关于节点电压法
节点电压法

节点电压法1. 介绍节点电压法是电路分析中常用的一种方法,通过对电路中每个节点的电压进行分析,可以得到电路中各个元件的电流及节点之间的关系。
这种方法主要基于基尔霍夫电流定律,即电路中进入节点的电流等于出节点的电流之和,利用此定律可以建立节点电压方程组,通过求解方程组可以得到电路中各个节点的电压。
2. 节点电压法的步骤节点电压法的分析步骤如下:2.1 确定参考节点首先,在电路中选择一个节点作为参考节点,将其电压设为0V。
通常选择接地节点作为参考节点。
2.2 标记其他节点的电压对于除参考节点外的每一个节点,都用一个未知变量来表示其电压值,并用标号或符号标记。
2.3 列节点电流方程基于基尔霍夫电流定律,对于每个节点,列出关于该节点的电流方程。
电流方程是根据所连接的元件和电压源的电流关系得到的。
2.4 列电压方程对于每一个节点,利用电压源的正负端的电位差与该节点电压的关系,列出电压方程。
2.5 解方程组将所得到的所有电流方程和电压方程组成一个方程组,通过求解这个方程组可以得到各个节点的电压值。
3. 举例说明下面以一个简单的电路进行举例,说明节点电压法的应用:电路图电路图首先,我们选择节点A作为参考节点。
然后,我们标记节点B和节点C的电压分别为Vb和Vc。
根据基尔霍夫电流定律,我们可以得到以下电流方程:•I1 = I2 + I3•I2 = I4 + I5根据电压源的正负端的电位差与该节点电压的关系,我们可以得到以下电压方程:•Vb = 5 - 10I2•Vc = 15 - 10I4将得到的电流方程和电压方程组成方程组:•I1 = I2 + I3•I2 = I4 + I5•Vb = 5 - 10I2•Vc = 15 - 10I4通过求解这个方程组,我们可以得到节点B和节点C的电压值。
进而可以计算出电路中各个元件的电流值。
4. 节点电压法的优势节点电压法具有以下优势:4.1 适用于复杂电路节点电压法可以用于分析复杂电路,无论电路中是否存在电流源或电压源,都可以通过建立方程组来求解节点电压。
电路分析方法介绍及应用-节点电压法

指针式万用表的设计 电路分析方法介绍及应用
《电路分析与实践项目化教程》
目录
CONTENTS
1 什么是节点电压法 2 节点电压法的推倒 3 节点电压法的应用
一、什么是节点电压法
节点电压法的定义
在具有n个节点的电路中,任选其中一个节点作为参考点, 其余个各节点相对参考点的电压叫做该节点的节点电压,以电路 的(n-1)个节点电压为未知数,按KCL列(n-1)个节点电流方 程联立求出节点电压,再求出其它各支路电压或电流的方法称为 节点电压法。
………………………………
G u (n1)1 10 G u (n1)2 20 G u (n1)(n1) (n1)0 iS (n1)(n1)
三、节点电压法的应用
例: 用节点电压法求图中各电阻支路电流。
三、节点电压法的应用
1、列出节点方程,整理得
节点 (11)u1 1u2 5
2u1 u2 5
2021/8/18
2021/8/18
2021/8/18
2021/8/18
2021/8/18
2021/8/18
2021/8/18
2021/8/18
2021/8/18
2021/8/18
节点电压法
总结
一、 指定电路中任一节点为参考节点,用接 地符号表示,标出各独立节点的编号;
二点 i2 i5 i6 0
u6 u20 u30 V2 V3
对节点 i3 i4 i6 iS2
(6)PTC起动器
图3-22 用PTC起动的单相异步电动机
PTC起动器又称半导体起动器,具有正温度系数的热敏电阻器 件,具有在陶瓷原料中掺入微量稀土元素烧结后制成的半导体晶 体结构。它具有随温度的升高而电阻值增大的特点,有着无触点 开关的作用。
节点电压法

称为互电导,为连接于节点 与 之间支路上的电导之和,值恒为负。
流入第 个节点的各支路电流源电流值代数和,流入取正,流出取负。
三仅含电流源时的节点法
第一步,适当选取参考点;
第二步,利用直接观察法形成方程;
第三步,求解。
四含电压源的节点法
第一类情况:含实际电压源:作一次等效变换。
c.添加约束方程:
d.求解
五含受控源时的节点法(如图3-10)
图3-10
第一步,选取参考节点;
第二步,先将受控源作独立电源处理,利用直接观察法列方程;
第三步,再将控制量用未知量表示
第四步,整理求解。
(注意:G12≠G21)
六含电流源串联电阻时的节点法(如图3-11)
图3 -11
结论:与电流源串联的电阻不出现在自导或互导中。
第二类情况:含理想电压源。
①仅含一条理想电压源支路,如图3-8。
图3-8
a.取电压源负极性端为参考点:则
b.对不含有电压源支路的节点利用直接观察法列方程:
c.求解
②含多条不具有公共端点的理想电压源支路,如图3-9。
图3- 9
a.适当选取参考点:令 ,则 。
b.虚设电压源电流为I,利用直接观察法形成方程
完备性:电路中所有支路电压都可以用节点电压表示。
二节点电压法
以独立节点的节点电压作为独立变量,根据KCL列出关于节点电压的电路方程,进行求解的过程。
建立方程的过程(如图3-7)
图3-7
第一步,适当选取参考点。
第二步,根据KCL列出关于节点电压的电路方程。
节点1:
节点2:
节点3:
节点电流法和节点电压法

节点电流法和节点电压法
节点电流法(Nodal Analysis)和节点电压法(Mesh Analysis)是电路分析中常用的两种方法,用于分析电路中的电流和电压分布。
这两种方法基于基尔霍夫定律和欧姆定律。
1. 节点电流法(Nodal Analysis):
-原理:基于基尔霍夫电流定律,该定律表明一个节点的总电流等于从该节点流出的电流之和。
-步骤:
1. 选择一个参考节点(一般称为地节点)。
2. 对于每个非参考节点,编写基尔霍夫电流方程,该方程等于该节点的进入电流之和等于离开电流之和。
3. 解这些方程以找到每个节点的电流。
-优点:特别适用于有大量电流源的电路。
2. 节点电压法(Mesh Analysis):
-原理:基于基尔霍夫电压定律,该定律表明沿着任何闭合回路的总电压降等于该回路内的总电压源之和。
-步骤:
1. 确定电路中的网(Mesh),每个网是一个简单的闭合回路。
2. 对每个网,编写基尔霍夫电压方程,该方程等于该回路内的电压源之和等于电阻和电流源引起的电压降之和。
3. 解这些方程以找到每个网格的电流。
-优点:特别适用于有大量电压源的电路。
这两种方法本质上是等效的,但在不同情况下选择使用其中一种方法可能更方便。
在实际应用中,根据电路的特点和要解决的问题,选择使用节点电流法或节点电压法。
节点电压法

09379090 葛佳音一、节点电压:指独立节点对非独立节点的电压。
二、基本指导思想用未知的节点电压代替未知的支路电压来建立电路方程,以减少联立方程的元数。
三、步骤应用基尔霍夫电流定律建立节点电流方程,然后用节点电压去表示支路电流,最后求解节点电压。
具体如下:1、选择参考节点,设独立节点电位选定参考节点和各支路电流的参考方向,并对独立节点分别应用基尔霍夫电流定律列出电流方程2、根据基尔霍夫电压定律和欧姆定律,建立用节点电位和已知的支路电阻表示支路电流的支路方程3、将支路方程和节点方程相结合,消去节点方程中的支路电流变量,代之以节点电位变量,经移项整理后,获得以两节点电位为变量的节点方程4、解方程得节点电位5、由节点电位求支路电压,进而求支路电流四、P74 例3.1应注意的细节:1、假设参考节点的原因:电压是指电路中两点A、B之间的电位差。
所以,由选取节点的电位可以表示支路电压。
2、不用考虑V1、V2谁大谁小。
可任意设一个电流方向。
但为减少出错,R2上的电流若写成(V1-V2)/R2,则默认R2上的电流朝向节点2。
3、不用考虑串并联。
这也是节点电压法的一大优势。
4、电路图中是电流源(不是电流表)。
***电流源(符号如下图):R→∞电流源的内阻相对负载阻抗很大,负载阻抗波动不会改变电流大小。
在电流源回路中串联电阻无意义,因为它不会改变负载的电流,也不会改变负载上的电压。
在原理图上这类电阻应简化掉。
负载阻抗只有并联在电流源上才有意义,与内阻是分流关系。
***电压源(如下图):R→0稳博电压源电压源就是给定的电压,随着你的负载增大,电流增大,理想状态下电压不变,实际会在传送路径上消耗,你的负载增大,消耗增多。
电压源的内阻相对负载阻抗很小,负载阻抗波动不会改变电压高低。
在电压源回路中串联电阻才有意义,并联在电压源的电阻因为它不能改变负载的电流,也不能改变负载上的电压,这个电阻在原理图上是多余的,应删去。
负载阻抗只有串联在电压源回路中才有意义,与内阻是分压关系。
2.4 节点电压法

节点电压法:以结点电压为未知量列写电路方程分析 节点电压法:以结点电压为未知量列写电路方程分析 电压为未知量 电路的方法。适用于结点较少的电路。先求出节点电 电路的方法。适用于结点较少的电路。先求出节点电 然后应用欧姆定律求出各支路电流的方法。 压,然后应用欧姆定律求出各支路电流的方法。 节点电压:在电路中选定一个参考点, 节点电压:在电路中选定一个参考点,其它节点与参 考点的电位差即为节点电压, 考点的电位差即为节点电压,方向为从独立节点指向 参考结点。 参考结点。 基本思路:选定一个参考点,以剩余(n-1)个节点电压 基本思路:选定一个参考点,以剩余 个节点电压 为未知量, 个独立节点列写KCL方程,先求出 方程, 为未知量,对(n-1)个独立节点列写 个独立节点列写 方程 节点电压,再求其他量。 节点电压,再求其他量。
例:试列写电路的节点电压方程 1 GS + 2 Us _ G4 G5 G1 G3 G2
3 (G1+G2+GS)un1-G1un2-Gsun3=GSUS (G1 +G3 + G4)un2-G1un1-G4un3 =0 (G4+G5+GS)un3-GSun1-G4un2 =-USGS
用节点电压法求图中各电阻支路电流。 例:用节点电压法求图中各电阻支路电流。
-i3+i5=-iS2
i1+i2=iS1+iS2 -i2+i4+i3=0 -i3+i5=-iS2
把支路电流用结点 电压表示: 电压表示:
iS2
1
iS1
i2 R2 R1 R4
i3 R3
2 i 4
3
i1
R5 i5 + uS _
节点电压法

二节点电压法
以独立节点的节点电压作为独立变量,根据KCL列出关于节点电压的电路方程,进行求解的过程。
建立方程的过程(如图3-7)
图3-7
第一步,适当选取参考点。
第二步,根据KCL列出关于节点电压的电路方程。
节点1:
节点2:
节点3:
第三步,具有三个独立节点的电路的节点电压方程的一般形式
第二类情况:含理想电压源。
①仅含一条理想电压源支路,如图3-8。
图3-8
a.取电压源负极性端为参考点:则
b.对不含有电压源支路的节点利用直接观察法列方程:
c.求解
②含多条不具有公共端点的理想电压源支路,如图3-9。
图3- 9
a.适当选取参考点:令 ,则 。
b.虚设电压源电流为I,利用直接观察法形成方程ห้องสมุดไป่ตู้
式中, 称为自由导,为连接到第 个节点各支路电导之和,值恒正。
称为互电导,为连接于节点 与 之间支路上的电导之和,值恒为负。
流入第 个节点的各支路电流源电流值代数和,流入取正,流出取负。
三仅含电流源时的节点法
第一步,适当选取参考点;
第二步,利用直接观察法形成方程;
第三步,求解。
四含电压源的节点法
第一类情况:含实际电压源:作一次等效变换。
如下图3-12,用网孔电流法和节点电压法列方程。
图3-3-6
网孔电流方程:
约束方程:
补充方程: ;
节点电压方程:
约束方程:
补充方程: ;
上述电路也可以列写回路电流方程,如下:
回路电流方程:
补充方程: ;
c.添加约束方程:
d.求解
节点电压法

写成一般形式为
其中G 称为节点自电导 节点自电导, 其中 11、 G22、G33称为节点自电导,它们分别是各节点全部 电导的总和。 此例中 11= G1+ G4+ G5, G22= G2 + G5+ G6, G33= 电导的总和。 此例中G G3+ G4+ G6。 G i j ( i≠j )称为节点 i 和 j 的互电导 是节点 和j 间电导总和的负 称为节点 的互电导,是节点 是节点i 称为 此例中G 值。此例中 12= G21=-G5, G13= G31=-G4 , G23= G32=- G6。 iS11、iS22、iS33是流入该节点全部电流源电流的代数和。此例 是流入该节点全部电流源电流的代数和。 中iS11=iS1,iS22=0,iS33=-iS3。
例3. 用节点电压法求图 (a)电路的电压u和支路电流i1,i2。
解:先将电压源与电阻串联等效变换为电流源与电阻并联, 如图(b)所示。对节点电压u来说 ,图(b)与图(a)等效。只需列 出一个节点方程。
(1S + 1S + 0.5S)u = 5A + 5A
解得
u=
10A = 4V 2.5S
按照图(a)电路可求得电流i1和i2
例5 用节点电压法求图电路的结点电压。
解:由于14V电压源连接到结点①和参考结点之间,结点 ①的结点电压 u1=14V成为已知量,可以不列出结点①的结点方程。考虑到8V电压源电流i 列出的两个结点方程为:
(1S)u1 + (1S + 0.5S)u2 + i = 3A (0.5S)u1 + (1S + 0.5S)u3 i = 0
整理得到:
5u1 2u2 u3 = 12V 2u1 + 11u2 6u3 = 6V u 6u + 10u = 19V 2 3 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于节点电压法
关于节点电压法:
场到路已经讲了,被冠以阳春白雪。
现在来个俗的节点电压法,不象场路之说,这在任何一本《电路》书中都有提及。
从场中得到了KVL、KCL、I = U/R、I = C dU / dt 和U = L dI / dt,接下来如何玩呢?自然是解方程,但如何能充分利用上面的条件来列出方程来呢?答案是,节点电压法和网孔电流法。
下面简单介绍节点电压法:
所谓节点电压法,首先得标定电压:选定一个参考节点,令其为零电压(通常是地线)。
然后标定所有的节点电压Uk(注意,节点电压的标定实际上就用到了KVL条件。
为何?自己想)。
标定完节点电压后,就可以利用KCL写方程了。
原则上,一个节点对应于一个方程(∑Ij = 0),其形式为:
∑(Uk - Uj)/Rj + ∑Cj d(Uk - Uj)/dt + ∑[(1/Lj)∫(Uk - Uj)dt + I0j] = 0
其中Uk 为此方程对应的那个节点电压,Uj 为邻近诸节点的电压(j 为求和变量),Rj、Cj 和Lj 为连接此节点到邻近节点的电阻、电容和电感参数,I0j 为电感上电流的初始值。
这显然是个微分-积分方程。
若要解纯微分方程的话,上述方程再对时间求。