红外光谱(FTIR)实验报告
红外光谱实验报告

红外光谱实验报告一、实验目的1、了解红外光谱的基本原理和应用。
2、掌握红外光谱仪的操作方法。
3、学会对红外光谱图进行分析和解读,确定样品的官能团和结构。
二、实验原理红外光谱是一种基于分子振动和转动能级跃迁产生的吸收光谱。
当一束具有连续波长的红外光通过物质时,物质分子中的某些基团会吸收特定波长的红外光,从而在红外光谱图上出现吸收峰。
不同的官能团在红外光谱中具有特定的吸收频率和吸收强度,通过对这些吸收峰的位置、形状和强度的分析,可以推断出分子的结构和化学键的类型。
分子的振动形式可以分为伸缩振动和弯曲振动。
伸缩振动是指原子沿键轴方向的伸长和缩短,而弯曲振动则是指原子在键轴垂直方向的弯曲。
常见的官能团如羟基(OH)、羰基(C=O)、氨基(NH₂)等都有其特征的红外吸收峰。
三、实验仪器与试剂1、仪器:傅里叶变换红外光谱仪(FTIR)、压片机、研钵、干燥器。
2、试剂:溴化钾(KBr,光谱纯)、待测样品(如苯甲酸、乙醇等)。
四、实验步骤1、样品制备(1)固体样品:将待测样品与干燥的 KBr 按照一定比例(通常为1:100 至 1:200)在研钵中充分研磨混合,直至形成均匀的粉末。
然后将粉末放入压片机中,施加一定的压力制成透明的薄片。
(2)液体样品:将少量待测液体滴在两个 KBr 盐片之间,使其形成均匀的液膜。
2、仪器操作(1)打开红外光谱仪电源,预热 30 分钟至仪器稳定。
(2)设置仪器参数,如扫描范围、分辨率、扫描次数等。
(3)将制备好的样品放入样品室,进行红外光谱扫描。
3、数据处理(1)获取扫描得到的红外光谱图。
(2)对光谱图进行基线校正、平滑处理等,以提高数据的质量和准确性。
五、实验结果与分析1、苯甲酸的红外光谱分析(1)在 3000 2500 cm⁻¹范围内,出现了较宽的 OH 伸缩振动吸收峰,表明存在羧基中的羟基。
(2)在 1700 1680 cm⁻¹处有强烈的 C=O 伸缩振动吸收峰,证实了羧基的存在。
实验报告红外光谱

一、实验目的1. 了解红外光谱的基本原理和操作方法。
2. 掌握红外光谱在有机化合物结构分析中的应用。
3. 通过对样品的红外光谱分析,判断其结构特征。
二、实验原理红外光谱是利用分子对红外光的吸收特性来研究分子结构和化学键的一种方法。
当分子吸收红外光时,分子内部的振动和转动能级发生变化,导致分子振动频率和转动频率的变化。
根据分子振动和转动频率的不同,红外光谱可以分为三个区域:近红外区、中红外区和远红外区。
中红外区是红外光谱分析的主要区域,因为它包含了大量的官能团特征吸收峰。
三、实验仪器与试剂1. 仪器:红外光谱仪、样品池、电子天平、移液器、干燥器等。
2. 试剂:待测样品、溴化钾压片剂、溶剂等。
四、实验步骤1. 样品制备:将待测样品与溴化钾按照一定比例混合,制成压片剂。
2. 样品测试:将制备好的样品放入样品池,置于红外光谱仪中,进行光谱扫描。
3. 数据处理:将扫描得到的光谱数据进行分析,识别特征吸收峰,判断样品的结构特征。
五、实验结果与分析1. 样品A的红外光谱分析(1)在3350cm-1附近出现一个宽峰,说明样品A中含有O-H键。
(2)在2920cm-1和2850cm-1附近出现两个尖锐峰,说明样品A中含有C-H键。
(3)在1720cm-1附近出现一个尖锐峰,说明样品A中含有C=O键。
(4)在1230cm-1附近出现一个尖锐峰,说明样品A中含有C-O键。
根据以上分析,样品A可能为含有O-H、C=O和C-O键的有机化合物。
2. 样品B的红外光谱分析(1)在3350cm-1附近出现一个宽峰,说明样品B中含有O-H键。
(2)在2920cm-1和2850cm-1附近出现两个尖锐峰,说明样品B中含有C-H键。
(3)在1640cm-1附近出现一个尖锐峰,说明样品B中含有C=C键。
(4)在1040cm-1附近出现一个尖锐峰,说明样品B中含有C-O键。
根据以上分析,样品B可能为含有O-H、C=C和C-O键的有机化合物。
红外吸收光谱分析法FTIR

光谱解析难度大
红外光谱的复杂性较高,需要专业的 知识和技能进行解析,对分析人员的 要求较高。
仪器成本高
FTIR仪器的制造成本较高,使得其普 及和应用受到一定限制。
测试时间较长
与一些其他分析方法相比,FTIR的测 试时间可能较长,需要更多的时间来 完成分析。
未来发展前景
提高检测灵敏度和分辨率 通过改进仪器性能和技术,提高 FTIR的检测灵敏度和分辨率,使 其能够更好地应用于微量样品和 高精度分析。
环境监测
FT-IR可以用于环境监测领域, 如气体分析、水质分析、土壤
分析等。
02 ftir仪器组成
光源
光源是红外傅里叶变换红外光 谱仪(ftir)中的重要组成部分, 负责提供足够能量和合适波长 的红外辐射。
常见光源有硅碳棒、陶瓷气体 放电灯、远红外激光等。
光源的选择直接影响ftir的灵敏 度和分辨率,因此需要根据实 验需求选择合适的光源。
小型化和便携化 为了方便现场快速检测和实时监 测,FTIR仪器的小型化和便携化 成为一个重要的发展方向。
拓展应用领域 随着FTIR技术的不断成熟和普及, 其应用领域将会进一步拓展,包 括生物医学、环境监测、食品安 全等领域。
智能化和自动化 通过引入人工智能和自动化技术, 实现FTIR分析的智能化和自动化, 提高分析效率和准确性。
基频峰
分子振动能级跃迁产生的谱线,是红外光谱中最 强的峰。
特征峰
与分子中特定化学键或振动模式对应的峰,可用 于鉴定化合物结构。
谱图解析方法
峰位置分析
通过分析峰的位置,确定特定化学键或基团的存在。
峰强度分析
通过分析峰的强度,了解分子中特定化学键或基团的相对含量。
峰形分析
红外光实验报告

1. 了解红外光的特性及其在生活中的应用。
2. 掌握红外光谱仪的基本原理和操作方法。
3. 通过实验,分析红外光谱图,了解不同物质的分子结构。
二、实验原理红外光是一种波长介于可见光和微波之间的电磁波,其波长范围为0.78~1000μm。
红外光具有穿透力强、热效应显著等特点。
红外光谱仪是一种利用红外光与物质相互作用,通过测量物质对红外光的吸收情况,分析物质分子结构的光谱分析仪器。
三、实验仪器与试剂1. 仪器:傅里叶变换红外光谱仪(FTIR)、样品池、KBr压片机、样品等。
2. 试剂:KBr(溴化钾)、蒸馏水、待测样品等。
四、实验步骤1. 样品制备:将待测样品与KBr按一定比例混合,压制成片,备用。
2. 光谱采集:将制备好的样品片放入红外光谱仪的样品池中,进行光谱采集。
3. 数据处理:对采集到的光谱数据进行处理,得到红外光谱图。
4. 分析与讨论:根据红外光谱图,分析样品的分子结构,讨论实验结果。
五、实验结果与分析1. 样品A(聚乙烯醇)的红外光谱图显示,在3400cm-1附近出现宽吸收峰,表明样品中含有羟基;在1100cm-1附近出现吸收峰,表明样品中含有酯基;在900cm-1附近出现吸收峰,表明样品中含有醇基。
2. 样品B(丙三醇)的红外光谱图显示,在3400cm-1附近出现宽吸收峰,表明样品中含有羟基;在1050cm-1附近出现吸收峰,表明样品中含有醚基;在700cm-1附近出现吸收峰,表明样品中含有碳氢键。
3. 样品C(乙醇)的红外光谱图显示,在3400cm-1附近出现宽吸收峰,表明样品中含有羟基;在1100cm-1附近出现吸收峰,表明样品中含有醚基;在760cm-1附近出现吸收峰,表明样品中含有碳氢键。
1. 红外光谱仪是一种有效的分析手段,可以用来研究物质的分子结构。
2. 通过分析红外光谱图,可以了解不同物质的官能团、化学键等信息。
3. 在实际应用中,红外光谱仪广泛应用于化工、医药、食品、环保等领域。
光谱分析实验报告

一、实验目的1. 了解紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR)和荧光光谱仪的基本原理、主要用途和实际操作过程。
2. 掌握玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固体发光材料荧光光谱的测试方法。
3. 学习分析影响测试结果的主要因素。
二、实验原理1. 光谱分析是利用物质对不同波长光的吸收、发射和散射特性来研究物质的组成和结构的一种方法。
2. 紫光/可见光光度计:当光波与物质相互作用时,物质会吸收一部分光能,产生吸收光谱。
紫外和可见光的能量接近于电子能级之间的能量差,故紫外与可见光吸收光谱起源于价电子在电子能级之间的跃迁。
3. 傅里叶变换红外光谱仪(FTIR):当红外光照射到化合物上时,分子会吸收一部分光能转变为分子的震动能量或转动能量。
通过分析吸收光谱中的特征峰,可以推知被测物的结构。
4. 荧光光谱仪:当物质吸收光能后,由基态跃迁至激发态,激发态是不稳定的,寿命极短,激发态分子会迅速以向周围散热或再发射电磁波(荧光或磷光)的方式回到基态。
通过激发光谱和发射光谱,可以研究物质的性质。
三、实验仪器与试剂1. 仪器:紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR)、荧光光谱仪、样品池、光源、单色器、探测器等。
2. 试剂:玻璃样品、薄膜样品、固体粉末样品、固体发光材料样品、标准样品等。
四、实验步骤1. 紫光/可见光光度计实验(1)开启仪器,预热30分钟。
(2)选择合适的波长,设置合适的参比溶液。
(3)依次测量样品溶液的吸光度。
2. 傅里叶变换红外光谱仪(FTIR)实验(1)开启仪器,预热30分钟。
(2)将样品置于样品池中。
(3)设置合适的扫描参数,进行红外光谱扫描。
3. 荧光光谱仪实验(1)开启仪器,预热30分钟。
(2)将样品置于样品池中。
(3)设置合适的激发光波长和发射光波长。
(4)依次测量样品的荧光强度。
五、实验数据记录与处理1. 记录实验过程中测得的吸光度、红外光谱、荧光强度等数据。
红外光谱实验实验报告

一、实验目的1. 了解红外光谱的基本原理和应用领域。
2. 掌握红外光谱仪的操作方法和实验技巧。
3. 通过红外光谱分析,对样品进行定性鉴定。
二、实验原理红外光谱(Infrared Spectroscopy)是一种利用分子对红外辐射的吸收特性进行物质定性和定量分析的技术。
当分子中的化学键振动和转动时,会吸收特定频率的红外光,从而产生红外光谱。
红外光谱具有特征性强、灵敏度高、样品用量少等优点,广泛应用于有机化学、材料科学、生物医学等领域。
三、实验仪器与试剂1. 仪器:红外光谱仪、样品池、紫外-可见分光光度计、电子天平、干燥器等。
2. 试剂:待测样品、标准样品、溶剂等。
四、实验步骤1. 样品制备:将待测样品研磨成粉末,过筛后备用。
2. 样品池准备:将样品池清洗干净,晾干后备用。
3. 样品测试:将样品放入样品池中,进行红外光谱扫描。
扫描范围为4000-400cm-1,分辨率设置为2cm-1。
4. 数据处理:将得到的红外光谱数据导入数据处理软件,进行基线校正、平滑处理等操作。
5. 定性分析:将处理后的红外光谱与标准样品光谱进行比对,结合化学知识,对样品进行定性鉴定。
五、实验结果与分析1. 样品A:经过红外光谱分析,样品A的特征峰与标准样品光谱一致,鉴定为化合物A。
2. 样品B:样品B的红外光谱特征峰与标准样品光谱存在差异,但经过化学知识分析,推断样品B为化合物B。
3. 样品C:样品C的红外光谱特征峰与标准样品光谱一致,鉴定为化合物C。
六、实验讨论与心得1. 实验过程中,样品池的清洁度对实验结果有较大影响。
实验前需确保样品池干净、干燥。
2. 在数据处理过程中,基线校正和平滑处理是提高光谱质量的重要步骤。
3. 红外光谱分析具有较好的准确性和可靠性,但在进行定性鉴定时,还需结合化学知识进行分析。
4. 实验过程中,注意红外光谱仪的操作安全,避免仪器损坏。
5. 本实验加深了对红外光谱原理和操作方法的理解,提高了样品分析能力。
傅里叶变换红外光谱(ftir)

傅里叶变换红外光谱(FTIR)是一种广泛应用于化学、生物学和材料科学领域的分析技术。
它利用样品对红外光的吸收和散射来确定样品的化学成分和结构。
傅里叶变换红外光谱分析的过程涉及到复杂的光学原理和数学算法,其深度和广度远超一般人的想象。
让我们从简单的红外光谱开始。
红外光谱是指物质在接受红外辐射后发生的吸收、透射或反射现象。
这些现象与物质的分子运动和振动有关,因此可以通过观察红外光谱图来了解物质的分子结构、功能团及化学键等信息。
红外光谱是一种非常有用的分析手段,能够对各种物质进行快速、无损的分析,因此在化学、材料科学、生命科学等领域被广泛应用。
我们可以深入了解傅里叶变换红外光谱。
傅里叶变换(FT)是一种数学方法,用于将信号在时域和频域之间进行转换。
在傅里叶变换红外光谱中,FT将时间域的红外光谱信号转换为频率域的光谱信息,从而能够更准确地分析样品的化学成分和结构。
傅里叶变换的原理和算法需要深入的数学和物理知识来支撑,通过FTIR技术获得的光谱数据也需要复杂的数据处理和解释。
让我们讨论FTIR在化学和材料科学中的应用。
FTIR技术可以用于分析化合物的官能团、结构和构象,从而在有机化学合成、聚合物材料研究、医药化学等领域发挥重要作用。
FTIR还可以用于检测样品的纯度、鉴定杂质和表征材料的特性,因此在材料科学、制药工业、环境监测等领域有着广泛的应用价值。
我想共享一下我对FTIR的个人观点和理解。
作为一种高级的红外光谱分析技术,FTIR需要掌握复杂的原理和操作技巧,但其所获得的化学信息和结构信息也是非常丰富和准确的。
在我看来,FTIR不仅是一种分析手段,更是一种深入探索物质本质的工具,它的应用范围和研究意义将会越来越广泛,对于推动化学和材料科学的发展将会发挥重要作用。
总结而言,傅里叶变换红外光谱(FTIR)作为一种高级的分析技术,其深度和广度远超一般的红外光谱分析,需要深入的理论基础和实践技能来支撑。
通过FTIR技术可以获得大量的化学和结构信息,对于化学、材料科学和生命科学领域具有重要的应用价值。
傅里叶变换红外(FTIR)光谱专题实验

傅里叶变换红外(FTIR)光谱专题实验实验一、红外吸收光谱仪的结构及基本操作(老师讲解)实验二、薄膜样品的层数定量分析二、实验准备准备好某种塑料薄膜,分别制成1、2、3、4层样品。
三、实验步骤1)开机步骤a.开启计算机b.打开仪器c.打开Perkinelmer Spectrum软件2)测定步骤a.设置合适的各参数(扫描范围在4000-400)b.背景扫描c.用强磁力样品架,依次扫描准备好的样品d.对图谱进行数据处理并保存至文件夹四、注意事项a.所制薄膜样品不可太厚或太薄。
过薄或浓度过低常使弱的甚至中等强度的吸收谱带显示不出来;如果样品过厚或过浓会使许多主要吸收谱带彼此连成一片(或峰过宽),看不出准确的波数位置和其精细结构。
b.样品中不应有游离水c.样品表面反射回引起能量损失,造成普带变形。
并产生干涉条纹,可使样品表面粗糙些来消除。
d.样品扫描过程中禁止打开样品舱盖五、数据处理图11、对图谱进行基线校正,并标出个谱峰的位置对照红外波谱数据解析,了解所标普带表示的化学键2、分析所实验样品得结果并与标准样品对照,考察其匹配程度。
分析:由上图1红外光谱对照红外数据推知约3600处的吸收为自由,峰尖很大可能是材料表面有水分所导致。
重点是该材料在400~4000的特征吸收主要有3组,分别为峰为2912(与2849是一组)、1466和722四处峰,其中2912对应于反对称伸缩振动,2849对称伸缩振动(并由图可知材料中基团浓度较高,该组振动强度很大);1466对应弯曲振动;722处的峰是()亚甲基平面摇摆振动。
据此可初步判断该材料为聚乙烯。
3、薄膜层数计算由origin软件经积分处理得到薄膜层数与特征吸收峰高度和薄膜层数与特征吸收面积数据表(未转换成吸收光谱):层数特征吸收峰高特征吸收峰面积1 89.85 283072.2852 80.64 238567.813 73.26 200488.654 66.55 168540.35x 55.24 127166.7薄膜层数与特征吸收峰高度和薄膜层数与特征吸收面积标准工作曲线如下图2:图2Lambert-beer定律式中::光度;:透射率;b:厚度;c:表示浓度;:摩尔吸光系数,单位;据此建立吸光度-厚度d的标准工作曲线,得到未知薄膜的厚度.不同层数塑料薄膜在722处特征峰的吸光度值如下表:1 0.483462 0.957033 1.360514 1.68825用Origin软件处理得到塑料薄膜层数与特征峰吸光度的标准工作曲线如图3图3用Origin拟合得n-A线性关系为:n=-0.27505+2.47261A.相关度R=0.99672,显著性概率P=0.00328.由此可见该拟合结果的线性相关性很强,相关度为99.672%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外光谱仪调查及实验报告
第一部分红外光谱仪调查
1.1 简介
傅里叶红外光谱仪:
全名为傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR Spectrometer),是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。
傅里叶红外光谱仪不同于色散型红外分光的原理,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。
滤光片型近红外光谱仪器:
滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。
滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。
仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。
色散型近红外光谱仪器:
色散型近红外光谱仪器的分光元件可以是棱镜或光栅。
为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。
根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。
傅里叶变换型近红外光谱仪器:
傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。
其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采
样系统,通过数模转换器把检测器检测到的干涉光数字化,并导入计算机系统;⑤计算机系统和显示器,将样品干涉光函数和光源干涉光函数分别经傅里叶变换为强度俺频率分布图,二者的比值即样品的近红外图谱,并在显示器中显示。
1.2 原理
光源发出的光被分束器(类似半透半反镜)分为两束,一束经透射到达动镜,另一束经反射到达定镜。
两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。
干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。
1-外置光源 2-内置光源(溴钨灯) 3-可变光阑 4-准直镜 5-平面反射镜 6-精密平移台
7-慢速电机 8-动镜 9-干涉板 10-补偿板 11-定镜 12-接收器1 13-参考光源
14-半透半反镜 15-平面反射镜 16-接收器2 17-光源转换镜(物镜)
第二部分实验部分
2.1 实验样品及仪器条件
尿素,干燥箱中保存良好的KBr,无水乙醇,VERTEX70 TGA-IR,
768YP-15A粉末压片机,压片模具
使用环境:电源电压85~265V,47~65Hz
温度范围:18~35︒C 湿度范围:小于70%
仪器室须保持无尘,无腐蚀性气体,无强烈振动。
2.2 实验步骤
①开通电源,开启仪器加电,30秒自检通过后至少等待10分钟;
②开启电脑,打开OPUS软件,检查电脑与仪器主机通讯是否正常(桌面右下角的网络本地连接已连接)
③设定适当参数,检查仪器信号是否正常,若不正常需要查找原因并进行相应的处理,正常后待仪器稳定半小时后方可进行测量;
④将KBr和尿素以100:1的比例加入研钵中研磨,直至混合物成粉末状,把混合研好的粉末适量放在专用模具上,在油压机上压片(压力为15~16MPa,时间为1分钟);
⑤将制好的样片置于样品架上,采集样品的透射红外光谱图,并保存谱图;
⑥对谱图进行分析,并与标准谱图比较;
⑦移走样品,确保样品仓清洁,用无水乙醇蘸洗模具,干燥后将模具、KBr,尿素等放回原位;
⑧关闭软件,电脑,切断电源。
第三部分数据处理及分析
3.1 样品的图谱
D:\数据\徐敏\学生红外实验\14环境A1\2组-3.0 2组-3 2组-32015-6-30
500
1000
1500200025003000
3500Wavenumber cm-1
203040506070
80
T r a n s m i t t a n c e [%]
Page 1/1
标准的图谱
3.2 图谱分析
尿素分子式CO(NH)2,结构式:
不饱和度Ω=1+1+(2-4)/2=1
1680~1630cm-1是C=O伸缩振动吸收区域,符合图谱中1667.37处吸收峰,由此可推断出1624.36处与1667.37吸收峰峰形相同,应该也是C=O吸收峰;
样品图谱在3600cm-1~3100cm-1有吸收峰,所以是N-H伸缩振动吸收,同时,N-H还进行面外弯曲振动吸收900~650cm-1,符合样品图谱中186cm-1处吸收峰;
样品图谱1450处应为C-N伸缩吸收;
样品图谱指纹区1160处吸收峰应为C-N振动吸收;
综上所述,分子中含有一个C=O,未知数量N-H,C-N
3.3 总结
样品图谱中3600cm-1以后的曲线毛刺(细小的吸收峰)较多,可能是压片时有H2O没有除尽;2500cm-1
左右处有一微弱吸收峰,可能是空气中CO2混入样品;
样品图谱相比标准图谱~3400cm-1~的吸收峰峰顶不够细尖,趋于平滑,应该是将样品放入模具时样品涂布不均匀,而指纹区吸收峰透过率过高,应该是用压片是压力不够,导致样片不够透明。