导数文科大题含详细规范标准答案

合集下载

导数文科大题含详细标准答案

导数文科大题含详细标准答案

导数文科大题含详细答案————————————————————————————————作者:————————————————————————————————日期:导数文科大题1.知函数,. (1)求函数的单调区间;(2)若关于的方程有实数根,求实数的取值范围. 答案解析2.已知, (1)若,求函数在点处的切线方程; (2)若函数在上是增函数,求实数a 的取值范围; (3)令, 是自然对数的底数);求当实数a等于多少时,可以使函数取得最小值为3.解:(1)时,,′(x),′(1)=3,,数在点处的切线方程为,(2)函数在上是增函数,′(x),在上恒成立,即,在上恒成立,令,当且仅当时,取等号, ,的取值范围为(3),′(x),①当时,在上单调递减,,计算得出(舍去);②当且时,即,在上单调递减,在上单调递增,,计算得出,满足条件;③当,且时,即,在上单调递减,,计算得出(舍去);综上,存在实数,使得当时,有最小值3.解析(1)根据导数的几何意义即可求出切线方程.(2)函数在上是增函数,得到f′(x),在上恒成立,分离参数,根据基本不等式求出答案,(3),求出函数的导数,讨论,,的情况,从而得出答案3.已知函数,(1)分别求函数与在区间上的极值;(2)求证:对任意,解:(1),令,计算得出:,,计算得出:或,故在和上单调递减,在上递增,在上有极小值,无极大值;,,则,故在上递增,在上递减,在上有极大值,,无极小值;(2)由(1)知,当时,,,故;当时,,令,则,故在上递增,在上递减,,;综上,对任意,解析(1)求导,利用导数与函数的单调性及极值关系,即可求得及单调区间及极值;4.已知函数,其中,为自然数的底数.(1)当时,讨论函数的单调性;(2)当时,求证:对任意的,.解:(1)当时,,则,,故则在R上单调递减.(2)当时,,要证明对任意的,.则只需要证明对任意的,.设,看作以a为变量的一次函数,要使,则,即,恒成立,①恒成立,对于②,令,则,设时,,即.,,在上,,单调递增,在上,,单调递减,则当时,函数取得最大值,故④式成立,综上对任意的,.解析:(1)求函数的导数,利用函数单调性和导数之间的关系进行讨论即可.(2)对任意的,转化为证明对任意的,,即可,构造函数,求函数的导数,利用导数进行研究即可.5.已知函数(1)当时,求函数在处的切线方程;(2)求在区间上的最小值.解:(1)设切线的斜率为k.因为,所以,所以,所以所求的切线方程为,即(2)根据题意得, 令,可得①若,则,当时,,则在上单调递增.所以②若,则, 当时,,则在上单调递减. 所以③若,则,所以,随x的变化情况如下表:x 1 20 - 0 + 0-e Φ极小值Γ0所以的单调递减区间为,单调递增区间为所以在上的最小值为综上所述:当时,;当时,;当时,解析(1)设切线的斜率为k.利用导数求出斜率,切点坐标,然后求出切线方程.(2)通过,可得.通过①,②,③,判断函数的单调性求出函数的最值.6.已知函数。

导数数学试题及答案

导数数学试题及答案

导数数学试题及答案一、选择题1. 函数 \( f(x) = 3x^2 + 2x - 5 \) 的导数是:A. \( 6x + 4 \)B. \( 6x^2 + 2 \)C. \( 3x + 2 \)D. \( 6x - 1 \)2. 如果 \( f(x) \) 的导数为 \( f'(x) = 4x^3 - 6x^2 + 8x - 10 \),那么 \( f'(1) \) 的值是:A. -2B. 0C. 2D. 4二、填空题3. 求函数 \( g(x) = x^3 - 4x + 1 \) 的导数,并计算 \( g'(2) \) 。

\( g'(x) = \) ________ , \( g'(2) = \) ________ 。

4. 若 \( h(t) = t^4 + 3t^2 + 2 \),求 \( h'(t) \) 。

\( h'(t) = \) ________ 。

三、解答题5. 已知 \( f(x) = \ln(x) + 2x \),求 \( f'(x) \) 并找出\( f'(x) \) 的零点。

6. 给定函数 \( y = \frac{1}{x} \),求其导数,并讨论其在 \( x= 1 \) 处的切线斜率。

四、应用题7. 一个物体从静止开始,其速度随时间变化的函数为 \( v(t) =3t^2 - 2t \),求其加速度函数 \( a(t) \) 并计算 \( t = 2 \) 秒时的加速度。

8. 一个物体在 \( x \) 轴上的位移函数为 \( s(x) = x^3 - 6x^2 + 11x + 10 \),求其速度函数 \( v(x) \) 并找出 \( x = 2 \) 时的速度。

答案:一、选择题1. A. \( 6x + 4 \)2. C. 2二、填空题3. \( g'(x) = 3x^2 - 4 \) , \( g'(2) = 8 \)4. \( h'(t) = 12t^3 + 6t \)三、解答题5. \( f'(x) = \frac{1}{x} + 2 \),令 \( f'(x) = 0 \) 解得\( x = 1 \)。

导数文科大题含详细答案教学提纲

导数文科大题含详细答案教学提纲

导数文科大题1.知函数,. (1)求函数的单调区间;(2)若关于的方程有实数根,求实数的取值范围. 答案解析2.已知, (1)若,求函数在点处的切线方程; (2)若函数在上是增函数,求实数a 的取值范围; (3)令, 是自然对数的底数);求当实数a等于多少时,可以使函数取得最小值为3.解:(1)时,,′(x),′(1)=3,,数在点处的切线方程为,(2)函数在上是增函数,′(x),在上恒成立,即,在上恒成立,令,当且仅当时,取等号, ,的取值范围为(3),′(x),①当时,在上单调递减,,计算得出(舍去);②当且时,即,在上单调递减,在上单调递增,,计算得出,满足条件;③当,且时,即,在上单调递减,,计算得出(舍去);综上,存在实数,使得当时,有最小值3.解析(1)根据导数的几何意义即可求出切线方程.(2)函数在上是增函数,得到f′(x),在上恒成立,分离参数,根据基本不等式求出答案,(3),求出函数的导数,讨论,,的情况,从而得出答案3.已知函数,(1)分别求函数与在区间上的极值;(2)求证:对任意,解:(1),令,计算得出:,,计算得出:或,故在和上单调递减,在上递增,在上有极小值,无极大值;,,则,故在上递增,在上递减,在上有极大值,,无极小值;(2)由(1)知,当时,,,故;当时,,令,则,故在上递增,在上递减,,;综上,对任意,解析(1)求导,利用导数与函数的单调性及极值关系,即可求得及单调区间及极值;4.已知函数,其中,为自然数的底数.(1)当时,讨论函数的单调性;(2)当时,求证:对任意的,.解:(1)当时,,则,,故则在R上单调递减.(2)当时,,要证明对任意的,.则只需要证明对任意的,.设,看作以a为变量的一次函数,要使,则,即,恒成立,①恒成立,对于②,令,则,设时,,即.,,在上,,单调递增,在上,,单调递减,则当时,函数取得最大值,故④式成立,综上对任意的,.解析:(1)求函数的导数,利用函数单调性和导数之间的关系进行讨论即可.(2)对任意的,转化为证明对任意的,,即可,构造函数,求函数的导数,利用导数进行研究即可.5.已知函数(1)当时,求函数在处的切线方程;(2)求在区间上的最小值.解:(1)设切线的斜率为k.因为,所以,所以,所以所求的切线方程为,即(2)根据题意得, 令,可得①若,则,当时,,则在上单调递增.所以②若,则, 当时,,则在上单调递减. 所以③若,则,所以,随x的变化情况如下表:x 1 20 - 0 + 0-e Φ极小值Γ0所以的单调递减区间为,单调递增区间为所以在上的最小值为综上所述:当时,;当时,;当时,解析(1)设切线的斜率为k.利用导数求出斜率,切点坐标,然后求出切线方程.(2)通过,可得.通过①,②,③,判断函数的单调性求出函数的最值.6.已知函数。

(完整版)高考导数专题(含详细解答)

(完整版)高考导数专题(含详细解答)

导数及其应用导数的运算1. 几种常有的函数导数:①、 c( c 为常数); ②、( x n )( n R ); ③、 (sin x) = ;④、 (cos x) =;⑤、( a x ); ⑥、 ( ex); ⑦、 (log a x ) ; ⑧、 (ln x ).2. 求导数的四则运算法规:(u v)u v ; (uv) u vu'u v ' uv 'u ( v0 ) 注:① u, v 必定是可导函数 .uv ; (u)vuvvvv 223. 复合函数的求导法规:f x ( ( x))f (u) ? ( x) 或 y xy u ? u x一、求曲线的切线(导数几何意义)导数几何意义: f (x 0 ) 表示函数 y f (x) 在点 ( x 0 , f (x 0 ) )处切线 L 的斜率;函数 y f (x) 在点 ( x 0 , f (x 0 ) )处切线 L 方程为 y f (x 0 )f (x 0 )(x x 0 )1. 曲线在点 处的切线方程为( )。

A:B:C:D:答案详解 B 正确率 : 69%, 易错项 : C解析 :本题主要观察导数的几何意义、导数的计算以及直线方程的求解。

对 求导得,代入 得 即为切线的斜率, 切点为,因此切线方程为即。

故本题正确答案为B 。

2.3. 设函数f ( x) g( x) x2,曲线 y g(x) 在点 (1,g(1)) 处的切线方程为 y 2x 1,则曲线 y f ( x) 在点 (1, f (1))处切线的斜率为( )A .41C.21B . D .4 24. 已知函数 f ( x) 在R上满足 f ( x) 2 f (2 x) x28x 8,则曲线y f (x) 在点 (1, f (1)) 处的切线方程是()A . y2x 1 B. y x C. y3x 2 D. y2x 3变式二:5. 在平面直角坐标系xoy 中,点P在曲线C : y x310 x 3 上,且在第二象限内,已知曲线 C 在点 P 处的切线的斜率为 2,则点 P 的坐标为.6. 设曲线 yx n 1 (n N * ) 在点( 1,1)处的切线与 x 轴的交点的横坐标为 x n ,令 a n lg x n ,则 a 1 a 2 L a 99 的值为.7. 已知点 P 在曲线 y=4 上, 为曲线在点 P 处的切线的倾斜角,则的取值范围是e x1, 3]D 、 [ 3,A 、 [0, )B 、 [, ) C 、 ( )44 22 4 4变式三:8. 已知直线y =x+ 1 与曲线y ln( x a) 相切,则α的值为( )A . 1 B. 2 C. - 1 D. - 29. 若存在过点 (1,0)的直线与曲线 yx 3 和 y ax 2 15 x 9 都相切,则 a 等于4( )A . 1或 -25B . 1或21C . 7 或 - 25D .7或 76444 6441 110. 若曲线 yx 2 在点 a, a 2 处的切线与两个坐标围成的三角形的面积为18,则 aA 、64B 、 32C 、 16D 、811. (本小题满分 13 分) 设 f ( x)ae x 1b( a 0) . ( I )求 f ( x) 在 [0, ) 上的最小值;ae x3x ;求 a,b 的值 .( II )设曲线 yf ( x) 在点 (2, f (2)) 的切线方程为 y212. 若曲线 f x ax2Inx 存在垂直于y轴的切线,则实数 a 的取值范围是.二、求单调性或单调区间1、利用导数判断函数单调性的方法:设函数y f (x) 在某个区间 D 内可导,若是 f ( x) >0,则y f (x) 在区间D上为增函数;若是 f ( x) <0,则y f (x) 在区间 D 上为减函数;若是 f ( x) =0恒成立,则y f (x) 在区间 D 上为常数 .2、利用导数求函数单调区间的方法:不等式 f ( x) >0的解集与函数y f (x) 定义域的交集,就是y f ( x) 的增区间;不等式 f ( x) <0的解集与函数y f (x) 定义域的交集,就是y f (x) 的减区间 .1、函数f (x) ( x 3)e x的单调递加区间是( )A . ( ,2) B. (0,3) C. (1,4) D . (2, )2. 函数f (x)x315x233x 6 的单调减区间为.3. 已知函数,,谈论的单调性。

完整版)导数最新文科高考数学真题

完整版)导数最新文科高考数学真题

完整版)导数最新文科高考数学真题1.曲线y=xex-1在点(1,1)处的切线斜率为2e。

(选项C)2.曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,因此a=3.(选项D)3.根据导函数y'=f'(x)的图象,确定函数y=f(x)的图象为B。

4.函数f(x)=2/x+lnx,其导数为f'(x)=-2/x^2+1/x。

解方程f'(x)=0,得到x=2为f(x)的极小值点。

(选项D)5.如果p:f(x)=q:x是f(x)的极值点,则p是q的必要条件,但不是充分条件。

(选项C)6.曲线y=x^3-x+3在点(1,3)处的切线方程为2x-y+1=0.7.曲线y=kx+lnx在点(1,k)处的切线平行于x轴,因此k=-1.8.曲线y=ax-lnx在点(1,a)处的切线平行于x轴,因此a=1/2.(选项1/2)9.曲线y=-5ex+3在点(0,-2)处的切线方程为5x+y+2=0.10.曲线y=x+1(α∈R)在点(1,2)处的切线经过坐标原点,因此α=2.11.曲线y=x(3lnx+1)在点(1,1)处的切线方程为4x-y-3=0.12.曲线y=e^x上点P处的切线平行于直线2x+y+1=0,因此P的坐标为(-ln2,2)。

13.曲线y=xlnx上点P处的切线平行于直线2x-y+1=0,因此P的坐标为(e,e)。

14.函数y=-x^2没有明显的问题,但是缺少了后面的部分,因此无法确定答案。

15.若函数f(x)=kx-lnx在区间(1,+∞)单调递增,则k的取值范围是[1,+∞)。

16.函数f(x)=(1-cosx)sinx在[-π,π]的图象大致为下凸的W 形,拐点为x=0.17.已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax+(a+2)x+1相切,则2a=8.18.函数y=xe在其极值点处的切线方程为y=-x/e。

19.已知函数f(x)=axlnx,其中a为实数,且f'(x)为f(x)的导函数,若f'(1)=3,则a的值为3.20.曲线y=x^2的在点(1,2)处的切线方程为x-y+1=0.21.函数y=f(x)的导函数y=f'(x)的图象为下凸的W形,则函数y=f(x)的图象可能是D。

导数高中试题及解析答案

导数高中试题及解析答案

导数高中试题及解析答案1. 计算函数 \( f(x) = x^3 - 3x^2 + 2x \) 在 \( x = 1 \) 处的导数。

解析:首先,我们需要找到函数 \( f(x) \) 的导数。

根据导数的定义,我们有:\[ f'(x) = \frac{d}{dx}(x^3 - 3x^2 + 2x) \]对每一项分别求导,我们得到:\[ f'(x) = 3x^2 - 6x + 2 \]现在,将 \( x = 1 \) 代入 \( f'(x) \) 得到:\[ f'(1) = 3(1)^2 - 6(1) + 2 = 3 - 6 + 2 = -1 \]答案:函数 \( f(x) \) 在 \( x = 1 \) 处的导数为 \( -1 \)。

2. 已知函数 \( g(x) = \sin(x) \),求 \( g'(x) \)。

解析:根据三角函数的导数规则,我们知道 \( \sin(x) \) 的导数是\( \cos(x) \)。

因此,我们可以直接写出 \( g(x) \) 的导数:\[ g'(x) = \cos(x) \]答案:函数 \( g(x) \) 的导数是 \( \cos(x) \)。

3. 计算复合函数 \( h(x) = (x^2 - 1)^4 \) 的导数。

解析:这是一个复合函数,我们可以使用链式法则来求导。

首先,设\( u = x^2 - 1 \),那么 \( h(x) = u^4 \)。

对 \( u \) 求导得到:\[ u' = \frac{d}{dx}(x^2 - 1) = 2x \]然后,对 \( h(x) \) 求导:\[ h'(x) = \frac{d}{dx}(u^4) = 4u^3 \cdot u' = 4(x^2 - 1)^3\cdot 2x \]答案:复合函数 \( h(x) \) 的导数是 \( 8x(x^2 - 1)^3 \)。

导数考试题型及答案详解

导数考试题型及答案详解

导数考试题型及答案详解一、选择题1. 函数f(x) = x^2 + 3x + 2的导数是:A. 2x + 3B. x^2 + 2C. 2x + 6D. 3x + 2答案:A2. 若f(x) = sin(x),则f'(π/4)的值是:A. 1B. √2/2C. -1D. -√2/2答案:B二、填空题1. 求函数g(x) = x^3 - 2x^2 + x的导数,g'(x) = __________。

答案:3x^2 - 4x + 12. 若h(x) = cos(x),求h'(x) = __________。

答案:-sin(x)三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x + 2的导数,并求f'(2)的值。

解:首先求导数f'(x) = 3x^2 - 12x + 9。

然后将x = 2代入得到f'(2) = 3 * 2^2 - 12 * 2 + 9 = 12 - 24 + 9 = -3。

2. 已知函数y = ln(x),求y'。

解:根据对数函数的导数公式,y' = 1/x。

四、证明题1. 证明:若函数f(x) = x^n,其中n为常数,则f'(x) = nx^(n-1)。

证明:根据幂函数的导数公式,对于任意实数n,有f'(x) = n * x^(n-1)。

五、应用题1. 某物体的位移函数为s(t) = t^3 - 6t^2 + 9t + 5,求该物体在t = 3时的瞬时速度。

解:首先求位移函数的导数s'(t) = 3t^2 - 12t + 9。

然后将t = 3代入得到s'(3) = 3 * 3^2 - 12 * 3 + 9 = 27 - 36 + 9 = 0。

因此,该物体在t = 3时的瞬时速度为0。

六、综合题1. 已知函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 5,求f'(x),并求曲线y = f(x)在点(1, f(1))处的切线斜率。

(完整word版)高二数学导数大题练习详细答案

(完整word版)高二数学导数大题练习详细答案

(完整word 版)高二数学导数大题练习详细答案一、解答题1.已知()()e 1x f x mx m =+<-.(1)当2m =-时,求曲线()y f x =上的斜率为1-的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-恒成立,求实数m 的范围.2.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围. 3.己知函数()2ln ,f x x ax a R =-∈.(1)当0a =时,求曲线()y f x =在()()1,1f 处的切线方程;(2)设函数()()ln 21g x f x x x =--+,若()0g x ≤在其定义域内恒成立,求实数a 的最小值;(3)若关于x 的方程()2ln f x x x =+恰有两个相异的实根12,x x ,求实数a 的取值范围,并证明121x x >.4.已知函数()()24e 1xf x x =-+.(1)求()f x 的极值.(2)设()()()f m f n m n =≠,证明:7m n +<.5.求函数()31443f x x x =-+在区间1,33⎡⎤⎢⎥⎣⎦上的最大值与最小值.6.已知函数()1e x axf x a=-+,0a ≠. (1)当1a =时,①求曲线()y f x =在0x =处的切线方程; ②求证:()f x 在(0,)+∞上有唯一极大值点; (2)若()f x 没有零点,求a 的取值范围. 7.已知函数()1ln xf x x+=. (1)求()f x 在1x =处的切线方程; (2)当e x ≥时,不等式()ekf x x ≥+恒成立,求实数k 的取值范围; 8.已知函数()e 2x f x ax =-,()22sin 1g x a x x =-+,其中e 是自然对数的底数,a ∈R .(1)试判断函数()f x 的单调性与极值点个数;(2)若关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根,求实数a 的最小值. 9.已知函数()()e x f x x m =+⋅.(1)若()f x 在(],1-∞上是减函数,求实数m 的取值范围;(2)当0m =时,若对任意的0x ≥,不等式()2e x ax f x ⋅≤恒成立,求实数a 的取值范围.10.已知函数()()e 11xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当20e <≤a ,且2x >时,()()ln 1f x b a x ⎡>-⎣]恒成立,求b 的取值范围.【参考答案】一、解答题1.(1)10x y +-=;(2)ln 3⎡-⎣.【解析】 【分析】(1)根据导数的几何意义可利用斜率求得切点坐标,由此可得切线方程;(2)令()()2213222m g x f x x ⎛⎫=-+- ⎪⎝⎭,将问题转化为当0x ≥时,()min 0g x ≥恒成立;①当10m +≥时,由导数可证得()g x 单调递增,由()00g ≥可求得m 范围; ②当10+<m 时,利用零点存在定理可说明存在()00g x '=,并得到()g x 单调性,知()()020min 13e e 022x xg x g x ==-++≥,由此可解得0x 的范围,根据00e x x m -=可求得m 范围. (1)当2m =-时,()e 2x f x x =-,()e 2xf x '=-;令()e 21xf x '=-=-,解得:0x =,∴切点坐标为()0,1,∴所求切线方程为:1y x =-+,即10x y +-=;(2)令()()22221313e 222222x m m g x f x x mx x ⎛⎫=-+-=+--+ ⎪⎝⎭,则原问题转化为:当0x ≥时,()0g x ≥恒成立,即()min 0g x ≥恒成立;()e x g x m x '=+-,()e 1x g x ''=-,则当0x ≥时,()0g x ''≥,()g x '∴在[)0,∞+上单调递增,()()01g x g m ''∴≥=+; ①当10m +≥,即1m ≥-时,()0g x '≥,()g x ∴在[)0,∞+上单调递增,()()2min301022m g x g ∴==-+≥,解得:m ≤≤m ⎡∴∈-⎣; ②当10+<m ,即1m <-时,()00g '<,当x →+∞时,()g x '→+∞;()00,x ∴∃∈+∞,使得()00g x '=,即00e x x m -=,则当()00,x x ∈时,()0g x '<;当()0,x x ∈+∞时,()0g x '>;()g x ∴在()00,x 上单调递减,在()0,x +∞上单调递增,()()()()00022022000000min e1313e e e 222222x x x x xm g x g x mx x x x x -∴==+--+=+---+00213e e 022x x =-++≥, 解得:01e 3x -≤≤,即0ln 3x ≤,又()00,x ∈+∞,(]00,ln3x ∴∈,令()e xh x x =-,则()1e xh x '=-,∴当(]0,ln3x ∈时,()0h x '<,()h x ∴在(]0,ln3上单调递减,()[)000e ln33,1x h x x ∴=-∈--,即[)ln33,1m ∈--;综上所述:实数m 的取值范围为ln 3⎡-⎣.【点睛】思路点睛:本题重点考查了导数中的恒成立问题的求解,解题基本思路是通过构造函数的方式,将问题转化为()min 0g x ≥,从而利用对含参函数单调性的讨论来确定最小值点,根据最小值得到不等式求得参数范围. 2.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立, 因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==-⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =.即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立.所以a 的取值范围为[)1,+∞. 3.(1)22y x =- (2)1-(3)(),1-∞-;证明见解析. 【解析】 【分析】(1)根据题意,()2ln f x x =,分别求出()1f 和()1f '求解即可;(2)条件等价于ln 12maxx a x +⎛⎫+≥ ⎪⎝⎭,令()ln 1x h x x +=()0,∞+求解最大值即可; (3)令()()ln 0xm x x a x x=-->,求出()m x 的单调性,得到()()11max m x m a ==--, 根据题意求解a 的范围即可;不妨设12x x <,则1201x x <<<,2101x <<,题设即证明()121m x m x ⎛⎫> ⎪⎝⎭成立,构造()()11ln 1x x x x x x x ϕ⎛⎫=+-+> ⎪⎝⎭, 求解单调性得到()()10x ϕϕ>=即可求解. (1)当0a =时,()2ln f x x =,所以()2l 01n1=f =,()2f x x'=,所以()12f '=, 所以曲线()y f x =在()()1,1f 处的切线方程为:()021y x -=-,即22y x =- (2)由题意得,()ln 21g x x ax x =--+,因为()0g x ≤在其定义域内恒成立, 所以ln 210x ax x --+≤在()0,∞+恒成立,即ln 12x a x++≥在()0,∞+恒成立, 等价于ln 12maxx a x +⎛⎫+≥ ⎪⎝⎭,令()ln 1x h x x +=()0,∞+,所以()2ln x h x x -'=, 令()0h x '>解得01x <<,令()0h x '<解得1x >,所以函数()h x 在()0,1单调递增, 在()1,+∞单调递减,所以()()1=1h x h ≤,所以21a +≥,即1a ≥-,故a 的最小值为1-.(3)先证明必要性:由()2ln f x x x =+得2ln x ax x -=,即ln 0xx a x--=, 令()()ln 0x m x x a x x =-->,则()221ln x x m x x --'=, 设()21ln t x x x =--,则()12t x x x'=--,因为0x >,所以()0t x '<恒成立,函数()t x 在()0,∞+单调递减,而()10t =,故在()0,1上()0t x >,()0m x '>,()m x 单调递增,在()1,+∞上()0t x <,()0m x '<,()m x 单调递减,所以()()11max m x m a ==--.故方程()2ln f x x x =+恰有两个相异的实根只需:10a -->,所以实数a 的取值范围是(),1-∞-; 再证明充分性:当(),1a ∞∈--时,方程()2ln f x x x =+恰有两个相异的实根,条件等价于2ln x ax x -=,即ln x x a x -=,即y a =与ln x y x x=-, 当1a <-,0x >时有两个不同的交点,所以221ln x xy x --'=,由上面必要性的证明可知函数在()0,1单调递增,在()1,+∞单调递减, 所以ln x y x x =-在0x >时的最大值为:ln11=11y =--,最小值趋近于负无穷, 所以当(),1a ∞∈--时,程()2ln f x x x =+恰有两个相异的实根,即充分性成立.下证:121x x >,不妨设12x x <,则1201x x <<<,2101x <<, 所以()121122111x x x m x m x x ⎛⎫>⇔>⇔> ⎪⎝⎭,因为()()120m x m x ==, 所以()()22122222221ln ln 1111x x m x m m x m x a a x x x x x ⎛⎫⎪⎛⎫⎛⎫⎛⎫ ⎪-=-=----- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭ 2222222222221lnln ln 11ln 1x x x x x x x x x x x x =--+=-++2222211ln x x x x x ⎛⎫=+-+ ⎪⎝⎭,令()()11ln 1x x x x x x x ϕ⎛⎫=+-+> ⎪⎝⎭,则()211ln 0x x xϕ⎛⎫'=-> ⎪⎝⎭,所以()x ϕ在()1,+∞上单调递增,所以当1x >时,()()10x ϕϕ>=,即2222211ln 0x x x x x ⎛⎫+-+> ⎪⎝⎭,所以()121m x m x ⎛⎫> ⎪⎝⎭,所以121x x >. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义, 往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.4.(1)极小值为71e 12-+,()f x 无极大值; (2)证明见解析﹒ 【解析】 【分析】(1)根据f (x )的导数判断f (x )的单调性,根据单调性即可求其极值; (2)由函数单调性指数函数性质可得x <72时,f (x )<1,设m <n ,则若()()()f m f n m n =≠,则m <72,n >72,由()()1f m f n =<可求742n <<﹒当m ≤3时,易证7m n +<;当732m <<时,构造函数()()()7p m f m f m =--,根据p (m )单调性即可证明7m n +<﹒ (1)()()227e x f x x =-',由()0f x '=,得72x =.当7,2x ⎛⎫∈-∞ ⎪⎝⎭时,()0f x '<;当7,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>.∴()f x 的单调递减区间为7,2⎛⎫-∞ ⎪⎝⎭,单调递增区间为7,2⎛⎫+∞ ⎪⎝⎭.故()f x 的极小值为771e 122f ⎛⎫=-+ ⎪⎝⎭,()f x 无极大值.(2)由(1)可知,()f x 的极值点为72,f (x )在7,2⎛⎫-∞ ⎪⎝⎭上单调递减,在7,2⎛⎫+∞ ⎪⎝⎭上单调递增,∵当x →-∞时,2e 0x →,∴f (x )→1, 故当x <72时,f (x )<1.设m n <,则若()()()f m f n m n =≠,则m <72,n >72,则()()1f m f n =<,则()274e 1142n n n -+<⇒<<. ①当3m ≤时,7m n +<,显然成立.②当732m <<时,77,42m ⎛⎫-∈ ⎪⎝⎭,()()()()214274e 3e m m f m f m m m ---=---.设()()()7p m f m f m =--,则()()()214227e em mp m m -=--'. 设()2142e e x xh x -=-,73,2x ⎛⎫∈ ⎪⎝⎭,则()h x 为增函数,则()702h x h ⎛⎫<= ⎪⎝⎭.∵732m <<,∴270m -<,()0p m '>,则()p m 在73,2⎛⎫⎪⎝⎭上为增函数,∴()()()()77()()77022p m p f m f m f n f m p ⎛⎫<⇒--=--<= ⎪⎝⎭,∴()()7f n f m <-.又∵7,42n ⎛⎫∈ ⎪⎝⎭,77,42m ⎛⎫-∈ ⎪⎝⎭,且()f x 在7,42⎛⎫ ⎪⎝⎭上单调递增,∴7n m <-,即7m n +<. 综上,7m n +<.5.最小值为()423f =-,最大值为1217381f ⎛⎫= ⎪⎝⎭【解析】 【分析】利用导数判断函数的单调性与最值情况. 【详解】由()31443f x x x =-+,得()24f x x '=-令()0f x '=.得2x =±1,33x ⎡⎤∈⎢⎥⎣⎦,所以2x =-舍去, 列表如下:()f x ∴的极小值为()23f =-又1217381f ⎛⎫= ⎪⎝⎭,()31f =,所以,()f x 的最小值为()423f =-,最大值为1217381f ⎛⎫=⎪⎝⎭. 6.(1)①112y x =-;②证明见解析 (2){}()210,e -⋃【解析】 【分析】(1)①利用导数求出切线的斜率,直接求出切线方程;②令()e 1e x xg x x =+-,利用导数判断出()g x 在(0,)+∞上有唯一零点0x ,利用列表法证明出()f x 在(0,)+∞上有唯一极大值点;(2)令()e xh x a ax =+-.对a 分类讨论:①0a <,得到当1a =-时,()f x 无零点;②0a >,()f x 无零点,符合题意. (1)若1a =,则()1e 1x xf x =-+,()2e 1e (e 1)x x x x f x +-=+'.①在0x =处,()()21110211f '+==+,(0)1f =-. 所以曲线()y f x =在0x =处的切线方程为112y x =-.②令()e 1e x xg x x =+-,()e x g x x '=-,在区间(0,)+∞上,()0g x '<,则()g x 在区间(0,)+∞上是减函数.又(1)10,g =>()22e 10,g =-+<,所以()g x 在(0,)+∞上有唯一零点0x . 列表得:()f x 0x (2)()e e x x ax af x a--=+,令()e x h x a ax =+-,则()e xh x a '=-.①若0a <,则()0h x '>,()h x 在R 上是增函数.因为11e 10a h a a ⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,()1 e > 0h =,所以()h x 恰有一个零点0x . 令0e 0x a +=,得0ln()x a =-.代入0()0h x =,得()ln 0a a a a -+--=, 解得1a =-.所以当1a =-时,()h x 的唯一零点为0,此时()f x 无零点,符合题意. ②若0a >,此时()f x 的定义域为R .当ln x a <时,()0h x '<,()h x 在区间(,ln )a -∞上是减函数; 当ln x a >时,()0h x '>,()h x 在区间(ln ,+)a ∞上是增函数. 所以min ()(ln )2ln h x h a a a a ==-. 又()010h a =+>,由题意,当2ln 0a a a ->,即20e a <<时,()f x 无零点,符合题意. 综上,a 的取值范围是{}()210,e -⋃.【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围. 7.(1)1y = (2)(],4∞- 【解析】 【分析】(1)利用导数的几何意义直接求解即可; (2)分离变量可得()()()e 1ln x x k g x x++≤=,利用导数可求得()()e 4g x g ≥=,由此可得k 的取值范围. (1)()2211ln ln x xf x x x--'==-,()10f '∴=,又()11f =, ()f x ∴在1x =处的切线方程为1y =;当e x ≥时,由()e k f x x ≥+得:()()()()e 1ln e x x k x f x x ++≤+=, 令()()()e 1ln x x g x x ++=,则()2eln x x g x x -'=, 令()eln h x x x =-,则()ee 1x h x x x-'=-=, ∴当e x ≥时,()0h x '≥,()h x ∴在[)e,+∞上单调递增,()()e e elne 0h x h ∴≥=-=, ()0g x '∴≥,()g x ∴在[)e,+∞上单调递增,()()()2e 1ln e e 4eg x g +∴≥==, 4k ∴≤,即实数k 的取值范围为(],4∞-. 【点睛】方法点睛:本题考查导数的几何意义、利用导数解决函数中的恒成立问题;解决恒成立问题的基本思路是采用分离变量的方式,将问题转化为变量与函数最值之间关系,即由()a f x ≥得()max a f x ≥;由()a f x ≤得()min a f x ≤.8.(1)答案见解析(2)e π--【解析】【分析】(1)求出()f x ',分类讨论,分0a ≤和0a >讨论()f x 的单调性与极值; (2)利用分离参数法得到sin 1e x x a -=,令()()sin 10e xx h x x π-=≤≤,利用导数判断 ()h x 的单调性与最值,根据直线y a =与函数()h x 的图像有两个交点,求出实数a 的最小值.(1)()e 2x f x ax =-,则()e 2x f x a '=-.①当0a ≤时,()0f x '>,则()f x 在R 上单调递增,此时函数()f x 的极值点个数为0;②当0a >时,令()20e x f x a '=-=,得()ln 2x a =,当()ln 2x a >时,()0f x '>,则()f x 在()()ln 2,a +∞上单调递增,当()ln 2x a <时,()0f x '<,则()f x 在()(),ln 2a -∞上单调递减,此时函数()f x 的极值点个数为1.综上所述,当0a ≤时,()f x 在R 上单调递增,极值点个数为0;当0a >时,()f x 在()()ln 2,a +∞上单调递增,在()(),ln 2a -∞上单调递减,极值点个数为1.由()()0af x g x +=,得sin 1x x a e -=. 令()()sin 10xx h x x e π-=≤≤, 因为关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根,所以直线y a =与函数()sin 1xx h x e -=的图像在[]0,π上有两个交点. ()1cos sin 14x xx x x h x e e π⎛⎫-+ ⎪-+⎝⎭'==, 令()0h x '=,则sin 4x π⎛⎫-= ⎪⎝⎭[]0,x π∈,所以2x π=或x π=, 所以当02x π<<时,()0h x '>;当2x ππ<<时,()0h x '<, 所以()h x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫ ⎪⎝⎭上单调递减,所以()max 02h x h π⎛⎫== ⎪⎝⎭. 又()01h =-,()e h ππ-=-, e 1π-->- 所以当)e ,0x a -⎡∈-⎣时,直线y a =与函数()h x 的图像有两个交点,所以实数a 的最小值为e π--.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)利用导数研究零点问题,考查数形结合思想的应用.9.(1)(],2-∞- (2)2e ,4⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)求出导函数,得到11m --≥,即可求出m 的取值范围;(2)把题意转化为2x ax e ≤,分类讨论:当0x =时,求出R a ∈;当0x >时,转化为2xe a x≤,令2()x e g x x =,利用导数求出min ()g x ,即可求出实数a 的取值范围. (1)因为()()e x f x x m =+⋅,所以()(1)e x f x x m '=++⋅,令()0f x '≤,得1x m ≤--,则()f x 的单调递减区间为(,1]m -∞--, 因为()f x 在(,1]-∞上是减函数,所以11m --≥,即2m ≤-, 故m 的取值范围是(],2-∞-;(2)由题知:()e x f x x =⋅,则22e 0,e x x x ax ∀≥⋅≤,即2e x ax ≤,当0x =时,01≤恒成立,则a R ∈,当0x >时,2e x a x≤,令2(e )x g x x =,则2432e e e (2)()x x x x x x g x x x ⋅-⋅⋅-'==, 则当02x <<时,()0g x '<,()g x 递减;当2x >时,()0g x '>,()g x 递增, 故2min e ()(2)4g x g ==,则2e 4a ≤, 综上所述,实数a 的取值范围是2e ,4⎛⎤-∞ ⎥⎝⎦. 10.(1)25y x =+(2)[1,)-+∞【解析】【分析】(1)求出()'f x ,然后算出(0),(0)f f '即可;(2)由条件可得e (ln )1ln(1)xb x a x b x a+->-+-恒成立,构造函数()ln (1)h x x b x x =+>,则原不等式等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立,然后可证明2e 1e 10xx x x a--+≥-+>,然后得()h x 在()1,+∞上单调递增,然后即可求解. (1) 当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=-又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为25y x =+.(2)()()ln 1f x b a x ⎡>-⎣恒成立,即e 1ln(1)ln x bx x b x b a a +-+>-+恒成立. 等价于e (ln )1ln(1)xb x a x b x a+->-+-恒成立. 构造函数()ln (1)h x x b x x =+>,则e e ln 1ln(1)x x b x b x a a+>-+-在(2,)x ∈+∞上恒成立等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立. 因为20e <≤a ,所以2e e ,xx a -≥ 令函数2()e 1(2)x H x x x -=-+>,则2()e 1x H x -'=-,显然()H x '是增函数, 则()(2)0,()H x H H x ''>=在()2,+∞上单调递增,所以()()20H x H >=, 故2e 1e 10xx x x a--+≥-+>,从而可得()h x 在()1,+∞上单调递增, 所以当()1,x ∈+∞时,()10b h x x '=+≥恒成立.所以b x ≥-,所以1b ≥-,即b 的取值范围是[-1,+∞)【点睛】关键点睛:解答本题第二问的关键是将原不等式变形,构造出函数()ln (1)h x x b x x =+>,属于函数的同构类型,解答的关键是观察不等式的特点,变成同一函数在两个变量处的取值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数文科大题1.知函数,. (1)求函数的单调区间;(2)若关于的方程有实数根,求实数的取值范围. 答案解析2.已知, (1)若,求函数在点处的切线方程; (2)若函数在上是增函数,求实数a 的取值范围; (3)令, 是自然对数的底数);求当实数a等于多少时,可以使函数取得最小值为3.解:(1)时,,′(x),′(1)=3,,数在点处的切线方程为,(2)函数在上是增函数,′(x),在上恒成立,即,在上恒成立,令,当且仅当时,取等号, ,的取值范围为(3),′(x),①当时,在上单调递减,,计算得出(舍去);②当且时,即,在上单调递减,在上单调递增,,计算得出,满足条件;③当,且时,即,在上单调递减,,计算得出(舍去);综上,存在实数,使得当时,有最小值3.解析(1)根据导数的几何意义即可求出切线方程.(2)函数在上是增函数,得到f′(x),在上恒成立,分离参数,根据基本不等式求出答案,(3),求出函数的导数,讨论,,的情况,从而得出答案3.已知函数,(1)分别求函数与在区间上的极值;(2)求证:对任意,解:(1),令,计算得出:,,计算得出:或,故在和上单调递减,在上递增,在上有极小值,无极大值;,,则,故在上递增,在上递减,在上有极大值,,无极小值;(2)由(1)知,当时,,,故;当时,,令,则,故在上递增,在上递减,,;综上,对任意,解析(1)求导,利用导数与函数的单调性及极值关系,即可求得及单调区间及极值;4.已知函数,其中,为自然数的底数.(1)当时,讨论函数的单调性;(2)当时,求证:对任意的,.解:(1)当时,,则,,故则在R上单调递减.(2)当时,,要证明对任意的,.则只需要证明对任意的,.设,看作以a为变量的一次函数,要使,则,即,恒成立,①恒成立,对于②,令,则,设时,,即.,,在上,,单调递增,在上,,单调递减,则当时,函数取得最大值,故④式成立,综上对任意的,.解析:(1)求函数的导数,利用函数单调性和导数之间的关系进行讨论即可.(2)对任意的,转化为证明对任意的,,即可,构造函数,求函数的导数,利用导数进行研究即可.5.已知函数(1)当时,求函数在处的切线方程;(2)求在区间上的最小值.解:(1)设切线的斜率为k.因为,所以,所以,所以所求的切线方程为,即(2)根据题意得, 令,可得①若,则,当时,,则在上单调递增.所以②若,则, 当时,,则在上单调递减. 所以③若,则,所以,随x的变化情况如下表:x 1 20 - 0 + 0-e Φ极小值Γ0所以的单调递减区间为,单调递增区间为所以在上的最小值为综上所述:当时,;当时,;当时,解析(1)设切线的斜率为k.利用导数求出斜率,切点坐标,然后求出切线方程.(2)通过,可得.通过①,②,③,判断函数的单调性求出函数的最值.6.已知函数。

(I)求f(x)的单调区间;(II)若对任意x∈[1,e],使得g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;(III)设F(x)=,曲线y=F(x)上是否总存在两点P,Q,使得△POQ是以O(O为坐标原点)为钝角柄点的钝角三角开,且最长边的中点在y轴上?请说明理由。

解:(Ⅰ)∵∴当、时,在区间、上单调递减.当时,在区间上单调递增. ………3分(Ⅱ)由,得.∵,且等号不能同时取得,∴,∵对任意,使得恒成立,∴对恒成立,即.( )令,求导得,,………5分∵,∴在上为增函数,,.………7分(Ⅲ)由条件,,假设曲线上总存在两点满足:是以为钝角顶点的钝角三角形,且最长边的中点在轴上,则只能在轴两侧.不妨设,则.∴,…(※),是否存在两点满足条件就等价于不等式(※)在时是否有解.………9分①若时,,化简得,对此不等式恒成立,故总存在符合要求的两点P、Q;………11分②若时,(※)不等式化为,若,此不等式显然对恒成立,故总存在符合要求的两点P、Q;若a>0时,有…(),设,则,显然,当时,,即在上为增函数,的值域为,即,当时,不等式()总有解.故对总存在符合要求的两点P、Q. ……13分综上所述,曲线上总存在两点,使得是以为钝角顶点的钝角三角形,且最长边的中点在轴上. (14)分7.已知函数为常数).(Ⅰ)若a=-2,求函数f(x)的单调区间;(Ⅱ)若当时,恒成立,求实数a的取值范围.解:(Ⅰ)a=-2时,;时,时,f'(x)>0,函数f(x)的单调递减区间是(0,1],单调递增区间为(Ⅱ)由已知条件得:;且等号不能同时取;令;在[1,e]上为增函数;在[1,e]上的最大值为:;的取值范围为:8.已知函数(1)若,试判断在定义域内的单调性;(2)若在上恒成立,求a的取值范围.解:(1)函数,函数的定义域为,函数的导数,当,,此时函数单调递增.(2)若在上恒成立,即在上恒成立, 即,令,只要求得的最大值即可,,,,,,即在上单调递减, 9. 已知函数(1)若,试判断在定义域内的单调性;(2)若在上恒成立,求a的取值范围. 答案详解解:(1)函数,函数的定义域为,函数的导数,当,,此时函数单调递增.(2)若在上恒成立,即在上恒成立,即,令,只要求得的最大值即可,,,,,,即在上单调递减,10. 设函数(Ⅰ)若函数在上单调递增,求实数a的取值范围; (Ⅱ)当时,求函数在上的最大值.答案解:(Ⅰ)的导数为,函数在上单调递增,即有在上恒成立,则在上恒成立.因为,则,计算得出;(Ⅱ),,当时,,,;,,;,,令,,,,,,,即,,单调递减,单调递增,,,,当时,,函数在上的最大值为.解析(Ⅰ)求出函数的导数,根据题意可得在上恒成立,则在上恒成立.运用指数函数的单调性,即可得到a的取值范围; (Ⅱ)求出导函数,判断出在单调递减,单调递增,判断求出最值.11.本小题满分12分)已知函数。

(1)当时,求曲线在点处的切线方程;(2)当时,恒成立,求的取值范围。

答案详解(1)当时,,则,即切点为,因为,则,故曲线在处的切线方程为:,即。

......4分(2),求导得:, ......5分令,();①当,即时,,所以在上为增函数,所以在上满足,故当时符合题意; ......8分②当,即时,令,得,当时,,即,所以在为减函数,所以,与题意条件矛盾,故舍去。

......11分综上,的取值范围是。

......12分解析:本题主要考查导数在研究函数中的应用。

(1)将代入,求出得到切点坐标,求出得切线斜率,即可得切线方程;(2)根据题意对的取值范围进行分讨论,利用导数来研究函数的单调性,进而判断与的关系,便可得出的取值范围。

12.已知函数,是的导函数(为自然对数的底数)(Ⅰ)解关于的不等式:;(Ⅱ)若有两个极值点,求实数的取值范围。

答案(Ⅰ),。

当时,无解;当时,解集为;当时,解集为。

(Ⅱ)若有两个极值点,则是方程的两个根。

,显然,得:。

令,。

若时,单调递减且;若时,当时,,在上递减;当时,,在上递增。

要使有两个极值点,需满足在上有两个不同解,得,即。

解析本题主要考查利用导函数求解函数问题。

(Ⅰ)原不等式等价于,分,,和讨论可得;(Ⅱ)设,则是方程的两个根,求导数可得,若时,不合题意,若时,求导数可得单调区间,进而可得最大值,可得关于的不等式,解之可得。

13.已知函数,.(Ⅰ)如果函数在上是单调增函数,求a的取值范围;(Ⅱ)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出a的取值范围;若不存在,请说明理由.解:(Ⅰ)当时,在上是单调增函数,符合题意.当时,的对称轴方程为,因为在上是单调增函数,所以,计算得出或,所以.当时,不符合题意.综上,a的取值范围是. (Ⅱ)把方程整理为,即为方程. 设,原方程在区间内有且只有两个不相等的实数根,即为函数在区间内有且只有两个零点令,因为,计算得出或(舍) 当时,,是减函数;当时,,是增函数.在内有且只有两个不相等的零点,只需即计算得出,所以a的取值范围是.解析:(1)因为函数的解析式中含有参数a,故我们要对a进行分类讨论,注意到a出现在二次项系数的位置,故可以分,,三种情况,最后将三种情况得到的结论综合即可得到答案.(2)方程整理为构造函数,则原方程在区间内有且只有两个不相等的实数根即为函数在区间内有且只有两个零点,根据函数零点存在定理,结合函数的单调性,构造不等式组,解不等式组即可得到结论.14.设函数(1)若,求函数的单调区间. (2)若曲线在点处与直线相切,求a,b的值. 解:(1)当时,,,令,则或;,则函数的单调递增区间为和,递减区间为(2),曲线在点处与直线相切,, 即解之,得,.解析(1)当时,求出的导函数,令,得出函数的单调增区间,反之得出单调减区间;(2)求出函数的导函数,得出,求出a和b.15.16.已知函数,且.(1)若在处取得极小值,求函数的单调区间;(2)令,若的解集为,且满足,求的取值范围。

答案:,F'(-1)=0 则a-2b+c=0;(1)若F(x)在x=1处取得最小值-2,则F'(1)=0,a+2b+c=0,则b=0,c=-a。

F(1)=-2,,则a=3,c=-3。

,x∈(-∞,-1)时,F'(x)>0,函数F(x)单调递增;x∈(-1,1)时,F'(x)<0,函数F(x)单调递减;x∈(1,∞)时,F'(x)>0,函数F(x)单调递增。

(2)令,,,则,即,得即17.18.设直线是曲线的一条切线,.(1)求切点坐标及的值;(2)当时,存在,求实数的取值范围.答案(1)解:设直线与曲线相切于点,,, 解得或,当时,,在曲线上,∴,当时,,在曲线上,∴,切点,,切点,.(2)解法一:∵,∴,设,若存在,则只要,, (ⅰ)若即,令,得,,∴在上是增函数,令,解得,在上是减函数,,,解得,(ⅱ)若即,令,解得,,∴在上是增函数,,不等式无解,不存在,综合(ⅰ)(ⅱ)得,实数的取值范围为.解法二:由得, (ⅰ)当时,,设若存在,则只要,…8分,令解得在上是增函数,令,解得在上是减函数,,,(ⅱ)当时,不等式不成立,∴不存在,综合(ⅰ)(ⅱ)得,实数的取值范围为.19.已知函数在点处的切线与直线平行. (1)求的值;(2)若函数在区间上不单调,求实数的取值范围;(3)求证:对任意时,恒成立.答案20.已知函数,(Ⅰ)求曲线在点处的切线方程;(Ⅱ)若方程有唯一解,试求实数a的取值范围.答案解:(Ⅰ),又, 可得切线的斜率,切线方程为,即;(Ⅱ)方程有唯一解有唯一解,设,根据题意可得,当时,函数与的图象有唯一的交点.,令,得,或,在上为增函数,在、上为减函数,故,,如图可得,或解析(Ⅰ)求得函数的导数,可得切线的斜率和切点,由点斜式方程,可得所求切线的方程;(Ⅱ)方程有唯一解有唯一解,设,求得导数和单调区间、极值,作出图象,求出直线和的图象的一个交点的情况,即可得到所求a的范围.21.已知函数(Ⅰ)讨论的单调性(Ⅱ)若时,都成立,求a的取值范围.解:(Ⅰ)函数的定义域为,函数的的导数,当时,,此时函数单调递增,当时,,由,计算得出,由,计算得出,函数在上增函数,则是减函数.(Ⅱ)令,,当,即时,x+ 0 -↗极大值↘,计算得出;(2)当即时,在上无最大值,故不可能恒小于0,故不成立.综上所述a的取值范围为.解析(Ⅰ)求函数的导数,即可讨论函数的单调性;(Ⅱ)令,利用导数求得函数的最大值为,只要有即可求得结论.22.已知函数(1)若曲线在点处的切线斜率为,求函数的单调区间; (2)若关于x的不等式有且仅有两个整数解,求实数m的取值范围.解:(1)函数的导数为:f′(x),可得在点处的切线斜率为f′(1), 计算得出,即有的导数为f′(x), 由f′(x)可得或;由f′(x)可得可得的单调增区间,;单调减区间为; (2)关于x的不等式即为,①对于,当时,,当时,,①即为,令,g′(x),令,h′(x), 又,,在R上递增,可得,使得,则在递增,在递减,在处取得极大值,又,则关于x的不等式有且仅有两个整数解,只需有且仅有两个整数解,则,计算得出解析(1)求出的导数,可得切线的斜率,解方程可得,进而由导数大于0,得增区间;导数小于0,得减区间;(2)根据题意可得即为,讨论x的符号,确定,即有,令,求出导数,再令令,求得导数,判断单调性和极值点,求得的单调区间,可得极值,结合条件可得不等式组,解不等式可得m的范围.23.知函数(1)若,则当时,讨论单调性;(2)若, ,且当时,不等式在区间上有解,求实数a的取值范围.解:(1),,,令,得,当时,,函数在定义域内单调递减当时,在区间, 在区间上单调递增,当时,在区间上,单调递减, 在区间上,单调递增;(2)根据题意知,当时,在上的最大值,当时,,则①当时,,故在上单调递增,②当时时,设的两根分别为:,则故在上单调递增,, 综上,当时,在上单调递增,,.,所以实数a的取值范围是解析(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可; (2)求出的导数,通过讨论a的范围求出的最大值是,求出a 的范围即可.。

相关文档
最新文档