2017春人教版高中数学必修五课件3.4 第2课时 基本不等(1)

合集下载

人教版高中数学必修五3.1不等关系与不等式公开课教学课件 (共26张PPT)

人教版高中数学必修五3.1不等关系与不等式公开课教学课件 (共26张PPT)

500 x 600 y 4000
不等关系为不等式组:
3x y
x0 y0
【提升总结】 1. 将实际的不等关系写成对应的不等 式时,应注意实际问题中关键性的文字语 言与数学符号间的正确转换.
文字语言 大于 小于 大于等于 数学符号 文字语言 数学符号 ≤ ≥


至多
至少 不少于 不多于
x 2.5 0.2 x 20 8 0.1
问题3.某钢铁厂要把长度为4000mm的钢管截成
500mm和600mm两种,按照生产的要求,600mm钢 管的数量不能超过500mm钢管的3倍.怎样写出 满足上述所有不等关系的不等式呢?
解:设截得500mm的钢管数x根,截得600mm的钢管y根,则
如果a>b,c<0,那么ac<bc. 如果a>b,c=0,那么ac=bc.
注意:不等式两边同乘一个正数,不等式方向不变; 不等式两边同乘一个负数,不等式方向相反.
思考:证明不等式的下列性质: 性质5
如果a>b,c>d,则a+c>b+d.
(同向可加性)
注:同向不等式相加,所得不等式与原不等式同向.
证明:
(开方法则)
注意:当不等式两边都是正数时,不等式两 边同时开方所得的不等式和原不等式同向. 以上这些关于不等式的事实和性质是解决 不等式问题的基本依据.
三.不等式的基本性质:
性质1 性质2
a b, b c a c
abba
使用时注意弄 清每条性质的 条件和结论.
性质3
性质4
性质5 性质6 性质7 性质8
如果a>b,b>c,那么a>c.即 (传递性)

《基本不等式(第1课时)》教学设计

《基本不等式(第1课时)》教学设计

课题:基本不等式(第1课时)一、指导思想与理论依据布鲁姆将教育目标划分为认知领域、情感领域和操作领域三个领域,共同构成教育目标体系.认知目标又分类为:记忆、理解、应用、分析、评价、创造,每个层次的要求各不相同,因此教学目标的确定应结合课程内容和学生的实际情况,符合学生的认知规律.学生是课堂中的主体,教学设计一定要从学生的认知水平出发,充分考虑学生的已有经验、学习基础、思维特点,立足于学生的“最近发展区”;用学生的眼光看数学,学生在理解的基础上,由浅入深,由感性到理性地设计问题,才能真正引导和帮助学生思考问题、分析问题和解决问题.同时《高中数学学科德育指导纲要》指出,在高中数学教学中加强德育,对于全面推进素质教育,培养社会主义的建设者和接班人具有重要意义.因此在教学中要关注学生的情感、态度和价值观,渗透德育内容.教学活动是师生积极参与、交流互动、共同发展的过程.有效的数学教学活动是学生学与教师教的统一.《普通高中数学课程标准(实验)》指出:“学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探究、动手实践、合作交流、阅读自学等学习数学的方式……”、“还应注重提高学生的数学思维能力”.本节课从学生的最近发展区出发,通过典型具体例子的分析和学生自主地观察、探索活动,亲身经历、体验发现规律的过程,学会如何去研究问题的方法,体会蕴含在其中的数学思想方法,把数学的学术形态通过适当的方式转化为学生易于接受的教育形态,培养学生交流合作的意识.二、教学背景分析(一)教学内容分析本节课的内容是人教A 版《数学(必修5)》第三章 3.4基本不等式:2a b +≤的第1课时. “基本不等式”在教学中安排3课时,第1课时的内容是基本不等式的形成、证明及其几何解释,正确把握基本不等式的结构和等号成立的条件;第2课时的内容是能用基本不等式求简单的最值问题,并理解其应用条件“正、定、等”;第3课时的内容是从实际问题中抽象出具体的基本不等式问题,并应用基本不等式处理最值问题,也就是将基本不等式作为处理优化问题的一种模型.基本不等式反映了实数的两种基本运算(即加法和乘法)所引出的大小变化.这一简单朴实、平易近人的本质,恰是这一不等式变化多端、妙用无穷的源头,体现了运算带给数的巨大力量.这一本质不仅可以从不等式的代数结构上得到表现,而且也有几何意义,由此而生发出的问题在训练学生的代数推理能力和几何直观能力上都发挥了良好的作用。

人教版高中数学必修5《基本不等式》教案

人教版高中数学必修5《基本不等式》教案

课题:基本不等式教材:《普通高中课程标准实验教科书数学必修5》3.4一、教学目标:1、探索并了解基本不等式的证明过程,了解这个基本不等式的几何意义,并掌握定理中的不等号“≥”或“≤”取等号的条件是:当且仅当这两个数相等;会用基本不等式解决简单的最大(小)值问题。

2、通过实例探究抽象基本不等式,体会特殊到一般的数学思想方法;3、通过本节的学习,体会数学来源于生活,提高学习数学的兴趣;4、培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。

二、教学重点和难点:重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式2a bab +≤的证明过程; 难点:注意基本不等式2a bab +≤等号成立条件以及应用于解决简单的最大(小)值问题。

三、教学方法:启发、探究式相结合 四、教学工具:多媒体课件五、教学过程:一、问题引入:如图是2002年在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。

你能在这个图案中找出一些相等关系或不等关系吗?这样,三角形的面积的和是2ab ,正方形的面积为22a b +。

由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥二、探究过程:1.问题探究——探究图形中的不等关系。

将图中的“风车”抽象成如图,在正方形ABCD 中有四个全等的直角三角形。

设直角三角形的两条直角边长为a,b 则正方形的边长为22a b +。

探究1:(1)正方形ABCD 的面积S=____ (2)四个直角三角形的面积和S ’=__ (3)S 及S ’有什么样的关系? ADB HFGE《几何画板》课件动画显示,当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。

问题:你能证明这个结论吗? 证明:(作差法) 因为 222)(2b a ab b a -=-+ 当b a ≠时,0)(2>-b a 当b a =时,0)(2=-b a所以,0)(2≥-b a ,即.2)(22ab b a ≥+总结结论1:一般的,如果文字叙述为:两数的平方和不小于积的2倍。

高中数学第三章不等式3.4.1基本不等式课件新人教A版必修5

高中数学第三章不等式3.4.1基本不等式课件新人教A版必修5

一二三
二、基本不等式
【问题思考】 1.填空: (1)基本不等式
①当 a>0,b>0 时,有������+2������ ≥ ������������,当且仅当 a=b 时,等号成立;
②对于正数 a,b,常把������+2������叫做 a,b 的算术平均数,把 ������������叫做 a,b 的几
解(1)由题意知 x>0,由基本不等式得 f(x)=3x+1������2≥2 3������·1������2=2 36=12. 当且仅当 3x=1������2,即 x=2 时,f(x)取得最小值 12.故 f(x)的最小值是 12. (2)由 lg a+lg b=2,得 lg ab=2,即 ab=100,且 a>0,b>0, 因此由基本不等式可得 a+b≥2 ������������=2 100=20, 当且仅当 a=b=10 时,a+b 取到最小值 20.故 a+b 的最小值是 20. (3)由于 x,y 是实数,所以 2x>0,2y>0,于是
提示填表略,(1)当 x+y 是定值时,xy 有最大值,且最大值等于
������+������ 2
2
;(2)当 xy 是定值时,x+y 有最小值,且最小值等于 2
������������.
2.填空: 基本不等式与最值 已知x,y都是正数. (1)若x+y=s(和为定值),则当x=y时,积xy取得最大值. (2)若xy=p(积为定值),则当x=y时,和x+y取得最小值.
变式训练 2(1)已知 a,b,c,d 都是正数,求证:(ab+cd)(ac+bd)≥4abcd.

2017春人教版高中数学必修五课件:3.1 第1课时 不等关系与比较大小1

2017春人教版高中数学必修五课件:3.1 第1课时 不等关系与比较大小1
量不能超过500 mm钢管的3倍.怎样写出满足上述所 有不等关系的不等式组呢?
分析:假设截得500 mm的钢管x根,截得600 mm的钢 管y根.
根据题意,应有如下的关系:
(1)截得两种钢管的总长度不能超过4 000 mm;
第十二页,编辑于星期六:三点 四分。
(2)截得600 mm钢管的数量不能超过500 mm钢 管数量的3倍; (3)截得两种钢管的数量为自然数.
第二十八页,编辑于星期六:三点 四分。
4.在下列各题的横线中填入适当的不等号.
< ⑴ ( 3 2)2 _____ 6 2 6;
< ⑵ ( 3 2)2 ____( 6 1)2;
⑶ 1 ___<___ 1 ;
52
6 5
> ⑷若0 a b , log1a ____ log1 b.
2
2
第二十九页,编辑于星期六:三点 四分。
第六页,编辑于星期六:三点 四分。
一、请看下面现实生活的例子: 1.右图是限速40 km/h的路标,
指示司机在前方路段行驶时,
应使汽车的速度v不超过40 km/h,
40
写成不等式就是:_v_≤_4__0_k__m_/_h_.
第七页,编辑于星期六:三点 四分。
2.某品牌酸奶的质量检查规定,酸奶中脂肪的含量 f应不少于2.5% ,蛋白质的含量p应不少于2.3%,
4.三个臭皮匠,顶个诸葛亮.
第四页,编辑于星期六:三点 四分。
1.了解现实世界和日常生活中存在着的不等关系;
2.会从实际问题中找出不等关系,并能列出不等式 与不等式组.(重点)
3.学会用作差法比较两个实数的大小,掌握作 差法比较大小的步骤.(重点、难点)
第五页,编辑于星期六:三点 四分。

人教版高中数学必修5第三章第四节《基本不等式(一)》课件

人教版高中数学必修5第三章第四节《基本不等式(一)》课件

x 3 解: 1 1 y x ( x - 3) 3 x 3 x -3 1 2 ( x 3) 3 5 x 3
二定
1 当且仅当x 3 , 即x 4时,函数有最小值, x 3 最小值为5。
1 例2、( 3 )若 0 x , 求函数 y x (1 2 x )的最大值。 2 1 解: ∵0<x< 2, ∴1-2x>0.
2 2
此不等式称为重要不等式
1、基本不等式的引出
如果a 0, b 0, 我们用 a , b分别代替a, b, 可得到什么结论?
替换后得到:( 即:
a ) ( b ) ≥2 a b
2 2
a b≥2 ab
基本不等式
ab 即: ≥ ab 2 (a 0, b 0,当且仅当a b时取等)
只要证
(___ a ___) b ≥0
2
显然, 上式是成立的.当且仅当a=b时取等。
a b ≥2ab
2 2
ab ≥ ab 2
a>0,b>0
适用范围 文字叙述 “=”成立条件
a,b∈R
两数的平方和不 两个正数的算术平均数不 小于它们积的2倍 小于它们的几何平均数
a=b
a=b
例1 、( 1 )已知a 0, b 0, ab 36, 求a b的最小值。
3 解: 0 x 3 - 2 x 0 2 2x 3 2x 2 9 y 2 2 x (3 2 x ) 2 ( ) 2 2 3 3 当且仅当2 x 3 2 x即x ( 0, )时取等 4 2
例2、( 4 )函数f ( x ) x 2
2
1 x 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档