红外光谱实验技术(IR)

合集下载

红外光谱(IR)分析

红外光谱(IR)分析

4. 空间效应: (1)环状化合物的环张力效应:环张力越大,羰 基C=O频率越高。 环张力 四元环 五元环 六元环 (2)空间位阻效应:空间位阻使羰基与双键之间 的共轭受限制,故使C=O频率增高。 5. 氢键效应:氢键的形成,通常可使伸缩振动 频 率向低波数方向移动。
6. 振动偶合效应:当两个基团靠得很近时,产 生振动相互作用,使吸收峰发生分裂。
第三章 红 外 吸 收 光 谱 法
Infrared Absorption Spectrometry
§1 关于红外光谱
红外光谱在可见光区域微波区之间,其波长范 围约为0.75~1000m。
分为三个区: ◆近红外区 0.75~2.5m; ◆中红外区 2.5~25 m; ◆远红外区 25~1000 m
若分子由N个原子组成,则 需3N个坐标(自由度)确定N个原子位置; 分子自由度总数=平动、振动、转动自由度 总和 故 3N=平动自由度+转动自由度+振动自由度 即 振动自由度=3N-(平度自由度+转动自由度) 问题:怎样确定一个分子的平动自由度和 转动自由度?
(1) 平动自由度:分子的质心可沿x、y、z三 个坐标轴方向移动,故平动自由度=3。
2. 共轭效应(C效应):该效应使共轭体系具有 共平面性,电子云密度平均化,造成双键略有 伸长,单键略有缩短。故双键的吸收峰频率向 低波数方向移动。
例. C=O C=O 1715 cm-1 1685~1665 cm-1
3. 中介效应(M效应): 例. C=O 在1680cm-1附近。 若用诱导效应看,则电负性大的N原子应使 C=O键力常数增加,吸收峰位应大于1715cm-1; 但实际情况相反,这是因中介效应造成的。 即N原子上的孤对电子与C=O的电子发生重 叠(p- 共轭),使电子云密度平均化,造成C=O 键力常数降低,故使吸收峰频率移向低波数。

红外光谱(IR)

红外光谱(IR)


k 大,化学键的振动波数高 。
δ
1 2c
K
如:K值:单键4-6×102N/m < 双键8-10×102N/m < 叁键12-18×102 N/m
kCC(2222cm-1) > kC=C(1667cm-1) > kC-C(1429cm-1)(质量相近)

如:
质量m大, μ 增大,化学键的振动波数低 。
远红外
(ΔE=0.05~0.005ev; =25-250μm)
红外光谱区
区域 近红外 中红外 远红外 λ(μm) 0.75~2.5 2.5~50 50~1000 σ(cm-1 ) 13000 ~4000 4000~200 200~10 ν (Hz) 4.0×1014 ~ 1.2×1014 1.2×1014 ~ 6.0×1012 6.0×1012 ~ 3.0×1011 能级跃迁类型
R—C
3
⑥ 费米共振
一基团的倍频或合频与另一基团的基频相近,且具有相同的对称性时,他们可能 产生共振,使谱带分裂,并使强度很弱的倍频或合频谱带变得异常强,这一现象称为 费米共振。 2780cm-1 O 2700cm-1 如: C-H伸缩:2800cm-1
—C—H
C-H的面内弯曲(1400cm-1)的第一倍频:2700~2800cm-1
E c h c
波长:m,cm;h-普朗克常数 波数:σ =1/ ——横坐标 红外吸收谱带的强度——纵坐标 E分子=E电子+E振动+E转动 紫 外 红外
(ΔE=0.05~1ev; =1.252 -125μm)
(ΔE=1~20ev; =0.06-1.25μm)
1942cm-1

O
电负性增强,频率增大

红外光谱(IR)分析copy

红外光谱(IR)分析copy

与红外光谱比较,Raman光谱用于有机化合 物分析有一定优点。
∗因Raman光谱与红外光谱的选择定则不同,
对红外吸收很弱的C≡C、C=C、C-S、S-S等 键的伸缩振动及其它对称振动,都有很强的 Raman散射光。
∗拉曼光谱的另一大优点是不要求样品具有
光透性,可以很容易地得到浑浊样品的拉曼光 谱。 Raman光谱制样简单,很多情况下样品不 需处理,粉、块、薄膜状的固体、液态、溶 液及溶液中的沉淀物均可直接得到散射光谱。 特别是FI-Raman光谱可用作合适的非破 坏现场测试方法,在有机化合物、高分子材 料、医学、文物保护和生物分子研究中的应用 具有其独到之处。
∗特别重要的是:可用水作溶剂。(水是弱的散射
体)因此有利于生物分子、络合物、水污染等问题 的研究。 水分子是一种极性分子,有十分明显的红外吸收 谱带,要得到含水样品的红外吸收光谱却很困难。 相反,水分子的拉曼光谱信号很弱,可以较容易 地得到含水样品的拉曼光谱。因此,拉曼光谱可被 广泛地用于研究含水分的生物体系中,作为一种鉴 别物质结构的分析测试手段。
(问题:键力常数K还表明了红外谱峰位置与什 么因素有密切的关系?)
1-2 多原子分子的振动 在多原子分子中,由于组成原子数目多,以 及分子中原子排布情况不同,故多原子分子的 振动光谱远比双原子分子复杂得多。
1-4 影响峰位变化的因素 虽然基团吸收峰的频率主要由原子的质量和 原子的力常数决定,但基团的特征吸收峰并不 能固定在一个频率位置上,而是在一定范围内 波动。 (为什么?) 分子内部结构和外部环境的改变都可使其频 率发生改变。
4. 空间效应: (1)环状化合物的环张力效应:环张力越大,羰 基νC=O频率越高。 环张力 四元环 > 五元环 > 六元环 (2)空间位阻效应:空间位阻使羰基与双键之间 的共轭受限制,故使νC=O频率增高。 5. 氢键效应:氢键的形成,通常可使伸缩振动 频 率向低波数方向移动。

红外光谱 (IR)

红外光谱 (IR)
正己烯中C=C键伸缩振动频率实测值为1652 cm-1
16:13:34
2. 非谐振子:
*真实分子并非严格遵守谐振子规律, 其 势能曲线不是抛物线。
*由量子力学求得非谐振子的能级为:
E振=(V+1/2) ν- -(V+1/2)2Xe ν-
式中V:振动量子数, 其值可取0, 1, 2….
Xe:非谐性修正系数
(二).多原子分子的振动类型
2. 分子振动自由度与峰数
*基本振动的数目称为振动自由度; 由N个原子构成的分子,其总自由度 为3N个。
*分子作为一个整体,其运动状态可 分为:平动、转动和振动。
*分子自由度数(3N)=平动自由度+ 转动自由度+振动自由度
*振动自由度=分子自由度数(3N)(平动自由度+转动自由度)
(1) 伸缩振动: 以ν表示, 又可分: 对称(νs) 不对称(νas)
(2) 弯曲振动:以δ表示, 又可为4种。 面内弯曲振动δ ip:剪式;平面摇摆 面外弯曲振动δ 0.0.p:扭曲;非平面摇摆
νas > νs> δ S > δ 0.0.p
亚甲基的振动模式:
谱图解析——正己烷
在 2962cm-1 处 的 峰 是 CH3 基 团的不对称伸缩振动。这种 不对称伸缩振动范围 2962±10cm-1 , 事 实 上 , 存 在两个简并的不对称伸缩振 动(显示其中一个)。
*振动频率(ν)是键的力常数(K)及两 个原子(mA与mB)的质量的函数。
这些式子表明:双原子分子的振动频率 (波数)随着化学键力常数的增大而 增加, 同时也随着原子折合质量的 增加而降低。
表: 某些键的伸缩力常数(毫达因/埃)
✓ 例: ✓ 例:

第三章红外光谱IR

第三章红外光谱IR

烷烃吸收峰
正己烷的红外光谱图
2,2,4-三甲基戊烷的红外光谱图
2、不饱和烃
• 烯烃 • 炔烃 • 芳香烃
2、1 烯烃 烯烃双键的特征吸收
影响双键碳碳伸缩振动吸收的因素
• 对称性:对称性越高,吸收强度越低。 • 与吸电子基团相连,振动波数下降,吸
收强度增加。 • 取代基的质量效应:双键上的氢被氘取
代后,波数下降10-20厘米-1。质量效应 • 共轭效应:使波数下降约30厘米-1 。
1-己烯的红外光谱图
~3060cm-1: 烯烃C—H伸缩振动;~1820:910cm-1倍频; ~1650cm-1: C=C伸缩振动;~995,905cm-1: C=CH2 非平面摇摆振动
顺式和反式2,2,5,5-四甲基己烯红外光谱 a 顺式 b 反式
v~
=
1
——
K
2C M
M = m1 m2 m1 + m2
双原子分子红外吸收的频率决定于折合质量和键力常数。
C-H C-C C-O C-Cl C-Br C-I
-1 cm
3000
1200 1100
800
550
500
v cm-1
力常数/g.s-2
CC 2200~2100
12~18105
C=C 1680~1620
C-H面外弯曲振动吸收峰位置(cm-1) 670
770-730,710-690 770-735
810-750,710-690 833-810
780-760,745-705 885-870,825-805 865-810,730-675
810-800 850-840 870-855
870
各类取代苯的倍频吸收和面外弯曲振动吸收

红外光谱(IR)(InfraredSpectroscopy)

红外光谱(IR)(InfraredSpectroscopy)

红外光谱( I R )( Infrared Spectroscopy )第一节:概括1、红外汲取光谱与紫外汲取光谱同样是一种分子汲取光谱。

红外光的能量(△ E=0.05-1.0ev )较紫外光(△ E=1-20ev )低,当红外光照耀分子时不足以惹起分子中价电子能级的跃迁,而能惹起分子振动能级和转动能级的跃迁,故红外汲取光谱又称为分子振动光谱或振转光谱。

2、红外光谱的特色:特色性强、合用范围广。

红外光谱对化合物的判定和有机物的构造剖析拥有鲜亮的特色性,构成化合物的原子质量不一样、化学键的性质不一样、原子的连结序次和空间地点不一样都会造成红外光谱的差异。

红外光谱对样品的合用性相当宽泛,不论固态、液态或气态都可进行测定。

3、红外光谱波长覆盖地区:0.76 mm ~ 1000mm.红外光按其波长的不一样又区分为三个区段。

(1)近红外:波长在 0.76-2.5mm 之间(波数 12820-4000cm-1)(2)中红外:波长在(在 4000-400 cm-1 )往常所用的红外光谱是在这一段的(,即 4000-660 cm-1 )光谱范围,本章内容仅限于中红外光谱。

( 3)远红外:波长在25~1000mm(在400-10 cm-1 )转动光谱出此刻远红外区。

4、红外光谱图:当物质分子中某个基团的振动频次和红外光的频次同样时,分子就要汲取能量,从本来的振动能级跃迁到能量较高的振动能级,将分子汲取红外光的状况用仪器记录,就获得红外光谱图。

5、红外光谱表示方法:( 1)红外光谱图波数红外光谱图以透光率T %为纵坐标,表示汲取强度,以波长l ( mm)s (cm-1)为横坐标,表示汲取峰的地点,现主要以波数作横坐标。

波数是或频次的一种表示方法(表示每厘米长的光波中波的数量)。

经过汲取峰的地点、相对强度及峰的形状供给化合物构造信息,此中以汲取峰的地点最为重要。

(2)将汲取峰以文字形式表示:以下列图可表示为, 3525cm-1(m),3097cm-1(m), 1637cm-1(s) 。

红外光谱分析(IR)实验

红外光谱分析(IR)实验

仪器分析实验实验名称:红外光谱分析(IR)实验学院:化学工程学院专业:化学工程与工艺班级:姓名:学号:序号:12指导教师:日期:2012年5月31日一、实验目的1、掌握溴化钾压片法制备固体样品的方法;2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法;3、初步学会对红外吸收光谱图的解析。

二、实验原理红外光是一种波长介于可见光区和微波区之间的电磁波谱。

波长在0.75~1000μm 。

通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。

其中中红外区是研究、应用最多的区域。

红外区的光谱除用波长λ表征外,更常用波数σ表征。

波数是波长的倒数,表示单位厘米波长内所含波的数目。

其关系式为:)(10)(41cm cm λσ=- 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为“分子指纹”。

它最广泛的应用还在于对物质的化学组成进行分析。

用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。

其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。

它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。

而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜,最常用于工业及实验研究领域,如医药鉴别,人造皮革中异氰酸酯基确定等等。

因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。

根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。

红外光谱(IR)的原理及其谱图的分析

红外光谱(IR)的原理及其谱图的分析

υC=O 1715 cm-1
υC=O 1780 cm-1 υC=O 1650 cm-1
吸电子效应:高波数移动精;选课推件 电子效应:低波数移动
2.峰强 峰的强度取决于分子振动时偶极矩的变化。 偶极矩的变化越小,谱带强度越弱。
• 极性大的基团,吸收强度大。 C=O 比 C=C 强, CN 比 C C 强 使基团极性降低的诱导效应,吸收强度减小, 使基团极性增大的诱导效应,吸收强度增加。
2、电子效应
a. 诱导效应
b. 诱导效应使基团电荷分布发生变化,从而改变
了键的力常数,使振动频率发生变化.
O 例: R C X
X= R/
H
1715 1730
OR/ 1740
Cl
F
1800 1850
精选课件
O
RCX
X= R/
H
1715 1730
OR/ 1740
Cl
F
1800 1850
• 推电子基,C=O电荷中心向O移动,C=O极性增强, 双键性降低,低频移动; • 吸电子基, C=O电荷中心向几何中心靠近, C=O极 性降低,双键性增强,高频移动。
精选课件
H2O有3种振动形式,相应的呈现3个吸收谱带。
精选课件
结论:
产生红外光谱的必要条件是:
1. 红外辐射光的频率与分子振动的频率相等,才 能发生振动能级跃迁,产生吸收吸收光谱。
2. 只有引起分子偶极矩发生变化的振动才能产生 红外吸收光谱。
精选课件
1.6 IR光谱得到的结构信息
1 峰位:吸收峰的位置(吸收频率) 2 峰强: 吸收峰的强度
化学 键
C―C
C=C
C≡C
键长 (nm)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、联用技术
GC/FTIR(气相色谱红外光谱联用) (气相色谱红外光谱联用)
LC/FTIR(液相色谱红外光谱联用) (液相色谱红外光谱联用)
干涉图
FTS
光谱图
傅里叶变换红外光谱仪工作原理图
FI-IR光谱获得过程如下图所示意: FI-IR光谱获得过程如下图所示意 光谱获得过程如下图所示意
背景干涉图
样品干涉图
2. 优点
灵敏度高,检出限可达10-9~10-12g; 分辨本领高,波数精度可达0、01cm-1; 测定精度高,重复性可达0、1%; 扫描速度快,适于对快速反应过程的追踪,也便 于和色谱法联用。
b.糊状法: 糊状法:
研细的固体粉末和石蜡油调成糊状,涂在两盐窗上,进行测试。 研细的固体粉末和石蜡油调成糊状,涂在两盐窗上,进行测试。此 法可消除水峰的干扰。液体石蜡பைடு நூலகம்身有红外吸收, 法可消除水峰的干扰。液体石蜡本身有红外吸收,此法不能用来研究饱 和烷烃的红外吸收。 和烷烃的红外吸收。
c.薄膜法: 薄膜法: 薄膜法
2、各种物相样品制样方法 、
2、常规制样方法 (1) 固体样品的制备 a.压片法: 压片法:
200mg 将 1~2mg 固 体 试 样 与 200mg 纯 KBr 研 细 混 合 , 研 磨 到 粒 度 小 于 2μm,在油压机上压成透明薄片,即可用于测定。 在油压机上压成透明薄片,即可用于测定。
高分子试样——加热熔融 加热熔融——涂制或压制成膜; 涂制或压制成膜; 高分子试样 加热熔融 涂制或压制成膜 高分子试样——溶于低沸点溶剂 溶于低沸点溶剂——涂渍于盐片 涂渍于盐片——挥发除溶剂 高分子试样 溶于低沸点溶剂 涂渍于盐片 挥发除溶剂
(2) 液体样品的制备 液膜法: a. 液膜法: 路中进行测试。 b. 液体吸收池法: 液体吸收池法: 对于低沸点液体样品和定量分析,要 用固定密封液体池。制样时液体池倾斜放置,样品从下口注入, 直至液体被充满为止,用聚四氟乙烯塞子依次堵塞池的入口和 出口,进行测试。 c. 涂片法:粘度大的液体样品直接涂于溴化钾片上 对沸点较高的液体,直接滴在两块盐片之间, 形成没有气泡的毛细厚度液膜,然后用夹具固定,放入仪器光
红外光谱实验技术
一、仪器类型与结构
二、制样方法 三、联用技术
参考书:《红外光谱分析与新技术》
一、仪器类型与结构
1.两种类型:色散型 干涉型(付立叶变换红外光谱仪)
内部结构
Nicolet公司的 AVATAR 360 FT-IR
迈克尔干涉仪工作原理图
傅里叶变换红外光谱仪结构框图
干涉仪 样品室 检测器 显示器 光源 计算机 绘图仪
3. 仪器维护与简单故障排除
保持干燥洁净、室温维持18--25˚C
二、制样方法
1、对样品的要求 (1) 试样应该是单一组分的纯物质,纯度应>98%,便于 与纯化合物的标准进行对照。多组分试样应在测定前尽量预 先用分馏、萃取、重结晶、区域熔融或色谱法进行分离提纯。 (2) 试样中不应含有游离水。水本身有红外吸收,会严重 干扰样品谱,而且还会侵蚀吸收池的盐窗。 (3) 试样的浓度和测试厚度应选择适当,以使光谱图中的 大多数吸收峰的透射比处于10%~80%范围内。
4、特殊实验技术
a.全反射法
全反射附件的使用并不复杂,装样时只要把样品与全反射棱镜紧密贴 合即可(但应注意;KR5—5晶体有毒且质地柔软、易擦毛和变形)。
b.漫反射法
当光入射到硫松的固态样品表面时,除有一部分被样品表面立即反射出 来(称为镜反射光之外,其余的入射光在样品表面产生漫射,或在样品微粒之 间辗转反射逐渐衰减,或穿入内层后再拆回的散射。这些接触样品微粒表面 后被漫射或散射出来的光具有吸收一衰减特性,这就是漫反射产生光谱的基 本原因。漫反射附件的作用就是最大限度地把这些满、散射出来的光能收聚 起来送入检测器,使得到具有良好信噪比的光谱信号。
相关文档
最新文档