n n n --=++++-+-+++= . (3) 选择i 与j ,使由1至9的排列,9127456i j 成偶排列. 解:由9127456i j 是从1至9的排列,所以,i j 只能取3或8.当8,3i j ==时,(912748563)01112133618t =++++++++=,是偶排列. 当3,8i j ==时(912743568)01112322113t =++++++++=,是奇排列,不合题意舍去.(4) 选择i 与j ,使由1至9的排列7125489i j 成奇排列.解:由7125489i j 是从1至9的排列,所以,i j 只能取3或6.当3,6i j ==时,(713256489)0112113009t =++++++++=,是奇排列. 当6,3i j ==时,(716253489)01122330012t =++++++++=,是偶排列,不合题意舍去.2.计算下列行列式 (1)9182613a b b a ; (2) 32153320537528475184;(3) 108215123203212; (4) abac ae bdcdde bf cfef---. 解:(1)229182913117(4)26132a b a ba b b a b a=⨯=-.(2) 3215332053320531003205332053320531003205375284751847518410075184751847518410075184+==++ 0751840032053004313100=+-=.(3) 1082222151235433302032124812=⨯=.·2·(4) 111111111002111020abac ae bdcd de abcdef abcdef bfcfef ----=-=-- 111204002abcdef abcdef -=-=. 3.已知3021111xy z=,利用行列式性质求下列行列式. (1) 33332222xyzx y z x y z +++++; (2) 111302413x y z +++. 解:(1) 3333230223022222222111xyzxy zxyzx y z x y z ++===+++. (2)111111302302302413413413x y z x y z +++=+ 111302302101111111xy z=+=+=.4.用行列式定义计算:(1)12345; (2) 010000200001000n n - .解:(1)1234512345()1234512(1)345t p p p p p p p p p p a a a a a =-∑(54321)1524334251(1)t a a a a a =-10(1)12345120=-⨯⨯⨯⨯⨯=.·3·(2)1212()120102(1)01n n t p p p p p np a a a n n=∑--(231)1223(1)1(1)t nn n n a a a a -=-11(1)123(1)!n n n n --=-⨯⨯⨯⨯⨯=- 5.用行列式的定义证明:(1) 11121314152122232425343544455455000000000a a a a a a a a a a a a a a a a =; (2)11122122333411123132333443442122414244450000a a a a a a a a a a a a a a a a a a a a =⋅. 证:(1) 123451234511121314152122232425()12345343544455455(1)0000000t p p p p p p p p p p a a a a a a a a a a D a a a a a a a a a a a ==- 假设有12345123450P P P P P a a a a a ≠,由已知345,,p p p 必等于4或5,从而345,,p p p 中至少有两个相等,这与12345,,,,p p p p p 是1,2,3,4,5的一个全排列矛盾,故所有项12345123450P P P P P a a a a a =,因此0D =.(2)1234123411122122()123431323334414243440000(1)t p p p p p p p p a a a a a a a a a a a a a a a a =-∑,由已知,只有当12,p p 取1或2时,123412340p p p p a a a a ≠,而1234,,,p p p p 是1,2,3,4的一个全排列,故34,p p 取3或4,于是·4·(1234)(1243)(2134)112233441122344312213344(2143)12213443(1)(1)(1)(1)t t t t D a a a a a a a a a a a a a a a a =-+-+-+-11223344112234431221334412213443a a a a a a a a a a a a a a a a =--+从而33341112112212213344344343442122()()a a a a a a a a a a a a a a a a ⋅=--11223344112234431221334412213443a a a a a a a a a a a a a a a a =--+ D = 6.计算(1)305002123000a b c d; (2) 121102*********110----; (3) n x a a a x aD a a x=; (4) 123110010101001n n D -=--; (5) 001000000100n a a D a a = ; (6) 1111111111111111n D -=--.解:(1)4433305304 3 0023(1)00(1)123012000a ab a d b dc abcd c b c d++--=按第按第行展开列展开.(2)12111211121102111021110211121440366036621110033120036==-----·5·12111211121101220122012233390211100370037003600360001=-=-=-=------. (3) 12131 (1)(1)(1) n n r r x a a n a x n a x n a xr r a xa ax aD a ax aa xr r +-+-+-++=+111[(1)]a x an a x a a a a a=-+1111000[(1)]000000x an a x x a x a-=-+--1[(1)]()n n a x x a -=-+-.(4) 12131123123231100010********* 10010001n nnn nc c c c D c c+++++-+=-+-(1)1232n n n +=++++= .(5) 001000000100n a a D a a=·6·11100000000100(1)(1)0000100n a a a a a a a++-+-按第行展开 1112(1)(1)n n n n a a +-+-=+-- 2nn a a-=-.(6) 11111111111102001111002011110002n D --==----111(2)(1)2n n n ---=-=-. 7.证明(1) 22222()111a ab b aa b b a b +=-证:222221223(1) 22222(1)111001a ab b a abab b b c c aa b ba ab a b b bc c --+-+--+-+-33()()(1)a a b b a b a b a b +--=---23()()11a b a b a b =-=- (2)2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++=++++++证:等式左端2222222222222222214469214469214469214469a a a a a a ab b b b b b bc c c c c c cd d d d d d d ++++++++++++=++++++++++++·7·2221223222314322412144692126(1) (2) 21446921260(1)2144692126(3)(1)2144692126a a a a a a c c c cb b b b b bc c cc c c cc c c c c dd d d d d +++++-+-++++=+-+++++-+-++++(3)2322311111211121311123223212122212223222232233131323132333332322341414241424344411111111x a x b x b x c x c x c x x x x a x b x b x c x c x c x x x x a x b x b x c x c x c x x x x a x b x b x c x c x c x xx++++++++++++=++++++++++++证:等式左端2321111111212112322212212222323213313313232324314414414241() 1()1()1x x b x x c x c x c a c x x b x x c x c x c b c x x b x x c x c x c c c x x b x x c x c x ++++-++++-++++-+++232231111111123223312413222122222322333313333422232234441444411()()1111()11x x x c x x x x c b c c c c xx x c x x x x x x x c x x x x c c c x xx c xx xx++-+-+=++-+等式右端.8.解关于未知数x 的方程(1) 12326001xx x -=-解:121326(1)3201xx x x x x -=---2(1)[(2)3](1)[23](1)(3)(1)0x x x x x x x x x =---=---=--+= 所以1231,3, 1.x x x ===-(2) 0(0)aa xmm m m bx b=≠·8·解:00111111aa x a a x x amm m m m bx b b x b b xb-==11()()()0m x a m x a x b b x=-=--=因0m ≠,所以12,x a x b ==.9.设111212122212nn n n nn a a a a a a a a a a =,求下列行列式:(1)122122211121n n nn nn a a a a a a a a a ; (2)112112222121nn nn n n a a a a a a a a a;(3)12121212111222n nnnp p p p p p p p p np np np a a a a a a a a a ∑,其中“∑”是对1,2,,n 的所有全排列12np p p 取和,2n ≥.解:(1)经行的交换得原式111211213132321222(1)nn n nn n n na a a a a a a a a a a a -=- =1112121222(1)(2)2112(1)nnn n n n nna a a a a a a a a -+-+++=-(1)2(1)n n a -=-.(2) 与(1)类似,经列的交换得·9·原式(1)2(1)n n a -=-.(3) 经列的交换,得12121212121111112122221222()()12(1)(1)n nn n np p p np p p np p p p p p np np np n n nna a a a a a a a a a a a a a a a a a a ττ=-=-故原式1212()111111(1)0111n np p p p p p a aτ=-==∑ .10.计算行列式(1)112233440000000a b a b b a b a ; (2) 100011001100011011aaa a a aa a a---------;(3) 6111116111116111116111116; (4) 1000010000100001000k λλλλλ----. 解:(1)1111112244443333334422220000000000000000000a b a b a b a b b a b a b a b a a b b a a b b a =-= 1133141423234422()()a b a b a a b b a a b b b a b a ==--.(2) 将前4行依次加到第5行,再按第5行展开得原式10110011000110001aa a a a a a aa---=-----51001100110011a a a a a a aa---=-+----·10·5100110011001a a a aa a aa ---=-+---541011011a a a a a a a-=-++---- 54101101aaa a a a a-=-++---543111a aa a a a-=-+-+--23451a a a a a =-+-+-(3) 6111110101010101611116111116111161111161111611111611116= 111111111116111050001010116110050011161000501111600005== 41056250=⨯=. (4) 按最后一行展开得10001100010010001000100100010001001000000k k λλλλλλλλλλλλλ------=+-----5k λ=+11.计算行列式(1)1111111111111111111111111x x x x x --+---+---+--; (2) 1111222233334444x m x x x x x m x x x x x m x x x x x m----解:(1) 依次将第2,3,4,5列加到第1列得原式1111111111111111111111111x x x x x x x x x +--++--=+-+-+--+-- 1111111111(1)111111111111111x x x x x --+--=+-+----- 10001000(1)1000100010000xx x x x =+4(41)442(1)(1)(1)x x x x -=-+=+(2) 依次将第2,3,4行加到第1行得原式44441111222233334444iiiii i i i x m x m x m x mx x m x x x x x m x x x x x m====-----=--∑∑∑∑422221333344441111()i i x x m x x x m x x x m x x x x x m=-=---∑411111000()000000i i m x m m m=-=---∑431()i i m x m==-∑12.计算行列式(1)11121314212223243132333441424344a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b ++++++++++++++++;(2) 111213142122232431323334414243441111111111111111a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b ++++++++++++++++(3) 1234100110011001a a a a ---; (4)2311111231491827xx x 解:(1)依次将第3,2,1行乘1-加到第4,3,2行得原式111213142121212132323232434343430a b a b a b a b a a a a a a a a a a a a a a a a a a a a a a a a ++++----==--------(2) 依次将第3,2,1行乘1-加到第4,3,2行得原式111213141212213214211322323324321432433434431111()()()()()()()()()()()()a b a b a b a b b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a ++++----=--------111213141234213243123412341111()()()0a b a b a b a b b b b b a a a a a a b b b b b b b b ++++=---=(3) 按最后一列展开得原式4321100100111110110011011011001001001a a a a -=---+-+-----1234a a a a =+++(4) 由Vandermonde 行列式的计算公式得原式(3)(2)(1)(32)(31)(21)x x x =------ 2(1)(2)(3)x x x =--- 13.证明(1) 123121211100010000010n n n n n n na a x a x D a x a x a x a a x a x------==++++- 证:等式左端123121211000010000000()001000010n n n n n n a a x a x r x r a x a x a a xx ------+--+ 122233312110001000()0000()0010()0001()00n n n n n n n n n a a x r x r a x r x r a x r x r a x f x -------++-+-1(1)11(1)()()11n n xf x f x x +---=-=--阶其中111()n n n f x a xa x a --=+++ .(2) 21000121000120010002100012D n ==+证:11n =时,1211D ==+2假设当n k ≤时结论成立,当1n k =+时,若12k +=,22112D =41321=-==+结论成立. 若13k +≥,将1k D +按第一行展开得112112122(1)(11)(1)1112k k k D D D k k k +-==-=+--+=++由数学归纳法,对一切自然数n 结论成立.(3) 1211111111111(1),0,1,2,,1111nni i i i ina a D a a i n a a ==++==+≠=+∑∏. 证:(用加边法)等式左端1211111011110111101111na a a +=++121111100100100na a a -=--121211111110000000nna a a a a a ++++=1211121111(1)(1)n nn i i i n i a a a a a a a a ===++++=+=∑∏ 等式右端.(4) 1100010001000000001n n n x y xy x y xy x y x y D x y x y xy x y+++++-==-++ ,其中x y ≠.证:当1n =时,221x y D x y x y-=+=-,等式成立.假设n k ≤时等式成立,当1n k =+时,若12k +=,则332212k x y D D x xy y x y +-==++=-,等式成立. 若13k +≥,将1k D +按一列展开,得 111000100()(1)01000001k k x y xy x y xy D x y x y x y ++++=+-++ 阶21000010(1)0101xy x y xy x y x y +++-++ 阶由归纳法原理,等式对一切自然数n 都成立.14.设()f x 是一个次数不大于1n -的一元多项式,证明如果存在n 个互不相同的数12,,,n a a a 使()0,1,2,,i f a i n == . 则()0f x =.证:设121210()n n n n f x k x k x k x k ----=++++ ,依题意有10111110110n n n n n n k a k a k k a k a k ----⎧+++=⎪⎨⎪+++=⎩(1) 因12,,,n a a a 互不相同,故(1)的系数行列式211112122212111()01n n j i i j nn nn na a a a a a D a a a a a --≤<≤-==-≠∏,所以关于011,,,n k k k - 的线性方程组(1)只有零解,所以0110,()0n k k k f x -===== . 15.用Cramer 法则解方程组(1) 121254116520x x x x +=⎧⎨+=⎩解:5425241065D ==-=≠,方程组有唯一解.1114558025205D ==-=-,25111006634620D ==-=,由克莱姆法则,1125D x D ==-,2234Dx D ==(2) 121232356 1560 50x x x x x x x +=⎧⎪++=⎨⎪+=⎩解:56056305301561519119015010D --==-=--[5(19)(30)1]650=-⨯---⨯=≠,方程组有唯一解.1160560562561915015D ===-=,251016106505005D ==-=-, 356115150101010D ===. 所以由克莱姆法则得,111965D x D ==,22113D x D ==-,3165x =.。
哈工大近世代数习题参考答案

−1
∈G 。
n k, 所以 n rk , 由已知 (n, r ) = 1 , 则有: 所以 k = n , 即 a r 的阶为 n , 从而 (a r ) = G 。
另证:由 (n, r ) = 1 ⇒ ∃k1 , k 2 ∈ Z , k1 ⋅ n + k 2 ⋅ r = 1 ,则有: a 1 = a k1 ⋅n + k 2 ⋅r = a k1 ⋅n a k 2 ⋅r = ea k 2 ⋅r = (a r ) k 2 ,即 a = (a r ) k 2 ,即 G 的生成元 a 可由 a r 生 成,故有: (a r ) = G 。 12.5.5 证明: 设 a r 的阶为 k , 则 (a r ) k = e , 即 a rk = e 。 又 an = e , 所以 n | rk , 又 ( r , n) = d ,
f ( x ∗ y ) = ψ ϕ ( x ∗ y ) = ψ (ϕ ( x ∗ y )) = ψ (ϕ ( x) • ϕ ( y )) = ψ (ϕ ( x))∆ψ (ϕ ( y )) = ψ ϕ ( x)∆ψ ϕ ( y ) = f ( x) f ( y )
所以 f = ψ ϕ 为 S1 → S 3 的同态,即两个同态的合成还是同态。
1)封闭性:对 ∀f , g ∈ G ,设 f ( x) = ax + b , g ( x) = cx + d , a ≠ 0, c ≠ 0 , 则 f g ( x) = f ( g ( x)) = f (cx + d ) = a (cx + d ) + b = (ac) x + ad + b ,所以 f g ∈ G 2)结合律:映射的复合满足结合律。 3)单位元: I R ( x) = x 4)逆元: 显然对 ∀f ∈ G , 由 f 为双射, 故 f 可逆, 且 f −1 ( x) = 12.5.3 证明:由 a r ∈ G ,则 (a r ) ⊆ G 。设 a r 的阶为 k ,即 (a r ) k = e 。 因为 (a r ) n = (a n ) r = e r = e ,所以 k n 。又由 (a r ) k = e ⇒ a rk = e ,而 a n = e ,
哈工大电气考研电气基础习题解答 (6)

第6章 逻辑代数基础6.1对课程内容掌握程度的建议6.2 授课的几点建议6.2.1 基本逻辑关系的描述基本逻辑关系有“与”、“或”、“非”三种,在本教材中采用文字叙述和常开触点、常闭触点的串、并联等形式来加以描述。
还有一种描述逻辑关系的图,称为文氏图(Venn diagram )。
图6.1(a)圆圈内是A ,圆圈外是A ;图6.1(b)圆圈A 与圆圈B 相交的部分是A 、B 的与逻辑,即AB ;图6.1(c)圆圈A 与圆圈B 所有的部分是A 、B 的或逻辑,即A +B 。
与逻辑AB 也称为A 与B 的交集(intersection );或逻辑A +B 也称为A 和B 的并集(union )。
(a) 单变量的文氏图 (b) 与逻辑的文氏图 (c) 或逻辑的文氏图图6.1 文氏图6.2.2 正逻辑和负逻辑的关系正逻辑是将双值逻辑的高电平H 定义为“1”,代表有信号;低电平L 定义为“0”,代表无信号。
负逻辑是将双值逻辑的高电平H 定义为“0”,代表无信号;低电平L 定义为“1”,代表有信号。
正逻辑和负逻辑对信号有无的定义正好相反,就好象“左”、“右”的规定一样,设正逻辑符合现在习惯的规定,而负逻辑正好反过来,把现在是“左”,定义为“右”,把现在是“右”,定义为“左”。
关于正、负逻辑的真值表,以两个变量为例,见表6.1。
由表6.1可以看出,对正逻辑的约定,表中相当是与逻辑;对负逻辑约定,则相当是或逻辑。
所以正逻辑的“与”相当负逻辑的“或”;正逻辑的“或”相当负逻辑的“与”。
正与和负或只是形式上的不同,不改变问题的实质。
6.2.3 形式定理本书介绍了17个形式定理,分成五类。
需要说明的是,许多书上对这些形式定理有各自的名称,可能是翻译上的缘故,有一些不太贴切,为此,将形式定理分成5种形式表述,更便于记忆。
所以称为形式定理,是因为这些定理在逻辑关系的形式上虽然不同,但实质上是相等的。
形式定理主要用于逻辑式的化简,或者在形式上对逻辑式进行变换,它有以下五种类型:1.变量与常量之间的关系; 2.变量自身之间的关系; 3.与或型的逻辑关系; 4.或与型的逻辑关系;5.求反的逻辑关系——摩根(Morgan )定理。
线性代数习题3解析【哈工大版】

·40·
1 4 x 1 或 x , y 1或 y , 3 3 1 4 1 即c i k 或c i j k . 3 3 3 14.已知 (a b) c 2 ,求 [(a b) (b c)] (c a) .
又x y z 2
2 2
5 3 . 2
(a b) (a b) (a b) (a b) 0 ,
| a |2 2a b | b |2 | a |2 2a b | b |2 0 .
得 4a b 0 , 所以 a b 0. 6.试证: a b b c c a 0 的必要条件是 a, b, c 共面. 证:由等式 a b b c c a 0 两边与 c 作内积得
2 2 2
得
解: [ ( a b ) ( b c ) ] c ( a ) a [ b a c b c ] ( c a )
a b c a c c b c c a b a a c a b c a
. a b c b c a2 2 4 15.用数量积证明三角形的余弦定理. 证:考察三角形(如图所示) 记 a BC, b CA, c AB ,则
习
题
三
A
1.设 A 、 B 、 C 是任意三点,求 AB BC CA 解:由三角形法则
A B B C CA
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LINEAR ALGEBRAANDITS APPLICATIONS 姓名:易学号:成绩:1. Definitions(1) Pivot position in a matrix; (2) Echelon Form; (3) Elementary operations;(4) Onto mapping and one-to-one mapping; (5) Linearly independence.2. Describe the row reduction algorithm which produces a matrix in reduced echelon form.3. Find the 33⨯ matrix that corresponds to the composite transformation of a scaling by 0.3, a rotation of 90︒, and finally a translation that adds (-0.5, 2) to each point of a figure.4. Find a basis for the null space of the matrix361171223124584A ---⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦5. Find a basis for Col A of the matrix1332-9-2-22-822307134-111-8A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦6. Let a and b be positive numbers. Find the area of the region bounded by the ellipse whose equation is22221x y ab+=7. Provide twenty statements for the invertible matrix theorem. 8. Show and prove the Gram-Schmidt process. 9. Show and prove the diagonalization theorem.10. Prove that the eigenvectors corresponding to distinct eigenvalues are linearly independent.Answers:1. Definitions(1) Pivot position in a matrix:A pivot position in a matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form of A. A pivot column is a column of A that contains a pivot position.(2) Echelon Form:A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties:1.All nonzero rows are above any rows of all zeros.2.Each leading entry of a row is in a column to the right of the leading entry of the row above it.3.All entries in a column below a leading entry are zeros.If a matrix in a echelon form satisfies the following additional conditions, then it is in reduced echelon form (or reduced row echelon form):4.The leading entry in each nonzero row is 1.5.Each leading 1 is the only nonzero entry in its column.(3)Elementary operations:Elementary operations can refer to elementary row operations or elementary column operations.There are three types of elementary matrices, which correspond to three types of row operations (respectively, column operations):1.(Replacement) Replace one row by the sum of itself anda multiple of another row.2.(Interchange) Interchange two rows.3.(scaling) Multiply all entries in a row by a nonzero constant.(4)Onto mapping and one-to-one mapping:A mapping T : n →m is said to be onto m if each b in m is the image of at least one x in n.A mapping T : n →m is said to be one-to-one if each b in m is the image of at most one x in n.(5)Linearly independence:An indexed set of vectors {V1, . . . ,V p} in n is said to be linearly independent if the vector equationx 1v 1+x 2v 2+ . . . +x p v p = 0Has only the trivial solution. The set {V 1, . . . ,V p } is said to be linearly dependent if there exist weights c 1, . . . ,c p , not all zero, such that c 1v 1+c 2v 2+ . . . +c p v p = 02. Describe the row reduction algorithm which produces a matrix in reduced echelon form. Solution: Step 1:Begin with the leftmost nonzero column. This is a pivot column. The pivot position is at the top. Step 2:Select a nonzero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry into the pivot position. Step 3:Use row replacement operations to create zeros in all positions below the pivot. Step 4:Cover (or ignore) the row containing the pivot position and cover all rows, if any, above it. Apply steps 1-3 to the submatrix that remains. Repeat the process until there all no more nonzero rows to modify. Step 5:Beginning with the rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot is not 1, make it 1 by scaling operation.3. Find the 33⨯ matrix that corresponds to the composite transformation of a scaling by 0.3, a rotation of 90︒, and finally a translation that adds (-0.5, 2) to each point of a figure. Solution:If ψ=π/2, then sin ψ=1 and cos ψ=0. Then we have ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110003.00003.01y x y x scale⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−→−110003.00003.0100001010y x R o t a t e⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−−→−110003.00003.0100001010125.0010001y x T r a n s l a t eThe matrix for the composite transformation is ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10003.00003.0100001010125.0010001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=10003.00003.0125.0001010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=125.0003.003.004. Find a basis for the null space of the matrix 361171223124584A ---⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦Solution:First, write the solution of A X=0 in parametric vector form: A ~ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---00002302101000201, x 1-2x 2 -x 4+3x 5=0 x 3+2x 4-2x 5=0 0=0The general solution is x 1=2x 2+x 4-3x 5, x 3=-2x 4+2x 5, with x 2, x 4, and x 5 free. ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+--+=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡10203012010001222325425454254254321x x x x x x x x x x x x x x x xu v w=x 2u+x 4v+x 5w (1)Equation (1) shows that Nul A coincides with the set of all linear conbinations of u, v and w . That is, {u, v, w}generates Nul A. In fact, this construction of u, v and w automatically makes them linearly independent, because (1) shows that 0=x 2u+x 4v+x 5w only if the weights x 2, x 4, and x 5 are all zero.So {u, v , w} is a basis for Nul A.5. Find a basis for Col A of the matrix 1332-9-2-22-822307134-111-8A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦Solution: A ~ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---07490012002300130001, so the rank of A is 3. Then we have a basis for Col A of the matrix: U = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0001, v = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0013and w = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--07496. Let a and b be positive numbers. Find the area of the region bounded by the ellipse whose equation is22221x y ab+=Solution:We claim that E is the image of the unit disk D under the linear transformation Tdetermined by the matrix A=⎥⎦⎤⎢⎣⎡b a 00, because if u= ⎥⎦⎤⎢⎣⎡21u u , x=⎥⎦⎤⎢⎣⎡21x x , and x = Au, then u 1 =ax 1 and u 2 =bx 2It follows that u is in the unit disk, with 12221≤+u u , if and only if x is in E , with1)()(2221≤+b x a x . Then we have{area of ellipse} = {area of T (D )} = |det A| {area of D} = ab π(1)2= πab7. Provide twenty statements for the invertible matrix theorem.Let A be a square n n ⨯ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or false. a. A is an invertible matrix.b. A is row equivalent to the n n ⨯ identity matrix.c. A has n pivot positions.d. The equation Ax = 0 has only the trivial solution.e. The columns of A form a linearly independent set.f. The linear transformation x → Ax is one-to-one.g. The equation Ax = b has at least one solution for each b in n.h. The columns of A spann.i. The linear transformation x → Ax maps nonton.j. There is an n n ⨯ matrix C such that CA = I. k. There is an n n ⨯ matrix D such that AD = I. l. A T is an invertible matrix. m. If 0A ≠, then ()()T11T A A --=n. If A, B are all invertible, then (AB)* = B *A *o. T**T )(A )(A =p. If 0A ≠, then ()()*11*A A --=q. ()*1n *A 1)(A --=-r. If 0A ≠, then ()()L11L A A --= ( L is a natural number )s. ()*1n *A K)(KA --=-t. If 0A ≠, then *1A A1A =-8. Show and prove the Gram-Schmidt process.Solution:The Gram-Schmidt process:Given a basis {x 1, . . . , x p } for a subspace W of n, define11x v = 1112222v v v v x x v ⋅⋅-=222231111333v v v v x v v v v x x v ⋅⋅-⋅⋅-=. ..1p 1p 1p 1p p 2222p 1111p p p v v v v x v v v v x v v v v x x v ----⋅-⋅⋅⋅-⋅⋅-⋅⋅-=Then {v 1, . . . , v p } is an orthogonal basis for W. In additionSpan {v 1, . . . , v p } = {x 1, . . . , x p } for p k ≤≤1 PROOFFor p k ≤≤1, let W k = Span {v 1, . . . , v p }. Set 11x v =, so that Span {v 1} = Span {x 1}.Suppose, for some k < p, we have constructed v 1, . . . , v k so that {v 1, . . . , v k } is an orthogonal basis for W k . Define1k w1k 1k x p r o j x v k+++-= By the Orthogonal Decomposition Theorem, v k+1 is orthogonal to W k . Note that proj Wk x k+1 is in W k and hence also in W k+1. Since x k+1 is in W k+1, so is v k+1 (because W k+1 is a subspace and is closed under subtraction). Furthermore, 0v 1k ≠+ because x k+1 is not in W k = Span {x 1, . . . , x p }. Hence {v 1, . . . , v k } is an orthogonal set of nonzero vectors in the (k+1)-dismensional space W k+1. By the Basis Theorem, this set is an orthogonal basis for W k+1. Hence W k+1 = Span {v 1, . . . , v k+1}. When k + 1 = p, the process stops.9. Show and prove the diagonalization theorem. Solution:diagonalization theorem:If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal. PROOFLet v 1 and v 2 be eigenvectors that correspond to distinct eigenvalues, say, 1λand 2λ. T o show that 0v v 21=⋅, compute2T 12T 11211v )(A v v )v (λv v λ==⋅ Since v 1 is an eigenvector ()()2T12T T1Avv v A v ==)(221v v Tλ=2122T12v v λv v λ⋅==Hence ()0v v λλ2121=⋅-, but ()0λλ21≠-, so 0v v 21=⋅10. Prove that the eigenvectors corresponding to distinct eigenvalues are linearly independent. Solution:If v 1, . . . , v r are eigenvectors that correspond to distinct eignvalues λ1, . . . , λr of an n n ⨯ matrix A.Suppose {v 1, . . . , v r } is linearly dependent. Since v 1 is nonzero, Theorem, Characterization of Linearly Dependent Sets, says that one of the vectors in the set is linear combination of the preceding vectors. Let p be the least index such that v p +1 is a linear combination of he preceding (linearly independent) vectors. Then there exist scalars c 1, . . . ,c p such that 1p p p 11v v c v c +=+⋅⋅⋅+ (1) Multiplying both sides of (1) by A and using the fact that Av k = λk v k for each k, we obtain 111+=+⋅⋅⋅+p p p Av Av c Av c11111++=+⋅⋅⋅+p p p p p v v c v c λλλ (2) Multiplying both sides of (1) by 1+p λ and subtracting the result from (2), we have0)()(11111=-+⋅⋅⋅+-++p p p p c v c λλλλ (3) Since {v 1, . . . , v p } is linearly independent, the weights in (3) are all zero. But none of the factors 1+-p i λλ are zero, because the eigenvalues are distinct. Hence 0=i c for i = 1, . . . ,p. But when (1) says that 01=+p v , which is impossible. Hence {v 1, . . . , v r } cannot be linearly dependent and therefore must be linearly independent.。