九年级(下)数学3月月考试题
福建省厦门第一中学2022-2023学年九年级下学期第一次月考数学试题(3月)

福建省厦门一中2022-2023学年(下)3月阶段性诊断练习初三年数学试卷命题:陈奕;审核:郑辉龙2023.3 (满分:150分,考试时间:120分钟)注意事项:1.答案一律写在答题卡上,否则不得分;2.可直接用2B 铅笔画图.一、选择题(本大题有8小题,每小题4分,共32分) 1.(−2)0=A .1B .-2C .0D .−122.如图1,由四个正方体组成的几何体的左视图是A .B .C .D .3.反比例函数y =4x 的图象经过以下各点中的A .(2,12)B .(3,34)C .(-2,-2)D .(4,-1)4.如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l ,则l 是△ABC 的A .中线B .高C .角平分线D .中位线5.当物体表面所受的压力F (N )一定时,物体表面所受的压强P (Pa )与受力面积S (m 2)的函数关系式为P =FS(S ≠0),这个函数的图象大致是A .B .C .D .6.如图,在直角△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,则sin A =A .BC ACB .ACABC .AD ACD .BD BCPSOPSO正面lCBA DCBA7.我国魏晋时期的数学家刘徽首创“割圆术”:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”,即通过圆内接正多边形割圆,从正六边形开始,每次边数成倍增加,依次可得圆内接正十二边形,内接正二十四边形,…边数越多割得越细,正多边形的周长就越接近圆的周长.再根据“圆周率等于圆周长与该圆直径的比”来计算圆周率.设圆的半径为R ,圆内接正六边形的周长l 6=6R ,则π=l 62R=3,再利用圆的内接正十二边形来计算圆周率,则圆周率π约为 A .12sin15°B .12cos15°C .12sim30°D .12cos30°8.已知抛物线y =2x 2−bx 上有点(m ,n ),且m 是关于x 的方程4x −b =0的解,则下列说法正确的是A .对于任意实数x ,都有y ≤nB .对于任意实数x ,都有y ≥nC .小树于任意实数x ,都有y <nD .对于任意实数x ,都有y >n二、填空题(本大题有8小题,每小题4分,共32分) 9.已知锐角α满足cosα=√32,则α=_______°.10.因式分解:x 2+2x +1=_______.11.写一个常数k =_______,使反比例函数y =kx (k ≠0)图象满足:在同一象限内y 随x 的增大而增大. 12.某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如表所示.如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是_______. 13.如图,某小区门口的栏杆短臂AO =1m ,长臂OB =12m .当短臂端点高度下降AC =0.5m ,则长臂端点高度上升BD 长等于_______m (栏杆的宽度忽略不计).14.如图,以O 为位似中心,将△AOB 放大得到△COD ,其中B (3,0),D (4,0),则△AOB与△COD 的相似比为_______.15.如图,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点,AB =2√3,OP =1,则劣弧⌒AB 的长为_______.A 12A 11A 10A 9A 8A 7A 6A 5A 4A 3A 2M A 1O O FE D C B A 第14题DCB A Oy x第15题第13题16.如图,△OMN是边长为10的等边三角形,反比例函数y=kx(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM 于点B,则k的值为_______.三、解答题(共9题,满分86分)17.(本题8分)(1)计算:2sin45°+│−√2+2−1│;(2)解不等式组:{x+3>2①2x−13≤1②.18.(本题8分)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥AD于点F.求证:AF=BE.19.(本题8分)学收为实现垃圾分类投放,准备在校园内摆放大、小两种垃圾桶.购买2个大垃圾桶和4个小垃圾桶共需600元;购买6个大垃圾桶和8个小垃圾桶共需1560元.求大、小两种垃圾桶的单价.20.(本题8分)如图,一次函数y=k+b(k≠0)与反比例面数y=mx(m≠0)的图象相交于A(-3,-2),B(n,6),直线AB与x轴、y轴分别交于C、D两点.(1)求一次函数与反比例函数的解析式;(2)直接写出关于x的不等式kx+b>mx的解集.21.(本题8分)如图,一艘海轮自西向东航行,在点B处时测得海岛A位于北偏东67°,航行12海里到达C点,又测得小岛A在北偏东45°方向上.已知位于海岛A的周围8海里内有暗礁,如果渔船不改变航线继续向东航行,那么它有没有触码的危险?请说明理由.(参考数据:sin67°≈1213,cos67°≈513,tm67°≈125)编号A1A2A3A4A5A6A7每日峰时段用电量占比80%20%50%10%20%50%60%第16题FEDCBA东北45°67°CBA22.(本题10分)已知△ABC 中,∠A =22.5°,∠B =45°.(1)求作:⊙O ,使得圆心O 落在AB 边上,且⊙O 经过A 、C 两点;(尺规作图,保留作图痕迹,不必写作法)(2)在(1)所作的图形中,若与AB 相交于D ,连接CD ,①求证:直线BC 是⊙O 的切线; ②求tan ∠BCD 的值.23.(本题10分)【阅读理解】某市电力公司对居民用电设定如下两种收费方式:方式一:“分档”计算电费(见表一),按电量先计算第一档,超过的部分再计算第二档,依次类推,最后求和即为总电费;方式二:“分档+分时”计算电费(见表一、表二),即总电费等于“分档电费、峰时段增加的电费、谷时段减少的电费的总和”.如:某用户该月用电总量500度,其中峰时段用电量300度,谷时段用电量200度,若该用户选择方式二缴费,则总电费为:[230×0.5+(420-230)×0.55+(500-420)×0.8+300×0.03+200×(-0.2)=252.5(元). 【问题解决】已知小明家4月份的月用电量相当于全年的平均月用电量,现从他家4月份的日用电量数据中随机抽取7天作为样本,制作成如图表:(1)若从上述样本中随机抽取一天,求所抽取的日用电量为15度以上的概率;(2)若每月按30天计,请通过样本数据计算月用电费,帮小明决定选择哪一种方式缴费合算?CBA 0A 7A 6A 5A 4A 3A 2A 1编号日用电量(度)12131444403814102030405024.(本题12分)定义:若三角形有两个内角的差为90°,则这样的三角形叫做“准直角三角形”.(1)若△ABC 是“准直角三角形”,∠C >90°,∠A =50°,则∠B =_______°; (2)如图1,△ABC 中,∠C =90°,AB =6,BC =2.若D 是AC 上的一点,CD =√22,请判断△ABD是否为准直角三角形,并说明理由;(3)如图2,在四边形ABCD 中,CD =CB ,∠ABD =∠BCD ,AB =5,BD =8,且△ABC 是“准直角三角形“,求△BCD 的面积.25.(本题14分)如图,在平面直角坐标系中,抛物线y =−x 2+bx +c 与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C . (1)求抛物线的解析式;(2)点D 为第一象限内抛物线上的一动点,作DE ⊥x 轴于点E ,交BC 于点F ,过点F 作BC 的垂线与抛物线的对称轴和y 轴分别交于点G 、H ,设点D 的横坐标为m . ①求DF +HF 的最大值;②连接EG ,若∠GEH =45°,求m 的值.图1D CBA图2DCB AABCD备用图备用图。
北京市首都师范大学附属中学2022下学期九年级下学期3月月考数学试题(含答案与解析)

【答案】D
【解析】
【分析】根据数轴上a,b的位置,可得 ,又 ,可得a,b同号,同为正或者同为负.
【详解】本题考查不等式的性质.借助于数轴可知 ,因此不能判断 , , ,故A,B,C错误;而由 得 ,由于 ,故 ,因此D正确,故选D.
【点睛】本题主要考查借助数轴判断式子是否成立,通过解答本题渗透数形结合的数学思想.
45.5
(1)根据以上信息,可以求出: ______, ______, ______, ______;
(2)请根据数据分析,你认为哪个班的学生数学学科能力整体水平较好,请说明理由;
(3)若规定得分在80分以上为合格,请估计参加数学学科能力测试的学生中合格的学生公共有多少人.
28.小亮在学习中遇到这样一个问题:
【详解】解:∵几何体的主视图和左视图都是高度相等的长方形,
故该几何体是一个柱体,
又∵俯视图是一个圆形,
故该几何体是一个圆柱,
故选A.
【点睛】题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.
2.第24届冬季奥林匹克运动会,将于2022年2月4日在北京开幕.此次冬奥会的单板大跳台项目场馆坐落在北京市首钢园区的北京冬季奥林匹克公园,园区总占地面积171.2公顷即1712000平方米.将1712000用科学记数法表示应为( )
(3)已知 , ,若线段 上存在线段 的“小角点”,直接写出 的取值范围.
参考答案
一、选择题(共8小题)
1.如图是某几何体的视图,该几何体是()
A.圆柱B.球C.三棱柱D.长方体
【1题答案】
【答案】A
【解析】
【分析】根据主视图和左视图都是高度相等的长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断柱体底面形状,得到答案.
四川省成都市树德实验中学九年级(下)月考数学试卷(3月份)

四川省成都市树德实验中学九年级(下)月考数学试卷(3月份)一、选择题(每小题3分,共30分) 1.(3分)﹣2012的绝对值是( ) A .﹣2012 B .2012C .﹣12012 D .12012 2.(3分)下列说法错误的是( ) A .√16的平方根是±2 B .√2是无理数C .√−273是有理数 D .√22是分数 3.(3分)以方程组{y =−x +2y =x −1的解为坐标,点(x ,y )在( )A .第一象限B .第二象限C .第三象限D .第四象限4.(3分)如图是正方体的展开图,原正方体相对两个面上的数字和最小是( )A .4B .6C .7D .85.(3分)下列分解因式正确的是( ) A .a 2+4a +4=(a +4)2B .2a ﹣4b +2=2(a ﹣2b )C .a 2﹣2a +1=(a ﹣1)2D .a 2﹣4=(a ﹣2)26.(3分)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是x 甲=610千克,x 乙=608千克,亩产量的方差分别是S 2甲=29.6,S 2乙=2.7.则关于两种小麦推广种植的合理决策是( ) A .甲的平均亩产量较高,应推广甲B .甲、乙的平均亩产量相差不多,均可推广C .甲的平均亩产量较高,且亩产量比较稳定,应推广甲D .甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙 7.(3分)下面四个几何体中,主视图与俯视图不同的共有( )A.1个 B.2个 C.3个 D.4个8.(3分)函数y=kx+b(k≠0)与y=kx(k≠0)在同一坐标系中的图象可能是()A.B.C.D.9.(3分)如图,PA、PB是⊙O的两条切线,A、B为切点,直线OP交⊙O于C、D,交AB于E,AF为⊙O的直径,下列结论:①∠ABP=∠AOP;②BĈ=DF̂;③PC•PD=PE•PO.其中正确结论的个数有()A.3个 B.2个 C.1个 D.0个10.(3分)如图所示,函数y1=|x|和y2=13x+43的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是()A.x<﹣1 B.﹣1<x<2 C.x>2 D.x<﹣1或x>2二、填空题(每小题4分,共16分)11.(4分)PM 2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为 .12.(4分)对于任意不相等的两个实数a 、b ,定义运算※如下:a ※b=√a+b a−b,如3※2=√3+23−2=√5.那么8※12= .13.(4分)如图,SO ,SA 分别是圆锥的高和母线,若SA=12cm ,∠ASO=30°,则这个圆锥的侧面积是 cm 2.14.(4分)若抛物线y=(a +1)x 2﹣(a +1)x +1与x 轴有且仅有一个公共点,则a 的值为 .三、解答题:15.(12分)(1)计算:2|12﹣cos30°|﹣(﹣2012)0+4÷(﹣12)﹣2﹣√643;(2)解不等式组:{2x−13−5x+12≤15x −1<3(x +1),并在数轴上画出不等式的解集. 16.(6分)已知:2x 2+6x ﹣4=0,求代数式3−x2x 2−4x÷(5x−2−x −2)的值.17.(8分)如图某天上午9时,向阳号轮船位于A 处,观测到某港口城市P 位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B 处,这时观测到城市P 位于该船的南偏西36.9°方向,求此时轮船所处位置B 与城市P 的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)18.(8分)如图,等腰梯形ABCD放置在平面坐标系中,已知A(﹣2,0)、B (6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C的坐标和反比例函数的解析式;(2)若将等腰梯形ABCD向上平移,使平移后的点B落在双曲线上,则应将梯形向上平移几个单位长度?(3)画出反比例函数在第三象限的草图,若直线AD交双曲线于E,F两点,请求出△EOF的面积.19.(10分)假期,六盘水市教育局组织部分教师分别到A、B、C、D四个地方进行新课程培训,教育局按定额购买了前往四地的车票.如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:(1)若去C地的车票占全部车票的30%,则去C地的车票数量是张,补全统计图.(2)若教育局采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么余老师抽到去B地的概率是多少?(3)若有一张去A地的车票,张老师和李老师都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,如图2所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给李老师,否则票给张老师(指针指在线上重转).试用“列表法”或“树状图”的方法分析这个规定对双方是否公平.20.(10分)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B 按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.21.(4分)已知实数a,b满足√a2−5a+1+b2+2b+1=0,则a2+1a﹣|b|=.22.(4分)关于x的分式方程mx−2+32−x=1的解为正数,则m的取值范围是.23.(4分)把一副三角板如下图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数;(2)求线段AD1的长.24.(4分)如图,矩形ABCD 的一边CD 在x 轴上,顶点A ,B 分别落在双曲线y=1x 、y=3x 上,边BC 交y=1x于点E ,且BE=2CE ,连接AE ,则△ABE 的面积为 .25.(4分)如图(1),点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE→ED→DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为ycm ,已知y 与t 的函数关系的图形如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD=BE=5cm ;②当0<t ≤5时,y=25t 2;③直线NH 的解析式为y=﹣52t +27;④若△ABE 与△QBP 相似,则t=294秒.其中正确的结论为 .26.(10分)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式y=110x 2+5x +90,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额﹣全部费用)(1)成果表明,在甲地生产并销售x吨时,P甲=﹣120x+14,请你用含x的代数式表示甲地当年的年销售额,并求年利润W甲(万元)与x之间的函数关系式;(2)成果表明,在乙地生产并销售x吨时,P乙=﹣x10+n(n为常数),且在乙地当年的最大年利润为35万元.试确定n的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(−b2a,4ac−b24a).27.(10分)如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的切线;(2)求证:△ACM∽△DCN;(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=14,求BN的长.28.(10分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C 三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式.(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x 轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之改变.当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号)2013-2014学年四川省成都市树德实验中学九年级(下)月考数学试卷(3月份)参考答案与试题解析一、选择题(每小题3分,共30分) 1.(3分)﹣2012的绝对值是( ) A .﹣2012 B .2012C .﹣12012 D .12012【解答】解:﹣2012的绝对值是2012. 故选:B .2.(3分)下列说法错误的是( ) A .√16的平方根是±2 B .√2是无理数C .√−273是有理数 D .√22是分数 【解答】解:A 、√16的平方根是±2,故A 选项正确;B 、√2是无理数,故B 选项正确;C 、√−273=﹣3是有理数,故C 选项正确;D 、√22不是分数,它是无理数,故D 选项错误.故选:D .3.(3分)以方程组{y =−x +2y =x −1的解为坐标,点(x ,y )在( )A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:{y =−x +2①y =x −1②,①+②得,2y=1,解得,y=12.把y=12代入①得,12=﹣x +2,解得x=32.∵32>0,12>0,根据各象限内点的坐标特点可知, 点(x ,y )在平面直角坐标系中的第一象限. 故选:A .4.(3分)如图是正方体的展开图,原正方体相对两个面上的数字和最小是( )A .4B .6C .7D .8【解答】解:易得2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,所以原正方体相对两个面上的数字和最小的是6. 故选:B .5.(3分)下列分解因式正确的是( ) A .a 2+4a +4=(a +4)2B .2a ﹣4b +2=2(a ﹣2b )C .a 2﹣2a +1=(a ﹣1)2D .a 2﹣4=(a ﹣2)2【解答】解:A 、a 2+4a +4=(a +2)2,故此选项错误; B 、2a ﹣4b +2=2(a ﹣2b +1),故此选项错误; C 、a 2﹣2a +1=(a ﹣1)2,故此选项正确; D 、a 2﹣4=(a ﹣2)(a +2),故此选项错误. 故选:C .6.(3分)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是x 甲=610千克,x 乙=608千克,亩产量的方差分别是S 2甲=29.6,S 2乙=2.7.则关于两种小麦推广种植的合理决策是( ) A .甲的平均亩产量较高,应推广甲B.甲、乙的平均亩产量相差不多,均可推广C.甲的平均亩产量较高,且亩产量比较稳定,应推广甲D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙【解答】解:∵x甲=610千克,x乙=608千克,∴甲、乙的平均亩产量相差不多∵亩产量的方差分别是S2甲=29.6,S2乙=2.7.∴乙的亩产量比较稳定.故选:D.7.(3分)下面四个几何体中,主视图与俯视图不同的共有()A.1个 B.2个 C.3个 D.4个【解答】解:圆柱的主视图是矩形,俯视图是圆,它的主视图与俯视图不同;圆锥的主视图是等腰三角形,俯视图式圆,它的主视图与俯视图不同;球体的三视图均为圆,故它的主视图和俯视图相同;正方体的三视图均为正方形,故它的主视图和俯视图也相同;所以主视图与俯视图不同的是圆柱和圆锥,故选B.8.(3分)函数y=kx+b(k≠0)与y=kx(k≠0)在同一坐标系中的图象可能是()A.B.C.D.【解答】解:在函数y=kx+b(k≠0)与y=kx(k≠0)中,当k>0时,图象都应过一、三象限;当k<0时,图象都应过二、四象限.故选:A.9.(3分)如图,PA、PB是⊙O的两条切线,A、B为切点,直线OP交⊙O于C、D,交AB于E,AF为⊙O的直径,下列结论:①∠ABP=∠AOP;②BĈ=DF̂;③PC•PD=PE•PO.其中正确结论的个数有()A.3个 B.2个 C.1个 D.0个【解答】解:∵PA、PB是⊙O的两条切线,∴PA=PB,∠APE=∠BPE,∠PAO=90°,∴AE⊥AB,∠PAB=∠PBA,∴∠EAO+∠AOP=90°,而∠PAE+∠EAO=90°,∴∠PAB=∠AOP,∴∠ABP=∠AOP,所以①正确;∵OC⊥AB,∴弧AC=弧BC,∵∠AOC=∠DOF,∴弧AC=弧DF,∴弧BC=弧DF,所以②正确;∵∠APE=∠OPA , ∴Rt △PAE ∽Rt △POA ,∴PA :PO=PE :AP ,即PA 2=PE•PO , ∵PA 2=PC•PD ,∴PC•PD=PE•PO ,所以③正确. 故选:A .10.(3分)如图所示,函数y 1=|x |和y 2=13x +43的图象相交于(﹣1,1),(2,2)两点.当y 1>y 2时,x 的取值范围是( )A .x <﹣1B .﹣1<x <2C .x >2D .x <﹣1或x >2【解答】解:当x ≥0时,y 1=x ,又y 2=13x +43,∵两直线的交点为(2,2),∴当x <0时,y 1=﹣x ,又y 2=13x +43,∵两直线的交点为(﹣1,1),由图象可知:当y 1>y 2时x 的取值范围为:x <﹣1或x >2. 故选:D .二、填空题(每小题4分,共16分)11.(4分)PM 2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6 . 【解答】解:0.0000025=2.5×10﹣6, 故答案为:2.5×10﹣6.12.(4分)对于任意不相等的两个实数a 、b ,定义运算※如下:a ※b=√a+b a−b,如3※2=√3+23−2=√5.那么8※12= ﹣√52 .【解答】解:∵a ※b=√a+ba−b ,∴8※12=√8+128−12=2√5−4=﹣√52.故答案为:﹣√52.13.(4分)如图,SO ,SA 分别是圆锥的高和母线,若SA=12cm ,∠ASO=30°,则这个圆锥的侧面积是 72π cm 2.【解答】解:∵SA=12cm ,∠ASO=30°,∴AO=12SA=6cm∴圆锥的底面周长=2πr=2×6π=12π,∴侧面面积=12×12π×12=72πcm 2.故答案为72π.14.(4分)若抛物线y=(a +1)x 2﹣(a +1)x +1与x 轴有且仅有一个公共点,则a 的值为 3 .【解答】解:∵y=(a +1)x 2﹣(a +1)x +1与x 轴有且仅有一个公共点, ∴b 2﹣4ac=(a +1)2﹣4(a +1)=a 2﹣2a ﹣3=0, 解得:a 1=3,a 2=﹣1,当a=﹣1,则a +1=0,故舍去. 故答案为:3.三、解答题:15.(12分)(1)计算:2|12﹣cos30°|﹣(﹣2012)0+4÷(﹣12)﹣2﹣√643;(2)解不等式组:{2x−13−5x+12≤15x −1<3(x +1),并在数轴上画出不等式的解集.【解答】解:(1)原式=2×(√32﹣12)﹣1+1﹣4=√3﹣5;(2)不等式{2x−13−5x+12≤1①5x −1<3(x +1)②,由①得:x ≥﹣1;由②得:x <2, 则不等式组的解集为﹣1≤x <2,16.(6分)已知:2x 2+6x ﹣4=0,求代数式3−x 2x 2−4x ÷(5x−2−x −2)的值.【解答】解:原式=−x−32x 2−4x ÷(5x−2−x+21)(1分)=−x−32x 2−4x ÷(−x 2+9x−2)(2分)=12x 2+6x(3分) 当2x 2+6x ﹣4=0时,2x 2+6x=4(4分)原式=14(5分).17.(8分)如图某天上午9时,向阳号轮船位于A 处,观测到某港口城市P 位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B 处,这时观测到城市P 位于该船的南偏西36.9°方向,求此时轮船所处位置B 与城市P 的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)【解答】解:根据题意得:PC ⊥AB , 设PC=x 海里.在Rt △APC 中,∵tan ∠A=PC AC,∴AC=PC tan67.5°=5x 12.…(3分)在Rt △PCB 中,∵tan ∠B=PC BC,∴BC=x tan36.9°=4x 3.…(5分)∵AC +BC=AB=21×5,∴5x 12+4x3=21×5, 解得x=60.∵sin ∠B=PCPB , ∴PB=PCsin∠B =60sin36.9°=60×53=100(海里).∴向阳号轮船所处位置B 与城市P 的距离为100海里.…(9分)18.(8分)如图,等腰梯形ABCD 放置在平面坐标系中,已知A (﹣2,0)、B (6,0)、D (0,3),反比例函数的图象经过点C . (1)求点C 的坐标和反比例函数的解析式;(2)若将等腰梯形ABCD 向上平移,使平移后的点B 落在双曲线上,则应将梯形向上平移几个单位长度?(3)画出反比例函数在第三象限的草图,若直线AD 交双曲线于E ,F 两点,请求出△EOF 的面积.【解答】解:(1)过C 作CM ⊥x 轴,交x 轴于点M ,可得∠AOD=∠BMC=90°, ∵等腰梯形ABCD , ∴AD=BC ,OD=CM ,在Rt △AOD 和Rt △BMC 中,{AD =BC OD =CM,∴Rt △AOD ≌Rt △BMC (HL ), ∴BM=OA=2,CM=OD=3, ∴OM=OB ﹣BM=6﹣2=4, ∴C (4,3),设反比例解析式为y=kx(k ≠0),将C 坐标代入得:k=12, 则反比例解析式为y=12x ; (2)过B 作BN ⊥x 轴,与反比例图象交于N 点,将x=6代入y=12x得:y=2,则将等腰梯形ABCD 向上平移,使平移后的点B 落在双曲线上,则应将梯形向上平移2个单位长度;(3)如图所示,连接OE ,OF , 设直线AD 解析式为y=ax +b ,将A (﹣2,0),D (0,3)代入得:{−2a +b =0b =3,解得:{a =32b =3,∴直线AD 解析式为y=32x +3,联立得:{y =32x +3y =12x ,消去y 得:32x +3=12x,整理得:x 2+2x ﹣8=0,即(x ﹣2)(x +4)=0, 解得:x=2或x=﹣4,将x=2代入得:y=6;将x=﹣4代入得:y=﹣3, ∴E (2,6),F (﹣4,﹣3),则S △EOF =S △AOE +S △AOF =12×2×6+12×2×3=6+3=9.19.(10分)假期,六盘水市教育局组织部分教师分别到A 、B 、C 、D 四个地方进行新课程培训,教育局按定额购买了前往四地的车票.如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:(1)若去C地的车票占全部车票的30%,则去C地的车票数量是30张,补全统计图.(2)若教育局采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么余老师抽到去B地的概率是多少?(3)若有一张去A地的车票,张老师和李老师都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,如图2所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给李老师,否则票给张老师(指针指在线上重转).试用“列表法”或“树状图”的方法分析这个规定对双方是否公平.【解答】解:(1)根据题意得:总的车票数是:(20+40+10)÷(1﹣30%)=100,则去C地的车票数量是100﹣70=30;故答案为:30.(2)余老师抽到去B地的概率是40100=25;(3)根据题意列表如下:因为两个数字之和是偶数时的概率是612=12,所以票给李老师的概率是1 2,所以这个规定对双方公平.20.(10分)在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数; (2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积; (3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.【解答】解:(1)由旋转的性质可得:∠A 1C 1B=∠ACB=45°,BC=BC 1, ∴∠CC 1B=∠C 1CB=45°,∴∠CC 1A 1=∠CC 1B +∠A 1C 1B=45°+45°=90°.(2)∵△ABC ≌△A 1BC 1,∴BA=BA 1,BC=BC 1,∠ABC=∠A 1BC 1, ∴BA BC =BA 1BC 1,∠ABC +∠ABC 1=∠A 1BC 1+∠ABC 1, ∴∠ABA 1=∠CBC 1,∴△ABA 1∽△CBC 1.∴S △ABA 1S △CBC 1=(AB BC )2=(45)2=1625, ∵S △ABA1=4,∴S △CBC1=254;(3)①如图1,过点B 作BD ⊥AC ,D 为垂足, ∵△ABC 为锐角三角形, ∴点D 在线段AC 上,在Rt △BCD 中,BD=BC ×sin45°=52√2,当P 在AC 上运动,BP 与AC 垂直的时候,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 上时,EP 1最小,最小值为:EP 1=BP 1﹣BE=BD ﹣BE=52√2﹣2;②当P 在AC 上运动至点C ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 的延长线上时,EP 1最大,最大值为:EP 1=BC +BE=2+5=7.21.(4分)已知实数a ,b 满足√a 2−5a +1+b 2+2b +1=0,则a 2+1a ﹣|b |= 22 .【解答】解:∵√a 2−5a +1+b 2+2b +1=√a 2−5a +1+(b +1)2=0,∴a2﹣5a+1=0,b+1=0,即a+1a=5,b=﹣1,∴a2+1a2=(a+1a)2﹣2=25﹣2=23,则a2+1a2﹣|b|=23﹣1=22.故答案为:2222.(4分)关于x的分式方程mx−2+32−x=1的解为正数,则m的取值范围是m>1且m≠3.【解答】解:去分母得m﹣3=x﹣2,解得x=m﹣1,∵原分式方程的解为正数,∴x>0且x≠2,即m﹣1>0且m﹣1≠2,∴m的取值范围为m>1且m≠3.故答案为m>1且m≠3.23.(4分)把一副三角板如下图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数;(2)求线段AD1的长.【解答】解:(1)如图所示,∵∠3=15°,∠E1=90°,∴∠1=∠2=75°,又∵∠B=45°,∴∠OFE1=∠B+∠1=45°+75°=120°;(2)∵∠OFE1=120°,∴∠D1FO=60°,∵∠C D1E1=30°,∴∠4=90°,又∵AC=BC,AB=6cm,∴OA=OB=3cm,∵∠ACB=90°,∴CO=12AB=12×6=3cm,又∵CD1=7cm,∴OD1=CD1﹣OC=7﹣3=4cm,∴在Rt△AD1O中,AD1=√OA2+OD12=√32+42=5cm.24.(4分)如图,矩形ABCD的一边CD在x轴上,顶点A,B分别落在双曲线y=1x、y=3x上,边BC交y=1x于点E,且BE=2CE,连接AE,则△ABE的面积为23.【解答】解:∵点B 在y=3x 上,∴设点B 的坐标为(a ,3a ),∴点A 的纵坐标为3a ,点E 的横坐标为a ,∵点A 在y=1x上,∴点A 的横坐标为a3,∵A ,B 分别落在双曲线y=1x 、y=3x上,∴矩形AFOD 的面积为1,矩形BFDC 的面积为3, ∴矩形BADC 的面积为2,∴S △ABE =S 矩形BADC ﹣S 梯形AECD =2﹣12(a ﹣a 3)×(3a +1a )=23故答案为:2325.(4分)如图(1),点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE→ED→DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为ycm ,已知y 与t 的函数关系的图形如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD=BE=5cm ;②当0<t ≤5时,y=25t 2;③直线NH 的解析式为y=﹣52t +27;④若△ABE 与△QBP 相似,则t=294秒.其中正确的结论为 ①②④ .【解答】解:①根据图(2)可得,当点P 到达点E 时点Q 到达点C , ∵点P 、Q 的运动的速度都是1cm/s , ∴BC=BE=5cm ,∴AD=BE=5(故①正确);②如图1,过点P 作PF ⊥BC 于点F ,根据面积不变时△BPQ 的面积为10,可得AB=4, ∵AD ∥BC , ∴∠AEB=∠PBF ,∴sin ∠PBF=sin ∠AEB=AB BE =45,∴PF=PBsin ∠PBF=45t ,∴当0<t ≤5时,y=12BQ•PF=12t•45t=25t 2(故②正确);③根据5﹣7秒面积不变,可得ED=2,当点P 运动到点C 时,面积变为0,此时点P 走过的路程为BE +ED +DC=11, 故点H 的坐标为(11,0), 设直线NH 的解析式为y=kx +b ,将点H (11,0),点N (7,10)代入可得:{11k +b =07k +b =10,解得:{k =−52b =552.故直线NH 的解析式为:y=﹣52t +552,(故③错误);④当△ABE 与△QBP 相似时,点P 在DC 上,如图2所示:∵tan ∠PBQ=tan ∠ABE=34,∴PQ BQ =34,即11−t 5=34, 解得:t=294.(故④正确);综上可得①②④正确. 故答案为:①②④.26.(10分)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式y=110x 2+5x +90,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额﹣全部费用)(1)成果表明,在甲地生产并销售x 吨时,P 甲=﹣120x +14,请你用含x 的代数式表示甲地当年的年销售额,并求年利润W 甲(万元)与x 之间的函数关系式; (2)成果表明,在乙地生产并销售x 吨时,P 乙=﹣x 10+n (n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润? 参考公式:抛物线y=ax 2+bx +c (a ≠0)的顶点坐标是(−b 2a ,4ac−b24a).【解答】解:(1)甲地当年的年销售额为(﹣120x +14)•x=(﹣120x 2+14x )万元; w 甲=(﹣120x 2+14x )﹣(110x 2+5x +90)=﹣320x 2+9x ﹣90.(2)在乙地区生产并销售时, 年利润: w 乙=﹣110x 2+nx ﹣(110x 2+5x +90) =﹣15x 2+(n ﹣5)x ﹣90.由4ac−b 24a =4×(−15)×(−90)−(n−5)24×(−15)=35, 解得n=15或﹣5.经检验,n=﹣5不合题意,舍去, ∴n=15.(3)在乙地区生产并销售时,年利润w 乙=﹣15x 2+10x ﹣90,将x=18代入上式,得w 乙=25.2(万元); 将x=18代入w 甲=﹣320x 2+9x ﹣90,得w 甲=23.4(万元). ∵W 乙>W 甲, ∴应选乙地.27.(10分)如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,点M 在OC 上,AM 的延长线交⊙O 于点G ,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N . (1)求证:CF 是⊙O 的切线; (2)求证:△ACM ∽△DCN ;(3)若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=14,求BN 的长.【解答】(1)证明:∵△BCO中,BO=CO,∴∠B=∠BCO,在Rt△BCE中,∠2+∠B=90°,又∵∠1=∠2,∴∠1+∠BCO=90°,即∠FCO=90°,∴CF是⊙O的切线;(2)证明:∵AB是⊙O直径,∴∠ACB=∠FCO=90°,∴∠ACB﹣∠BCO=∠FCO﹣∠BCO,即∠3=∠1,∴∠3=∠2,∵∠4=∠D,∴△ACM∽△DCN;(3)解:∵⊙O的半径为4,即AO=CO=BO=4,在Rt△COE中,cos∠BOC=1 4,∴OE=CO•cos∠BOC=4×14=1,由此可得:BE=3,AE=5,由勾股定理可得:CE=√CO2−EO2=√42−12=√15,AC=√CE2+AE2=√(√15)2+52=2√10,BC=√CE 2+BE 2=√(√15)2+32=2√6, ∵AB 是⊙O 直径,AB ⊥CD , ∴由垂径定理得:CD=2CE=2√15, ∵△ACM ∽△DCN ,∴CM CN =AC CD, ∵点M 是CO 的中点,CM=12AO=12×4=2,∴CN=CM⋅CD AC =√152√10=√6, ∴BN=BC ﹣CN=2√6﹣√6=√6.28.(10分)如图,在平面直角坐标系xOy 中,抛物线y=ax 2+bx +c 经过A 、B 、C 三点,已知点A (﹣3,0),B (0,3),C (1,0). (1)求此抛物线的解析式.(2)点P 是直线AB 上方的抛物线上一动点,(不与点A 、B 重合),过点P 作x 轴的垂线,垂足为F ,交直线AB 于点E ,作PD ⊥AB 于点D . ①动点P 在什么位置时,△PDE 的周长最大,求出此时P 点的坐标;②连接PA ,以AP 为边作图示一侧的正方形APMN ,随着点P 的运动,正方形的大小、位置也随之改变.当顶点M 或N 恰好落在抛物线对称轴上时,求出对应的P 点的坐标.(结果保留根号)【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),C(1,0),∴{9a−3b+c=0 c=3a+b+c=0,解得{a=−1 b=−2 c=3,所以,抛物线的解析式为y=﹣x2﹣2x+3;(2)①∵A(﹣3,0),B(0,3),∴OA=OB=3,∴△AOB是等腰直角三角形,∴∠BAO=45°,∵PF⊥x轴,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PD越大,△PDE的周长越大,易得直线AB的解析式为y=x+3,设与AB平行的直线解析式为y=x+m,联立{y=x+my=−x2−2x+3,消掉y得,x2+3x+m﹣3=0,当△=32﹣4×1×(m﹣3)=0,即m=214时,直线与抛物线只有一个交点,PD最长,此时x=﹣32,y=﹣32+214=154,∴点P (﹣32,154)时,△PDE 的周长最大;②抛物线y=﹣x 2﹣2x +3的对称轴为直线x=﹣−22×(−1)=﹣1, (i )如图1,点M 在对称轴上时,过点P 作PQ ⊥对称轴于Q ,在正方形APMN 中,AP=PM ,∠APM=90°,∴∠APF +∠FPM=90°,∠QPM +∠FPM=90°,∴∠APF=∠QPM ,∵在△APF 和△MPQ 中,{∠APF =∠QPM∠AFP =∠MQP =90°AP =PM,∴△APF ≌△MPQ (AAS ),∴PF=PQ ,设点P 的横坐标为n (n <0),则PQ=﹣1﹣n ,即PF=﹣1﹣n ,∴点P 的坐标为(n ,﹣1﹣n ),∵点P 在抛物线y=﹣x 2﹣2x +3上,∴﹣n 2﹣2n +3=﹣1﹣n ,整理得,n 2+n ﹣4=0,解得n 1=−1+√172(舍去),n 2=−1−√172, ﹣1﹣n=﹣1﹣−1−√172=−1+√172, 所以,点P 的坐标为(−1−√172,−1+√172);(ii)如图2,点N在对称轴上时,设抛物线对称轴与x轴交于点Q,∵∠PAF+∠FPA=90°,∠PAF+∠QAN=90°,∴∠FPA=∠QAN,又∵∠PFA=∠AQN=90°,PA=AN,∴△APF≌△NAQ,∴PF=AQ,设点P坐标为P(x,﹣x2﹣2x+3),则有﹣x2﹣2x+3=﹣1﹣(﹣3)=2,解得x=√2﹣1(不合题意,舍去)或x=﹣√2﹣1,此时点P坐标为(﹣√2﹣1,2).综上所述,当顶点M恰好落在抛物线对称轴上时,点P坐标为(−1−√172,−1+√172),当顶点N恰好落在抛物线对称轴上时,点P的坐标为(﹣√2﹣1,2).。
2023年北京市顺义区仁和中学九年级下学期3月月考数学试卷(解析版)

2022-2023学年第二学期初三数学测试题一、选择题(本题共16分,每小题2分)1. 北京大兴国际机场目前是全球建设规模最大的机场,2019年9月25日正式通航,预计到2022年机场旅客吞吐量将达到45000000人次,将45000000用科学记数法表示为( )A.64510´ B.74.510´ C.84.510´ D.80.4510´【答案】B 【解析】【分析】根据科学记数法的表示方法,进行表示即可.【详解】将数据45000000用科学记数法可表示为:74.510´.故选B .【点睛】本题考查科学记数法,熟练掌握科学记数法的表示方法:()11100£´<n a a ,是解题的关键.2. 如图是某个几个几何体的三视图,该几何体是( )A. 圆锥B. 圆柱C. 长方体D. 正三棱柱【答案】B 【解析】【分析】由主视图和俯视图确定是柱体,由左视图确定具体形状.【详解】解:从主视图和俯视图可以确定是柱体,然后由左视图可以确定此物体为一个横放着的圆柱.故答案为:B.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.3. 正六边形的每个内角度数为( )A. 60° B. 120°C. 135°D. 150°【答案】B【解析】【分析】利用多边形的内角和为(n ﹣2)•180°求出正六边形的内角和,再结合其边数即可求解.【详解】解:根据多边形的内角和定理可得:正六边形的每个内角的度数=(6﹣2)×180°÷6=120°.故选:B .【点睛】本题考查了多边形,解决本题的关键是利用多边形的内角和公式即可解决问题.4. 如图,点A 是数轴上一点,点A ,B 表示的数互为相反数,则点B 表示的数可能是( )A. 0B. 1C. 1.5D. 2.5【答案】C 【解析】【分析】点A 所表示的数在-2和-1之间,根据相反数的意义,可求出点B 所表示的数在1和2之间,据此即可判断.【详解】解:∵点A 所表示的数在-2和-1之间,∴点B 所表示的数在1和2之间,0、1、1.5、2.5四个数中,只有1.5符合题意,故选:C .【点睛】本题考查了互为相反数的意义,只有符号不同的两个数互为相反数,在数轴上在原点的两侧,到原点距离相等的两个数互为相反数.5. 如图,直线//AB CD ,AB 平分EAD Ð,1100Ð=°,则2Ð的度数是( )A. 60°B.50°C. 40°D. 30°【答案】C 【解析】【分析】根据邻补角求出=80EAD а,由AB 平分EAD Ð可知=40EAB а,根据//AB CD 得到2=40EAB Ð=а.【详解】解:∵1180EAD Ð+Ð=°,1100Ð=°,∴=80EAD а,∵AB 平分EAD Ð,∴1=402EAB EAD ÐÐ=°,∵//AB CD ,∴2=40EAB Ð=а,故选:C .【点睛】此题考查了邻补角和平行线的性质、角平分线的定义.解题关键是掌握相关定义和性质.6. 如图,将一个正方形纸片沿图中虚线剪开,能拼成下列四个图形,其中是中心对称图形的是( )A. B.C. D.【答案】B 【解析】【分析】根据拼成的四个图形是否存在中心对称点,即可判断图形是否为中心对称图形.【详解】解:依照中心对称图形的特征:若图形存在中心对称点,沿中心对称点旋转180°后可与原图形重合.选项A 图形无中心对称点,故不是中心对称图形,不符合题意;选项B 图形有中心对称点,故是中心对称图形,符合题意;选项C 图形无中心对称点,故不是中心对称图形,不符合题意;选项D 图形无中心对称点,故不是中心对称图形,不符合题意;故选:B .【点睛】本题考查中心对称图形的性质特征,熟练掌握相关知识是解题的关键.7. 某餐厅规定等位时间达到30分钟(包括30分钟)可享受优惠.现统计了某时段顾客的等位时间t (分钟),如图是根据数据绘制的统计图.下列说法正确的是( )A. 此时段有1桌顾客等位时间是40分钟B. 此时段平均等位时间小于20分钟C. 此时段等位时间的中位数可能是27D. 此时段有6桌顾客可享受优惠【答案】D 【解析】【分析】根据直方图,逐一进行判断即可.【详解】解:A 、由直方图可知:有1桌顾客等位时间在35至40分钟,不能说是40分钟,选项错误,不符合题意;B 、平均等位时间为:1101515202025253030353540261295124.235222222++++++æö´+´+´+´+´+´»ç÷èø(分钟),大于20分钟,选项错误,不符合题意;C 、因为样本容量是35,中位数落在2025t £<之间,选项错误,不符合题意;D 、30分钟以上的桌数为516+=,选项正确,符合题意.故选:D .【点睛】本题考查频数分布直方图,求平均数,中位数.解题的关键是从统计图中有效的获取信息.8. 如图,一架梯子AB 靠墙而立,梯子顶端B 到地面的距离BC 为2m ,梯子中点处有一个标记,在梯子顶端B 竖直下滑的过程中,该标记到地面的距离y 与顶端下滑的距离x 满足的函数关系是( )A. 正比例函数关系B. 一次函数关系C . 二次函数关系 D. 反比例函数关系【答案】B 【解析】【分析】过梯子中点O 作OD ^地面于点D .由题意易证A OD A B C ¢¢¢V :V ,即得出A O OD AB BC ¢=¢¢¢.由O 为中点,2B C x ¢-,OD y =,即可推出122y x=-,即112y x =-+.即可选择.【详解】如图,过梯子中点O 作OD ^地面于点D .∴90ODA B CA ¢¢¢Ð=Ð=°,又∵OA D B A C ¢¢¢Ð=Ð,∴A OD A B C ¢¢¢V :V ,∴A O OD A B B C¢=¢¢¢,根据题意O 为中点,2B C x ¢=-,OD y =.∴122y x =-,整理得:112y x =-+.故y 与x 的函数关系为一次函数关系.故选B .【点睛】本题考查三角形相似的判定和性质以及一次函数的实际应用.作出辅助线构成相似三角形是解答本题的关键.二、填空题(本题共16分,每小题2分)9.在实数范围内有意义,则x 的取值范围是 _____.【答案】12x ³【解析】【分析】根据二次根式有意义的条件即可求出答案.实数范围内有意义,∴210x -³,解得12x ³,故答案为12x ³.【点睛】本题考查二次根式有意义的条件、解一元一次不等式,解题的关键是熟练运用二次根式有意义的条件.10. 分解因式:2288x x ++=___________.【答案】22()2x +【解析】【分析】直接提取公因式2,再利用完全平方公式分解因式得出答案.【详解】解:2288x x ++=2(x 2+4x+4)=22()2x +.故答案为:22()2x +.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.11. 方程1﹣12x +=0的解为 _____.【答案】=1x -【解析】【分析】先把分式方程化为整检验即可得到答案.【详解】解:1102x -=+去分母得210x +-=,解得=1x -,经检验=1x -是原方程的解,∴原方程的解为=1x -.【点睛】本题主要考查了解分式方程,熟知解分式方程的方法是解题的关键.12. 已知点A (1,2),B 在反比例函数()0k y x x =>的图象上,若OA=OB ,则点B 的坐标为_________.【答案】(2,1)【解析】【分析】根据点A ,B 关于y =x (y -x =0)的对称,求解即可【详解】解:∵点A (1,2),B 在反比例函数()0k y x x =>的图象上,OA=OB ,∴点A ,B 关于直线y =x (y -x =0)的对称,设点(1,2)关于直线y =x (y -x =0)的对称点设为(a ,b )由两点中点在直线y =x 上及过两点的直线垂直直线y =x (斜率之积为-1)可以得到:1222(2)(1)1a bb a ++ì=ïíï--=-î,解得:a =2,b =1,∴点B 的坐标为(2,1)故答案为:(2,1)【点睛】本题考查了反比例函数图象上点的坐标特征,利用已知条件得出:点A ,B 关于直线y =x (y -x =0)的对称是解题的关键.13. 某校学生会在同学中招募志愿者作为校庆活动讲解员,并设置了“即兴演讲”“朗诵短文”“电影片段配音”三个测试项目,报名的同学通过抽签的方式从这三个项目中随机抽取一项进行测试.甲、乙两位同学报名参加测试,恰好都抽到“即兴演讲”项目的概率是______.【答案】19【解析】【分析】列表后,再根据概率公式计算概率即可.【详解】解:列表如下:故P(甲、乙都抽到“即兴演讲”项目)=19,故答案为:19【点睛】此题考查了概率的计算,正确列出表格是解答此题的关键.14. 石拱桥是中国传统桥梁四大基本形式之一,如图,已知一石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,求水面宽AB=_____m.【答案】8.【解析】【分析】连结OA,先计算OD的长,由勾股定理解得AD的长,再根据垂径定理可得AB=2AD,据此解题.【详解】连结OA,Q 拱桥半径OC 为5cm ,5OA \=cm ,8CD =Q m ,853OD \=-=cm ,224AD OA OD \=-==m2248AB AD \==´=m,故答案为:8.【点睛】本题考查垂径定理及其推论、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.15. 若关于x的方程22x x m ++=有两个不相等的实数根,则m 的取值范围是_____.【答案】1m <【解析】【分析】利用一元二次方程根的判别式的意义可以得到2240m D =->,然后解关于m的不等式即可.【详解】根据题意得2240m D =->,解得1m <.故答案为1m <.【点睛】本题考查一元二次方程根的判别式.一元二次方程()200ax bx c a ++=¹的根与24b acD =-有如下关系:当0D >时,方程有两个不相等的实数根;当0D =时,方程有两个相等的实数根;当D<0时,方程无实数根.16. 某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元.累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;…,理形成统计表如表:经整②180【答案】①. 160.【解析】【分析】(1)根据表格数据得出答案即可;(2)根据x+y=8,x,y均为正整数,把所有收入可能都计算出,即可得出最大收入.【详解】解:(1)由统计表可知:如该快递员一天工作8小时只送甲类件,则他的收入是1×145=145(元)如果该快递员一天工作8小时只送乙类件,则他的收入是2 × 80= 160 (元)∴他一天的最大收入是160元;(2)依题意可知:x和y均正整数,且x+y= 8①当x=1时,则y=7∴该快递员一天的收入是1 ×30+2×70=30+ 140= 170 (元);②当x=2时,则y=6∴该快递员-天的收入是1×55+2×60=55+120=175(元);③当x=3时,则y=5∴该快递员一天的收入是1× 80+2×50= 80+ 100= 180 (元);④当x=4时,则y=4∴该快递员一天的收入是1×100+2×40= 100+80 = 180 (元);⑤当x=5时,则y=3∴该快递员一天的收入是1×115+2×30=115十60 = 175 (元);⑥当x=6时,则y=2∴该快递员一天的收入是1 × 125+ 2× 20= 125+40 = 165 (元);⑦当x=7时,则y=1∴该快递员一天的收入是1×135+2×10=135+20= 155 (元)综上讨论可知:他一天的最大收入为180元.故填: 160;180.【点睛】本题主要考查二元一次方程的应用,在给定的“x +y =8,x ,y 均为正整数”的条件下,分情况讨论出最大收入即可.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:()113π2cos602-æö---+°+ç÷èø.2+【解析】【分析】直接利用绝对值的性质以及非零数的零次幂、特殊角三角函数值、负整数指数幂的性质分别化简即可得到答案.【详解】解:()113π2cos602-æö--+°+ç÷èø11222-+´+112++2+.【点睛】此题主要考查了实数的运算,正确化简各式是解答此题的关键.18. 解不等式组3(2)22254x x x x -<-ìïí+<ïî.【答案】52<x <4【解析】【分析】先分别求出各不等式的解析,然后各不等式解集的公共部分即为不等式组的解集.【详解】解:3(2)22254x x x x -<-ìïí+<ïî①②由①得x <4由②得x >52所以不等式组的解集为:52<x <4【点睛】本题考查了解一元一次不等式组,根据不等式的解集确定不等式组的解集是解答本题的关键.19. 已知210x x +-=,求代数式()()212x x x +--的值【答案】9【解析】【分析】根据完全平方公式展开所求代数式,把已知式子代入求解即可;【详解】解:2(31)(2)x x x +--,229612x x x x =++-+,2881x x =++,210x x +-=Q ,21x x \+=,\原式()2818119x x =++=´+=.【点睛】本题主要考查了代数式求值,结合完全平方公式化简是解题的关键.20. 证明下面是三角形中位线定理添加辅助线的方法,请你完成证明.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.已知:如图,点D 、E 分别是ABC V 的边AB 、AC 的中点.求证:DE BC ∥ 且 12DE BC =.证明:如图,延长DE 到F ,使EF DE =,连接FC 、DC 、AF .【答案】见解析【解析】【分析】证明AED CEF V V ≌,推出CF AD BD ==,CF AB ∥,得到四边形BDFC 为平行四边形,得到,DF BC DF BC =∥,即可得证.【详解】证明:如图,延长DE 到F ,使EF DE =,连接FC 、DC 、AF ,∵点D 、E 分别是ABC V 的边AB 、AC 的中点,∴,AD BD AE EC ==,又AED CEF Ð=Ð,∴()SAS AEDCEF △≌△,∴,CF AD BD EFC ADE ==Ð=Ð,∴CF AD ∥,∴四边形BDFC 为平行四边形,∴,DF BC DF BC =∥,∵12EF DE DF ==,∴DE BC ∥ 且 12DE BC =.【点睛】本题考查全等三角形的判定和性质,平行四边形的判定和性质.解题的关键是证明四边形BDFC 为平行四边形.21. 如图,在▱ABCD 中,AC ,BD 交于点O ,且AO =BO .(1)求证:四边形ABCD 是矩形;(2)∠ADB 的角平分线DE 交AB 于点E ,当AD =3,tan ∠CAB =34时,求AE 的长.【答案】(1)见解析;(2)32.【解析】【分析】(1)由平行四边形性质和已知条件得出AC =BD ,即可得出结论;(2)过点E 作EG ⊥BD 于点G ,由角平分线的性质得出EG =EA .由三角函数定义得出AB =4,sin ∠CAB =sin ∠ABD =35ADBD=,设AE =EG =x ,则BE =4﹣x ,在Rt △BEG 中,由三角函数定义得出345x x =-,即可得出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AC =2AO ,BD =2BO .∵AO =BO ,∴AC =BD .∴平行四边形ABCD 为矩形.(2)过点E 作EG ⊥BD 于点G ,如图所示:∵四边形ABCD 是矩形,∴∠DAB =90°,∴EA ⊥AD ,∵DE 为∠ADB 的角平分线,∴EG =EA .∵AO =BO ,∴∠CAB =∠ABD .∵AD =3,tan ∠CAB =34,∴tan ∠CAB =tan ∠ABD =34=AD AB.∴AB =4.∴BD 5=,sin ∠CAB =sin ∠ABD =35AD BD =.设AE =EG =x ,则BE =4﹣x ,在△BEG 中,∠BGE =90°,∴sin ∠ABD =345x x =-.解得:x =32,∴AE =32.故答案为:32.【点睛】本题考查了矩形的判定与性质、角平分线的性质、勾股定理、三角函数定义等知识;熟练掌握矩形的判定与性质和三角函数定义是解题的关键.22. 平面直角坐标系xOy 中,一次函数1y kx =-的图象经过点(2,3).(1)求这个一次函数的解析式;(2)当2x <时,对于x 的每一个值,函数y x a =+的值都大于一次函数1y kx =-的值,直接写出a 的取值范围.【答案】(1)21y x =-;(2)1a ³【解析】【分析】(1)直接利用待定系(2)对于21y x =-,当2x =时,求出其y 的值,再由此坐标可求出a 的值.画出函数图象即可求出a 的取值范围.【详解】(1)解:∵一次函数1y kx =-的图象过点(23),,∴321k =-,解得:2k =.∴这个一次函数的解析式是21y x =-.(2)当2x =时,代入21y x =-,得:3y =,∴当函数y x a =+经过点(2,3)时,1a =.画出两个函数图象如图:由图象可知,当1a ³,在2x <时,函数y x a =+的图象都在一次函数21y x =-的图象上方,即此时y x a =+的值都大于21y x =-的值,故a 的取值范围为1a ³.【点睛】本题考查求一次函数解析式和一次函数与不等式的关系,解题关键是熟练运用待定系数法求解析式,利用数形结合思想确定a 的取值范围.23. 某校在距离冬奥会开幕倒计时300天之际开展了一次冬奥知识答题竞赛,七、八年级各有200名学生参加了本次活动,为了解两个年级的答题情况,从两个年级各随机抽取了20名学生的成绩进行调查分析,过程如下(数据不完整).收集数据七年级 66 70 71 78 71 78 75 78 58 a 63 90 80 85 80 89 85 86 80 87 八年级 61 65 74 70 71 74 74 76 63 b 91 85 80 84 87 83 82 80 86 c 整理、描述数据格)分析数据两组样本数据的平均数、中位数、众数如下表所示:请根据所给信息,解答下列问题:(1)=a ,m = ,n = ;(2)在此次竞赛中,小冬的成绩在七年级能排在前50%,在八年级只能排在后50%,那么估计小冬的成绩可能是 ;(3)估计七年级和八年级此次测试成绩优秀的总人数为 .【答案】(1)80,0.45,80 (2)79.5 (3)210【解析】【分析】(1)利用平均数即可求出a ;找出成绩在8089x ££之间的频数即可求出m ,利用中位数即可求出n ;(2)利用中位数的意义列不等式求解即可;(3)求出抽取的20名七年级学生成绩中的优秀率,再乘以200;求出20名八年级学生成绩中的优秀率,再乘以200;最后两者相加即可解答.【小问1详解】解:∵七年级成绩的平均数为6671868087=77.520+++++L ,∴80a =;∵七年级同学成绩在8089x ££之间的频数为9,∴9=0.4520m =;将八年级同学成绩从小到大排序,处在中间的两个数都是80,∴80n =.故答案为:80,0.45,80.【小问2详解】解:∵七年级成绩的中位数是79,八年级成绩的中位数是80,小冬的成绩在七年级能排在前50%,在八年级只能排在后50%,∴小冬成绩在79和80之间∴小冬的成绩可能是79.5.故答案为79.5.【小问3详解】解:∵七年级的成绩为优秀的人数为0.5200=100´人,八年级的成绩为优秀的人数为0.55200=110´人,∴七年级和八年级此次测试成绩优秀的总人数为210人.【点睛】本题主要考查中位数、众数、平均数、频数分布表等知识点,理解中位数、众数、平均数的意义以及频数,频率和总数之间的关系是解题的关键.24. 如图,⊙O是△ABC的外接圆,圆心O在AC上.过点B作直线交AC的延长线于点D,使得∠CBD=∠CAB.过点A作AE⊥BD于点E,交⊙O于点F.(1)求证:BD是⊙O的切线;(2)若AF=4,2sin3D=,求BE的长.【答案】(1)见解析;(2【解析】【分析】(1)要证明BD是⊙O的切线,需要连接OB,通过角的等量代换,求证90CBD OBC°Ð+Ð=,即可.(2)连接CF交OB于点G,由直径所对的角为直角及平行线的判定及性质得出ACF DÐ=Ð,再根据等角的正弦值相等及勾股定理即可求出CF=,易证四边形BEFG是矩形,最后根据矩形的性质即可得出答案.【详解】(1)证明:如图,连接OB,∵AC是直径,∴ABC°90Ð=,90ABO OBC°\Ð+Ð=,Q,OA OB=\Ð=Ð,CAB ABO90CAB OBC°\Ð+Ð=,Q,CBD CABÐ=ÐCBD OBC°90\Ð+Ð=,\^,OB BD∴BD是☉O的切线.(2)解:如图,连接CF交OB于点G,∵AC 是直径,90AFC °\Ð=,AE BD ^Q ,90AED °\Ð=,AFC AED \Ð=Ð.//FC ED \,ACF D \Ð=Ð,2sin 3D Ð=Q ,2in sin 3s ACF D \Ð=Ð=,在Rt ACF D 中,sin AF ACF ACÐ=,23AF AC \=,4AF =Q ,6AC \=.根据勾股定理,得CF =.//,CF BD OB BD ^Q ,OB CF \^,12FG CF \==,90EFG FEB EBG °Ð=Ð=Ð=Q ,∴四边形BEFG 是矩形,∴BE FG ==.【点睛】本题考查圆的切线证明,三角形的勾股定理应用,锐角三角函数的计算以及矩形的性质等相关知识点,能根据题意进行准确的条件分析是解题关键.25. 某公园在垂直于湖面的立柱上安装了一个多孔喷头,从喷头每个孔喷出的水柱形状都相同,可以看作是抛物线的一部分,当喷头向四周同时喷水时,形成一个环状喷泉,安装后,通过测量其中一条水柱,获得如下数据,在距立柱水平距离为d 米的地点,水柱距离湖面的高度为h 米,请解决以下问题:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)结合表中所给数据或所画图象,直接写出这条水柱最高点距离湖面的高度;(3)求所画图象对应的函数表达式;(4)从安全的角度考虑,需要在这个喷泉外围设立一圈正方形护栏,这个喷泉的任何一条水柱在湖面上的落点到护栏的距离不能小于1米,请通过计算说明公园至少需要准备多少米的护栏(不考虑接头等其他因素).【答案】(1)见解析 (2)5(3)()()2135085h d d =--+££ (4)72米【解析】【分析】(1)在表格中建立坐标系,然后描点、连线即可;(2)观察图象即可;(3)由表中点(1.0,4.2),(5.0,4.2),可确定抛物线的对称轴及顶点坐标,则设抛物线解析式为顶点式即可,再找点(1.0,4.2)代入即可求得解析式;(4)在求得的解析式中令h =0,则可求得d 的值,即可确定所需护栏的长度.【小问1详解】坐标系及图象如图所示.【小问2详解】由图象知,水柱最高点距离湖面的高度为5米.【小问3详解】∵抛物线经过点(1.0,4.2),(5.0,4.2),∴抛物线的对称轴为3d =.∴抛物线的顶点坐标为(3.0,5.0).设抛物线的函数表达式为()235h a d =-+. 把(1.0,4.2)代入,解得15a =-.∴所画图象对应的函数表达式为()()2135085h d d =--+££.【小问4详解】令0h =,解得12d =-(舍),28d =.∴每条水柱在湖面上的落点到立柱的水平距离为8米.∵这个喷泉的任何一条水柱在湖面上的落点到护栏的距离不能小于1米,∴正方形护栏的边长至少为18米.则公园至少需要准备18×4=72(米)的护栏.【点睛】本题是二次函数的实际问题,考查了画二次函数图象,求二次函数解析式,二次函数与一元二次方程的关系等知识,二次函数的相关知识是解题的关键.26. 已知二次函数y =ax 2﹣2ax .(1)二次函数图象的对称轴是直线x = ;(2)当0≤x ≤3时,y 的最大值与最小值的差为4,求该二次函数的表达式;(3)若a <0,对于二次函数图象上的两点P (x 1,y 1),Q (x 2,y 2),当t ≤x 1≤t +1,x 2≥3时,均满足y 1≥y 2,请结合函数图象,直接写出t 的取值范围.【答案】(1)1;(2)y =x 2﹣2x y =﹣x 2+2x ;(3)﹣1≤t ≤2【解析】【分析】(1)由对称轴是直线x =2b a-,可求解;(2)分a >0或a <0两种情况讨论,求出y 的最大值和最小值,即可求解;(3)利用函数图象的性质可求解.【详解】解:(1)由题意可得:对称轴是直线x =22a a--=1,故答案为:1;(2)当a >0时,∵对称轴为x =1,当x =1时,y 有最小值为﹣a ,当x =3时,y 有最大值为3a ,∴3a ﹣(﹣a )=4.∴a =1,∴二次函数的表达式为:y =x 2﹣2x ;当a <0时,同理可得y 有最大值为﹣a ; y 有最小值为3a ,∴﹣a ﹣3a =4,∴a =﹣1,∴二次函数的表达式为:y =﹣x 2+2x ;综上所述,二次函数的表达式为y =x 2﹣2x 或y =﹣x 2+2x ;(3)∵a <0,对称轴为x =1,∴x ≤1时,y 随x 的增大而增大,x >1时,y 随x 的增大而减小,x =﹣1和x =3时的函数值相等,∵t ≤x 1≤t +1,x 2≥3时,均满足y 1≥y 2,∴t ≥﹣1,t +1≤3,∴﹣1≤t ≤2.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识点的综合应用,能利用分类思想解决问题是本题的关键.27. 已知等边ABC V ,D 为边BC 中点,M 为边AC 上一点(不与A ,C 重合),连接DM .(1)如图1,点E 是边AC 的中点,当M 在线段AE 上(不与A ,E 重合)时,将DM 绕点D 逆时针旋转120°得到线段DF ,连接BF .①依题意补全图1;②此时EM 与BF 的数量关系为:DBF Ð= °.(2)如图2,若2DM MC =,在边AB 上有一点N ,使得120NDM Ð=°.直接用等式表示线段BN ,ND ,CD 之间的数量关系,并证明.【答案】(1)①见解析;②EM BF =,120;(2)12CD BN ND =+,证明见解析【解析】【分析】(1)①根据提示画出图形即可;②连接DE ,证明△DME ≌△DFB 即可得到结论;(3)取线段AC 中点E ,连接ED .由三角形中位线定理得12DE BA =,12CE CA =,12BD CD BC ==.根据ABC V 是等边三角形可证明DE BD CD CE ===,60CED EDC B Ð=Ð=Ð=°,再证明EDM BDN @△△得BN EM =,2ND MD MC ==,进一步可得结论.【详解】解:(1)①补全图形如图1.②线段EM 与BF 的数量关系为EM BF =;120DBF Ð=°.连接DE ,∵D 为BC 的中点,E 为AC 的中点,∴DE 为△ABC 的中䏠线,∴DE =12AB ,DE //AB∵ABC V 是等边三角形,∴AB BC AC ==,60Ð=Ð=Ð=°A B C .∵D 为BC 的中点,∴12BD BC DE ==∵//DE AB∴60CDE ABC Ð=Ð=°,60CED A Ð=Ð=°∴120BDE BDM EDM Ð=°=Ð+Ð∵120BDM BDF Ð+Ð=° ,,DM DF =\ BDF EDM Ð=Ð∴△DME ≌△DFB∴EM BF =;DBF DEM Ð=Ð.∵60CED Ð=°∴120DEM Ð=°∴120DBF Ð=°.故答案为:EM BF =;120DBF Ð=°.(2)证明:取线段AC 中点E ,连接ED .如图2 .∵点D 是边BC 的中点,点E 是边AC 的中点,∴12DE BA =,12CE CA =,12BD CD BC ==.∵ABC V 是等边三角形,∴AB BC AC ==,60B C Ð=Ð=°.∴DE BD CD CE ===,60CED EDC B Ð=Ð=Ð=°.∴120Ð=°BDE ,∵120NDM Ð=°,∴EDM BDN Ð=Ð.∴EDM BDN @△△.∴BN EM =,2ND MD MC ==,∵EC EM MC =+,∴12CD BN ND =+.【点睛】此题主要考查了全等三角形的判定与性质,等边三角形的性质以及三角形中位线定理,正确作出辅助线构造全等三角形是解答此题的关键.28. 对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ),特殊地,当图形M 与图形N 有公共点时,规定d (M ,N )=0已知点()(2,00)2(30)0()2A B C D m -,,,,,,.(1)①求d (点O ,线段AB );②若d (线段CD ,直线AB )=1,直接写出m 的值;(2)⊙O 的半径为r ,若d (⊙O ,线段AB )≤1,直接写出r 的取值范围;(3)若直线y b =+上存在点E ,使d (E ,ABC V )=1,直接写出b 的取值范围.【答案】(1)①②2m =-;(2)11r -££;(3)22b --££【解析】【分析】(1)①根据题意作图,由三角形的面积公式及“闭距离”的定义即可求解;②根据题意作图,根据含30°的直角三角形的性质即可求出D 点坐标,故可求解;(2)根据题意作图,由d (⊙O ,线段AB )≤1,分情况讨论即可求解;(3)根据题意作图,找到d (⊙O ,线段AB )=1的点,再根据解直角三角形、一次函数的解析式求解方法求出b 的值,故可求解.【详解】(1)①如图,作OH ⊥AB ,∵()020(A B -,,,∴AO =2,BO =,AB 4=根据三角形的面积公式可得1122AO BO AB OH ×=×∴OH=∴d (点O ,线段AB )②∵AO=2,BO=23,AB4=∴AB=2AO,∴∠ABO=30°如图,作HD⊥AB,∵d(线段CD,直线AB)=1,∴DH=1∴BD=2HD=2∴DO=BO-BD=-2∴D(-,0)2∴m=-;2(2)如图,OH⊥AB,交⊙O于M点,BI=1当d(⊙O,线段AB)≤1当HM≤1时,由(1)可得OH=3∴r³-当BI≤1时,此时IO=BI+OB=∴1故若d(⊙O,线段AB)≤1时, r的取值范围r11(3)∵ d (E ,ABC V )=1,如图,作CM ⊥直线3y x b =+于M 点,此时CM =1设直线y b =+与x 轴交于K 点,则∠CKM =60°∴CK =CM ÷cos60°=3∴K (2+3,0),代入y b =+得20b æ=+ççèø解得b =2-如图,作BG ⊥直线y b =+于G 点,此时BG =1设直线y b =+与y 轴交于N 点,则∠GNB =90°-60°=30°∴BN =2BG =2∴N (0,2+),代入y b =+得20b +=+解得b =2∵存在点E,使d(E,ABCV)=1,∴b的取值范围是--££+.b2322【点睛】此题主要考查圆与几何综合,解题的关键是根据题意作图,由“闭距离”的定义及解直角三角形、圆的性质特点进行求解.。
甘肃省酒泉市肃州区酒泉市第二中学2022-2023学年九年级下学期3月月考数学试题(含答案解析)

甘肃省酒泉市肃州区酒泉市第二中学2022-2023学年九年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图案中,不是轴对称图形的是()A .B .C .D .2.据报道,2022年11月29日23时08分,神舟十五号载人飞船在甘肃酒泉发射升空,与天和核心舱在距离地面393000米的太空轨道进行交会对接,用科学记数法表示我国空间站运行的轨道高度393000米为()A .439.310⨯B .53.9310⨯C .3.93100000⨯D .60.39310⨯3.下面四组线段中,四条线段不.成比例的是()A .a =3,b =6,c =2,d =4B .a =1,bc,d C .a =4,b =6,c =5,d =10D .a =2,b c d =4.下列二次根式是最简二次根式的是()AB C D 5.如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,∠1=60°,则∠2的度数为()A .30°B .45°C .60°D .75°6.若反比例函数(0)ky k x=≠的图象经过点(2,3)-,则它的图象也一定经过的点是()A .(2,3)--B .(3,2)--C .(1,6)-D .(6,1)7.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是()A .1k <-B .1k >C .1k <且0k ≠D .1k >-且0k ≠8.如图,四边形ABCD 是O 的内接四边形,70B ∠=︒,则D ∠的度数是()A .110°B .90°C .70°D .50°9.不等式组10521x x ->⎧⎨-≥⎩的解集在数轴上表示正确的是()A .B .C .D .10.(2013年四川广安3分)已知二次函数y =ax 2+bx +c 的图象如图所示,对称轴是直线x =1.下列结论:①abc >0,②2a +b =0,③b 2﹣4ac <0,④4a +2b +c >0其中正确的是()A .①③B .只有②C .②④D .③④二、填空题11.若23a b =,则a bb -=_____.12.一元二次方程21202x x -=的根是________13.因式分解2a b b -的正确结果是________14.如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为_____.15.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.16.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是_______17.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为______________m .18.如图,双曲线m y x =与ny x=在第一象限内的图象依次是m 和,n 设点P 在图象m 上,PC 垂直于x 轴于点C ,交图象n 于点A ,PD 垂直于y 轴于D 点,交图象n 于点B ,则四边形PAOB 的面积为_______三、解答题19.计算:2|+(﹣1)﹣120.解方程:()()221221x x +=+21.先化简,再求值22(1)b aa b a b÷---,其中2a =,1b =-22.如图,△ABC 中,∠C =90°,∠A =30°.(1)用尺规作图作AB 边上的垂直平分线DE ,交AC 于点D ,交AB 于点E .(保留作图痕迹,不要求写作法和证明)(2)连接BD ,求证:DE =CD .23.如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A ,B ,C ,D ,E ,F )中任取2个涂黑,得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.24.某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有名.25.如图,在平面直角坐标系xoy 中,函数()4y=x 0x>的图象与一次函数y=kx -k 的图象的交点为A (m ,2).(1)求一次函数的解析式;(2)设一次函数y=kx -k 的图象与y 轴交于点B ,若P 是x 轴上一点,且满足△PAB 的面积是4,直接写出点P 的坐标.26.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A 、B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量,如图,测得45DAC ∠=︒,60DBC ∠=︒,若132AB =米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果可带根号)27.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.28.如图,在平面直角坐标系中,抛物线经过点A (0,4),B (1,0),C (5,0),其对称轴与x 轴交于点M .(1)求此抛物线的解析式和对称轴;(2)在此抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.参考答案:1.A【详解】试题分析:根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合.因此,A 、不是轴对称图形,故本选项正确;B 、是轴对称图形,故本选项错误;C 、是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项错误.故选A .考点:轴对称图形.2.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值是易错点,由于393000有6位,所以可以确定615n =-=.【详解】解:5393000 3.9310=⨯.故选:B .【点睛】此题考查科学记数法表示绝对值较大的数的方法,准确确定a 与n 值是关键.3.C【分析】若a ,b ,c ,d 成比例,即有::a b c d =.只要代入验证即可.【详解】A.3:62:4=,则::a b c d =,故a ,b ,c ,d 成比例,不符合题意;B.=::a b c d =,故a ,b ,c ,d 成比例,不符合题意;C.四条线段中,任意两条的比都不相等,因而不成比例,符合题意;2=::a b c d =,故a ,b ,c ,d 成比例,不符合题意;故选:C .【点睛】本题主要考查了成比例的定义,并且注意叙述线段成比例时,各个线段的顺序.4.C【详解】试题解析:A B ;D 因此这三个选项都不是最简二次根式,故选C .点睛:根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.5.C【详解】试题分析:过点D 作DE ∥a ,∵四边形ABCD 是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a ∥b ,∴DE ∥a ∥b ,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C .考点:1矩形;2平行线的性质.6.C【分析】先利用反比例函数(0)ky k x=≠的图象经过点(2,3)-,求出k 的值,再分别计算选项中各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】解:∵反比例函数(0)ky k x=≠的图象经过点(2,3)-,∴k =2×(﹣3)=﹣6,∵(﹣2)×(﹣3)=6≠﹣6,(﹣3)×(﹣2)=6≠﹣6,1×(﹣6)=﹣6,,6×1=6≠﹣6,则它一定还经过(1,﹣6),故选:C .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(0)ky k x=≠的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .熟练掌握反比例函数的性质是解题的关键.7.D【分析】根据一元二次方程有两个不相等的实数根得到∆>0,即4+4k>0,且0k ≠,计算可得答案.【详解】解:∵一元二次方程2210kx x +-=有两个不相等的实数根,∴∆>0,即4+4k >0,且0k ≠,解得1k >-且0k ≠,故选:D .【点睛】此题考查了已知一元二次方程根的情况求参数,正确掌握一元二次方程根的三种情况是解题的关键.8.A【分析】先根据圆内接四边形的对角互补得出180D B ∠+∠=︒,即可解答.【详解】解: 四边形ABCD 是O 的内接四边形,180D B ∴∠+∠=︒,18070110D ∴∠=︒-︒=︒,故选:A .【点睛】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.9.C【分析】根据解不等式组的方法,可得不等式组的解集,根据不等式组的解集在数轴上的表示方法,可得答案.【详解】解:10521x x ->⎧⎨-≥⎩①②,解①得,1x >,解②得,2x ≤,∴不等式组的解集为12x <≤,把解集表示在数轴上,故选:C .【点睛】本题考查了一元一次不等式组的解法以及在数轴上表示不等式的解集,是基础知识比较简单.10.C【详解】∵抛物线的开口向上,∴a >0.∵b2a->0,∴b <0.∵抛物线与y 轴交于正半轴,∴c >0.∴abc <0,①错误.∵对称轴为直线x =1,∴b2a-=1,即2a +b =0,②正确.∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,③错误.;∵对称轴为直线x =1,∴x =2与x =0时的函数值相等,而x =0时对应的函数值为正数.∴4a +2b +c >0,④正确.综上所述,其中正确的有②④.故选C .11.13-【分析】根据23a b =,得到23a b =,代入式子计算即可.【详解】∵23a b =,∴23a b =,∴2133b ba b b b --==-,故答案为:13-.【点睛】此题考查代数式的求值,掌握等式的性质变形得到23a b =是解题的关键.12.10x =,24x =【分析】利用因式分解法求解.【详解】解:21202x x -=,∴()1402x x -=,∴0x =或40x -=,解得:10x =,24x =.故答案为:10x =,24x =.【点睛】本题考查的是解一元二次方程,解题的关键是掌握因式分解法.13.()()11b a a +-【分析】先提公因式b ,再利用平方差公式分解即可.【详解】解:2a b b -()21b a =-()()11b a a =+-故答案为;()()11b a a +-.【点睛】此题主要考查了分解因式,关键是掌握提公因式法和公式法的运用.14.13【分析】如图,作AD BC ⊥,垂足为D ,由图可知tan ADACB CD∠=,计算求解即可.【详解】解:如图,作AD BC ⊥,垂足为D由图可知21tan 63AD ACB CD ∠===故答案为:13.【点睛】本题考查了正切.解题的关键在构造直角三角形求正切值.15.12【分析】根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,再根据菱形的面积等于对角线乘积的一半求出面积解答.【详解】∵菱形的两条对角线的长分别为6和8,∴菱形的面积=12×6×8=24,∵O 是菱形两条对角线的交点,∴阴影部分的面积=12×24=12.故答案是:12.【点睛】本题考查了中心对称,菱形的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.16.12##0.5【分析】由从长度分别为2,4,6,7的四条线段中随机取三条,可能的结果为:2,4,6;2,4,7;2,6,7;4,6,7共4种,能构成三角形的是2,6,7;4,6,7;直接利用概率公式求解即可求得答案.【详解】解: 从长度分别为2,4,6,7的四条线段中随机取三条,可能的结果为:2,4,6;2,4,7;2,6,7;4,6,7共4种,能构成三角形的是2,6,7;4,6,7;∴能构成三角形的概率是:2142=.故答案为:12.【点睛】此题考查了列举法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.17.15【详解】解:根据同时同地物高与影长成正比.设旗杆高度为x 米,由题意得,1.8325x=,解得x=15.故答案为15.18.m n -##n m-+【分析】根据反比例函数系数k 的几何意义得到PCOD m S =矩形,12AOC BOD S n S ==△△,然后利用四边形PAOB 的面积AOC BOD PCOD S S S =--△△矩形进行计算.【详解】解:PC x ⊥ 轴,PD y ⊥轴,PCOD S m ∴=矩形,12AOC BOD S n S ==△△,∴四边形PAOB 的面积1122AOC BOD PCOD n S S S m n n m =--=--=-△△矩形.故答案为:m n -.【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数ky x=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值||k .19.3.【分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【详解】2|+(﹣1)﹣1=221﹣(﹣2)=21=3.【点睛】本题考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.x 1=-12,x 2=12.【分析】利用因式分解方法解此方程,具体先移项,再提组间公因式,转化成两个一元一次方程即可解答.【详解】解:()()221221x x +=+()()22121-2=0x x ++,()2122)=0-1x x ++(,2x+1=0或2x-1=0,解得:x 1=-12,x 2=12【点睛】本题考查用因式分解法解一元二次方程,解题关键是能把一元二次方程转化成两个一元一次方程,题目比较好,难度适中.21.1a b+,1【分析】根据分式的减法和除法可以化简题目中的式子,然后将a 、b 的值代入化简后的式子即可解答本题.【详解】解:原式()()baa b a b a b a b a b -⎛⎫=÷-+---⎝⎭()()ba b a b a b b-=⨯+-1a b=+当2a =,1b =-时,原式1121==-【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.(1)作图见解析;(2)证明见解析.【详解】【分析】(1)分别以A 、B 为圆心,以大于12AB 的长度为半径画弧,过两弧的交点作直线,交AC 于点D ,AB 于点E ,直线DE 就是所要作的AB 边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD ,再根据等边对等角的性质求出∠DBA=∠A=30°,然后求出∠DBC=30°,从而得到BD 平分∠ABC ,再根据角平分线的性质即可得.【详解】(1)如图,DE 为所作;(2)如图,∵DE 垂直平分AB ,∴DA=DB ,∴∠DBA=∠A=30°,∵∠ABC=90°﹣∠A=60°,∴∠CBD=30°,即BD 平分∠ABC ,而DE⊥AB,DC⊥BC,∴DE=DC.【点睛】本题考查了线段垂直平分线的作法、线段垂直平分线上的点到线段两端点的距离相等的性质、角平分线的性质,熟练掌握作图方法以及相关性质是解题的关键.23.(1)13(2)13【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到新图案是轴对称图形的结果数,利用概率公式计算可得.【详解】解:(1)∵正方形网格被等分成9等份,其中阴影部分面积占其中的3份,∴米粒落在阴影部分的概率是31. 93=(2)列表如下:A B C D E FA(B,A)(C,A)(D,A)(E,A)(F,A)B(A,B)(C,B)(D,B)(E,B)(F,B)C(A,C)(B,C)(D,C)(E,C)(F,C)D(A,D)(B,D)(C,D)(E,D)(F,D)E(A,E)(B,E)(C,E)(D,E)(F,E)F(A,F)(B,F)(C,F)(D,F)(E,F)由表可知,共有30种等可能结果,其中是轴对称图形的有10种,故新图案是轴对称图形的概率为101. 303=【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.24.(1)120,30%;(2)作图见解析;(3)450.【分析】(1)用安全意识分“一般”的人数除以安全意识分“一般”的人数所占的百分比即可得这次调查一共抽取的学生人数;用安全意识分“很强”的人数除以这次调查一共抽取的学生人数即可得安全意识“很强”的学生占被调查学生总数的百分比;(2)用这次调查一共抽取的学生人数乘以安全意识分“较强”的人数所占的百分比即可得安全意识分“较强”的人数,在条形统计图上画出即可;(3)用总人数乘以安全意识为“淡薄”、“一般”的学生一共所占的百分比即可得全校需要强化安全教育的学生的人数.【详解】解:(1)18÷15%=120人;36÷120=30%;(2)120×45%=54人,补全统计图如下:(3)1800×1218120+=450人.考点:条形统计图;扇形统计图;用样本估计总体.25.(1)y=2x -2;(2)(3,0),(-1,0).【分析】(1)将A 点坐标代入()4y=x 0x>求出m 的值为2,再将(2,2)代入y=kx -k ,求出k 的值,即可得到一次函数的解析式:(2)将三角形以x 轴为分界线,分为两个三角形计算,再把它们相加.【详解】解:(1)将A (m ,2)代入()4y=x 0x>得,m=2,则A 点坐标为A (2,2).将A (2,2)代入y=kx -k 得,2k -k=2,解得k=2.∴一次函数解析式为y=2x -2;(2)∵一次函数y=2x -2与x 轴的交点为C (1,0),与y 轴的交点为B (0,-2),∴112CP 2CP 422⋅⋅+⋅⋅=,解得CP=2.∴P 点坐标为(3,0),(-1,0).【点睛】本题考查反比例函数与一次函数的交点问题,曲线上点的坐标与方程的关系.26.()198+米【分析】过点D 作DE AC ⊥,垂足为E ,设BE x =,根据AE DE =,列出方程即可解决问题.【详解】解:过点D 作DE AC ⊥,垂足为E ,设BE x =,在Rt DEB △中,tan DEDBE BE∠=,60DBC ∠=︒ ,tan 60DE x ∴=︒=.又45DAC ∠=︒ ,AE DE ∴=.132x ∴+=,∴解得66x =+,198DE ∴==(米).∴观景亭D 到南滨河路AC 的距离约为()198米.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.27.(1)证明见解析;(2)3.【分析】(1)根据矩形ABCD 的性质,判定△BOE ≌△DOF (ASA ),进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.【详解】(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x=133,∵∴OB=12∵BD ⊥EF ,∴3,∴EF=2EO=3.【点睛】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键28.(1)y=()2416355x --,抛物线的对称轴是x=3;(2)存在;P 点坐标为(3,85).(3)在直线AC 下方的抛物线上存在点N ,使△NAC 面积最大.N (52,-3)【详解】(1)根据已知条件可设抛物线的解析式为y =a (x -1)(x -5).把点A (0,4)代入上式,解得a =45.∴y =45(x -1)(x -5)=45x 2-245x +4=45(x -3)2-165.∴抛物线的对称轴是直线x =3.(2)存在,P 点的坐标是(3,85).如图1,连接AC 交对称轴于点P ,连接BP ,AB .∵点B 与点C 关于对称轴对称,∴PB =PC .∴AB +AP +PB =AB +AP +PC =AB +AC .∴此时△PAB 的周长最小.设直线AC 的解析式为y =kx +b .把A (0,4),C (5,0)代入y =kx +b ,得4,{50.b k b =+=解得4,{54.k b =-=∴y =-45x +4.∵点P 的横坐标为3,∴y =-45×3+4=85.∴P (3,85).(3)在直线AC 下方的抛物线上存在点N ,使△NAC 的面积最大.如图2,设N 点的横坐标为tt ,此时点N (t ,45t 2-245t +4)(0<t <5).过点N 作y 轴的平行线,分别交x 轴,AC 于点F ,G ,过点A 作AD ⊥NG ,垂足为D .由(2)可知直线AC的解析式为y=-45x+4.把x=t代入y=-45x+4,得y=-45t+4.∴G(t,-45t+4).∴NG=-45t+4-(45t2-245t+4)=-45t2+4t.∵AD+CF=OC=5,∴S△NAC=S△ANG+S△CGN=12NG·AD+12NG·CF=12NG·OC=12×(-45t2+4t)×5=-2t2+10t=-2(t-52)2+252.∵当t=52时,△NAC面积的最大值为252.由t=52,得y=45×(52)2-245×52+4=-3.∴N(52,-3).。
九年级数学下学期第三次月考试题(含解析) 新人教版-新人教版初中九年级全册数学试题

某某市巫溪中学2016届九年级数学下学期第三次月考试题一.选择题(每题4分,共40分,每小题恰有一项是符合题目要求的)1.方程x2=1的解是()A.x=1B.x=﹣1C.x1=1 x2=0D.x1=﹣1 x2=12.下列运算正确的是()A.B.(π﹣3.14)0=1C.()﹣1=﹣2D.3.下列图形中不是轴对称图形但是中心对称图形的是()A.等边三角形B.矩形C.菱形D.平行四边形4.方程2x2+3x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.有两个实数根D.沒有实数根5.如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A′的坐标为()A.(2,2)B.(2,4)C.(4,2)D.(1,2)6.半径分别为5和8的两个圆的圆心距为d,若3<d≤13,则这两个圆的位置关系一定是()A.相交B.相切C.内切或相交D.外切或相交7.如图,P为正三角形ABC外接圆上一点,则∠APB=()A.150°B.135°C.115°D.120°8.为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500x2=3600B.2500(1+x)2=3600C.2500(1+x%)2=3600D.2500(1+x)+2500(1+x)2=36009.根据如图所示的三个图所表示的规律,依次下去第n个图中平行四边形的个数是()A.3nB.3n(n+1)C.6nD.6n(n+1)10.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是()A.1B.12C.13D.25二.填空题(每题4分,共40分,请把答案直接填写在横线上)11.化简的结果是.12.函数中,自变量x的取值X围是.13.若|a﹣2|++(c﹣4)2=0,则a﹣b+c=.14.若实数a满足a2﹣2a=3,则3a2﹣6a﹣8的值为.15.如图,量角器外沿上有A、B两点,它们的读数分别是70°、40°,则∠1的度数为度.16.如图,⊙O与AB相切于点A,BO与⊙O交于点C,∠B=26°,则∠OCA=度.17.如图,在△ABC中,已知∠C=90°,BC=6,AC=8,则它的内切圆半径是.18.目前甲型H1N1流感病毒在全球已有蔓延趋势,世界卫生组织提出各国要严加防控,因为曾经有一种流感病毒,若一人患了流感,经过两轮传染后共有81人患流感.如果设每轮传染中平均一个人传染x个人,那么可列方程为.19.把一个半径为8cm的圆形纸片,剪去一个圆心角为90°的扇形后,用剩下的部分做成一个圆锥的侧面,那么这个圆锥的高为cm.20.如图1是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图2所示,ABCD 是正方形,⊙O是该正方形的内切圆,E为切点,以B为圆心,分别以BA、BE为半径画扇形,得到如图所示的扇环形,图1中的圆与扇环的面积比为.三.解答题(共80分)21.计算:+.22.先化简,再求值:,其中.23.观察下列方程及其解的特征:(1)x+=2的解为x1=x2=1;(2)x+=的解为x1=2,x2=;(3)x+=的解为x1=3,x2=;…解答下列问题:(1)请猜想:方程x+=的解为;(2)请猜想:关于x的方程x+=的解为x1=a,x2=(a≠0);(3)下面以解方程x+=为例,验证(1)中猜想结论的正确性.解:原方程可化为5x2﹣26x=﹣5.(下面请大家用配方法写出解此方程的详细过程)24.已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).25.如图AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠C=30°,,求⊙O的半径.26.如图,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=10cm.点O以2cm/s的速度在直线BC上从左向右运动,设运动时间为t(s),当t=0s时,点O在△ABC的左侧,OC=5cm.以点O为圆心、cm长度为半径r的半圆O与直线BC交于D、E两点(1)当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切?(2)当△ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域与△ABC三边围成的区域有重叠部分,求重叠部分的面积.27.已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF=S△ABC;(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△C EF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.2015-2016学年某某市巫溪中学九年级(下)第三次月考数学试卷参考答案与试题解析一.选择题(每题4分,共40分,每小题恰有一项是符合题目要求的)1.方程x2=1的解是()A.x=1B.x=﹣1C.x1=1 x2=0D.x1=﹣1 x2=1【考点】解一元二次方程-直接开平方法.【分析】利用直接开平方法求解即可.【解答】解:x2=1,x1=﹣1,x2=1.故选D.2.下列运算正确的是()A.B.(π﹣3.14)0=1C.()﹣1=﹣2D.【考点】负整数指数幂;算术平方根;立方根;零指数幂.【分析】根据数的开方、零指数幂、负整数指数幂的运算法则计算.【解答】解:A、,故A错误;B、(π﹣3.14)0=1,故B正确;C、()﹣1=2,故C错误;D、,故D错误.故选:B.3.下列图形中不是轴对称图形但是中心对称图形的是()A.等边三角形B.矩形C.菱形D.平行四边形【考点】中心对称图形;轴对称图形.【分析】根据轴对称及中心对称的概念,结合选项进行判断.【解答】解:A、等边三角形是轴对称图形,但不是中心对称图形,故本选项错误;B、矩形是轴对称图形,也是中心对称图形,故本选项错误;C、菱形是轴对称图形,也是中心对称图形,故本选项错误;D、平行四边形不是轴对称图形,是中心对称图形,故本选项正确;故选D.4.方程2x2+3x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.有两个实数根D.沒有实数根【考点】根的判别式.【分析】把a=2,b=3,c=2代入△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=2,b=3,c=2,∴△=b2﹣4ac=32﹣4×2×2=﹣7<0,∴方程没有实数根.故选D.5.如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A′的坐标为()A.(2,2)B.(2,4)C.(4,2)D.(1,2)【考点】坐标与图形变化-旋转.【分析】根据旋转的性质,旋转不改变图形的形状、大小及相对位置.【解答】解:连接A′B,由月牙①顺时针旋转90°得月牙②,可知A′B⊥AB,且A′B=AB,由A(﹣2,0)、B(2,0)得AB=4,于是可得A′的坐标为(2,4).故选B.6.半径分别为5和8的两个圆的圆心距为d,若3<d≤13,则这两个圆的位置关系一定是()A.相交B.相切C.内切或相交D.外切或相交【考点】圆与圆的位置关系.【分析】设两圆的半径分别为R和r,且R≥r,圆心距为P:外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.【解答】解:当8﹣5<d<8+5时,可知⊙O1与⊙O2的位置关系是相交;当d=8+5=13时,可知⊙O1与⊙O2的位置关系是外切.故选D.7.如图,P为正三角形ABC外接圆上一点,则∠APB=()A.150°B.135°C.115°D.120°【考点】正多边形和圆;圆周角定理.【分析】利用同圆中相等的弧所对的圆周角相等可知.【解答】解:△ABC是正三角形,∴∠ACB=60°,∵∠APB+∠ACB=180°,∴∠APB=120°.故选D.8.为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500x2=3600B.2500(1+x)2=3600C.2500(1+x%)2=3600D.2500(1+x)+2500(1+x)2=3600【考点】由实际问题抽象出一元二次方程.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这两年投入教育经费的年平均增长百分率为x,然后用x表示2008年的投入,再根据“2008年投入3600万元”可得出方程.【解答】解:依题意得2008年的投入为2500(1+x)2,∴2500(1+x)2=3600.故选:B.9.根据如图所示的三个图所表示的规律,依次下去第n个图中平行四边形的个数是()A.3nB.3n(n+1)C.6nD.6n(n+1)【考点】平行四边形的性质.【分析】从图中这三个图形中找出规律,可以先找出这三个图形中平行四边形的个数,分析三个数字之间的关系.从而求出第n个图中平行四边形的个数.【解答】解:从图中我们发现(1)中有6个平行四边形,6=1×6,(2)中有18个平行四边形,18=(1+2)×6,(3)中有36个平行四边形,36=(1+2+3)×6,∴第n个中有3n(n+1)个平行四边形.故选B.10.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是()A.1B.12C.13D.25【考点】根与系数的关系.【分析】根据一元二次方程根与系数的关系,x1+x2=﹣,x1x2=,根据x12+x22=7,将(x1+x2)2﹣2x1x2=7,可求出m的值,再结合一元二次方程根的判别式,得出m的值,再将(x1﹣x2)2=x12+x22﹣2x1x2求出即可.【解答】解:∵x12+x22=7,∴(x1+x2)2﹣2x1x2=7,∴m2﹣2(2m﹣1)=7,∴整理得:m2﹣4m﹣5=0,解得:m=﹣1或m=5,∵△=m2﹣4(2m﹣1)≥0,当m=﹣1时,△=1﹣4×(﹣3)=13>0,当m=5时,△=25﹣4×9=﹣11<0,∴m=﹣1,∴一元二次方程x2﹣mx+2m﹣1=0为:x2+x﹣3=0,∴(x1﹣x2)2=x12+x22﹣2x1x2=7﹣2×(﹣3)=13.故选C.二.填空题(每题4分,共40分,请把答案直接填写在横线上)11.化简的结果是2\sqrt{2} .【考点】二次根式的性质与化简.【分析】根据二次根式的性质解答.【解答】解:==.12.函数中,自变量x的取值X围是x≥3.【考点】函数自变量的取值X围.【分析】根据二次根式有意义的条件是a≥0,即可求解.【解答】解:根据题意得:x﹣3≥0,解得:x≥3.故答案是:x≥3.13.若|a﹣2|++(c﹣4)2=0,则a﹣b+c= 3 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据非负数的性质求出a、b、c的值,再代入所求代数式计算即可.【解答】解:∵|a﹣2|++(c﹣4)2=0,∴a﹣2=0,b﹣3=0,c﹣4=0,∴a=2,b=3,c=4.∴a﹣b+c=2﹣3+4=3.故答案为:314.若实数a满足a2﹣2a=3,则3a2﹣6a﹣8的值为 1 .【考点】代数式求值.【分析】先对已知进行变形,所求代数式化成已知的形式,再利用整体代入法即可求解.【解答】解:∵a2﹣2a=3,∴3a2﹣6a﹣8=3(a2﹣2a)﹣8=3×3﹣8=1,∴3a2﹣6a﹣8的值为1.15.如图,量角器外沿上有A、B两点,它们的读数分别是70°、40°,则∠1的度数为15 度.【考点】圆周角定理.【分析】根据量角器的读数,可求得圆心角∠AOB的度数,然后利用圆周角与圆心角的关系可求出∠1的度数.【解答】解:∵∠AOB=70°﹣40°=30°;∴∠1=∠AOB=15°(圆周角定理).故答案为:15°.16.如图,⊙O与AB相切于点A,BO与⊙O交于点C,∠B=26°,则∠OCA=58 度.【考点】切线的性质;三角形内角和定理;等腰三角形的性质.【分析】连接OA;根据切线的性质和三角形内角和定理求解.【解答】解:连接OA.∵⊙O与AB相切于点A,∴∠OAB=90°.∵∠B=26°,∴∠AOB=180°﹣∠OAB﹣∠B=180°﹣90°﹣26°=64°.∵OA=OC,∴∠1=∠2===58°.故∠2=58°,即∠OCA=58°.17.如图,在△ABC中,已知∠C=90°,BC=6,AC=8,则它的内切圆半径是 2 .【考点】三角形的内切圆与内心;勾股定理;正方形的判定与性质;切线长定理.【分析】根据勾股定理求出AB,根据圆O是直角三角形ABC的内切圆,推出OD=OE,BF=BD,CD=CE,AE=AF,∠ODC=∠C=∠OEC=90°,证四边形ODCE是正方形,推出CE=CD=r,根据切线长定理得到AC﹣r+BC﹣r=AB,代入求出即可.【解答】解:根据勾股定理得:AB==10,设三角形ABC的内切圆O的半径是r,∵圆O是直角三角形ABC的内切圆,∴OD=OE,BF=BD,CD=CE,AE=AF,∠ODC=∠C=∠OEC=90°,∴四边形ODCE是正方形,∴OD=OE=CD=CE=r,∴AC﹣r+BC﹣r=AB,8﹣r+6﹣r=10,∴r=2,故答案为:2.18.目前甲型H1N1流感病毒在全球已有蔓延趋势,世界卫生组织提出各国要严加防控,因为曾经有一种流感病毒,若一人患了流感,经过两轮传染后共有81人患流感.如果设每轮传染中平均一个人传染x个人,那么可列方程为(1+x)2=81 .【考点】由实际问题抽象出一元二次方程.【分析】本题可先列出一轮传染的人数,再根据一轮传染的人数写出二轮传染的人数的方程,令其等于81即可.【解答】解:设一轮过后传染的人数为1+x,则二轮传染的人数为:(1+x)(1+x)=(1+x)2=81.故答案为:(1+x)2=81.19.把一个半径为8cm的圆形纸片,剪去一个圆心角为90°的扇形后,用剩下的部分做成一个圆锥的侧面,那么这个圆锥的高为2\sqrt{7} cm.【考点】弧长的计算;勾股定理.【分析】根据题目叙述的作法得到:扇形的弧长,即圆锥的母线长是:8cm,弧长即圆锥底面周长是:=12π,则底面半径是6,圆锥的高线,底面半径,锥高正好构成直角三角形的三边,根据勾股定理得到.【解答】解:设圆锥的底面半径为r,则=2πr,解得r=6,根据勾股定理得到:锥高==2cm.故答案为:2.20.如图1是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图2所示,ABCD是正方形,⊙O是该正方形的内切圆,E为切点,以B为圆心,分别以BA、BE为半径画扇形,得到如图所示的扇环形,图1中的圆与扇环的面积比为4:9 .【考点】扇形面积的计算.【分析】要求图1中的圆与扇环的面积比,就要先根据面积公式先计算出面积.再计算比.【解答】解:设正方形的边长为2,则圆的面积为π,扇环的面积为(4π﹣π)=π,所以图1中的圆与扇环的面积比为4:9.三.解答题(共80分)21.计算:+.【考点】二次根式的混合运算;零指数幂;负整数指数幂.【分析】把第一项的分子分母同时乘以分母的有理化因式+1,分母利用平方差公式化简后,与分子约分得到结果,第二项根据底数不为0,利用零指数的公式化简,第三项利用绝对值的代数意义:负数的绝对值等于它的相反数化简,第四项利用负指数的公式化简,最后一项不变,把其中的二次根式化为最简后,利用加法的运算律把同类二次根式结合,整数与整数结合,合并后即可求出值.【解答】解:+=﹣1﹣++=﹣1﹣++=+1﹣1﹣2++=(﹣2+)+(1﹣1)+=.22.先化简,再求值:,其中.【考点】二次根式的化简求值.【分析】先化简再合并同类项,最后代入数据计算即可.【解答】解:原式=a2﹣3﹣a2+6a=6a﹣3,∵,∴原式=6(﹣)﹣3=6﹣6.23.观察下列方程及其解的特征:(1)x+=2的解为x1=x2=1;(2)x+=的解为x1=2,x2=;(3)x+=的解为x1=3,x2=;…解答下列问题:(1)请猜想:方程x+=的解为x1=5,{x_2}=\frac{1}{5} ;(2)请猜想:关于x的方程x+= \frac{{{a^2}+1}}{a}(或a+\frac{1}{a})的解为x1=a,x2=(a≠0);(3)下面以解方程x+=为例,验证(1)中猜想结论的正确性.解:原方程可化为5x2﹣26x=﹣5.(下面请大家用配方法写出解此方程的详细过程)【考点】解一元二次方程-配方法.【分析】解此题首先要认真审题,寻找规律,依据规律解题.解题的规律是将分式方程转化为一元二次方程,再采用配方法即可求得.而且方程的两根互为倒数,其中一根为分母,另一根为分母的倒数.【解答】解:(1)x1=5,;(2)(或);(3)方程二次项系数化为1,得.配方得,,即,开方得,,解得x1=5,.经检验,x1=5,都是原方程的解.24.已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).【考点】弧长的计算;作图-旋转变换.【分析】本题的关键是正确读取点的坐标、会根据要求画出旋转后的图形并会根据旋转的性质正确计算,第(3)小问要注意点A的旋转轨迹是一段圆弧.【解答】解:(1)A(0,4)、C(3,1);(2)如图;(3)=.25.如图AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠C=30°,,求⊙O的半径.【考点】切线的判定与性质;圆周角定理;解直角三角形.【分析】(1)连接OD,AD只要证明OD⊥DE即可.此题可运用三角形的中位线定理证OD∥AC,因为DE⊥AC,所以OD⊥DE.(2)连接AD,从而得到∠ADB=90°,根据已知条件可得出∠ODB=30°,∠ADO=60°,则△OAD 为等边三角形,利用勾股定理即可求得AD的长,从而得出OA.【解答】(1)证明:连接OD.因为D是BC的中点,O是AB的中点,∴OD∥AC,∴∠CED=∠ODE.∵DE⊥AC,∴∠CED=∠ODE=90°.∴OD⊥DE,OD是圆的半径,∴DE是⊙O的切线.(2)证明:连接AD,∵OD∥AC,∴∠C=∠ODB=30°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=90°,∵,∴∠ADO=60°,AD=1,∴AD=OD=OA=1.26.如图,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=10cm.点O以2cm/s的速度在直线BC上从左向右运动,设运动时间为t(s),当t=0s时,点O在△ABC的左侧,OC=5cm.以点O为圆心、cm长度为半径r的半圆O与直线BC交于D、E两点(1)当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切?(2)当△ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域与△ABC三边围成的区域有重叠部分,求重叠部分的面积.【考点】切线的性质;扇形面积的计算.【分析】(1)随着半圆的运动分四种情况:①当点E与点C重合时,AC与半圆相切,②当点O运动到点C时,AB与半圆相切,③当点O运动到BC的中点时,AC再次与半圆相切,④当点O运动到B点的右侧时,AB的延长线与半圆所在的圆相切.分别求得半圆的圆心移动的距离后,再求得运动的时间.(2)在1中的②,③中半圆与三角形有重合部分.在②图中重叠部分是圆心角为90°,半径为6cm的扇形,故可根据扇形的面积公式求解.在③图中,所求重叠部分面积为=S△POB+S 扇形DOP.【解答】解:(1)①如图1,当点E与点C重合时,∵AC⊥DE,OC=OE=cm,∴AC与半圆O所在的圆相切,∵原来OC=5,∴点O运动了(5﹣)cm,∵点O以2cm/s的速度在直线BC上从左向右运动,∴运动时间为:t=,t=2(秒),∴当t=2时,△ABC的边AC所在直线与半圆O所在的圆相切,②如图2,经过t秒后,动圆圆心移动的为2t,而原来OB=OC+BC=15,此时动圆圆心到B的距离为(15﹣2t),此时动圆圆心到AB的距离为(30度角所对的直角边等于斜边的一半),而此时圆的半径是t,则可得:=t,解得:t=5.③如图3,当圆与AC相切时,2t﹣5=t,解得:t=秒;④如图4,当点O运动到B点的右侧,OB=2t﹣5﹣BC=2t﹣15,∵在Rt△QOB中,∠OBQ=30°,∴OQ=OB=(2t﹣15)=t﹣,圆O的半径是t,则t﹣=,解得:t=15.总之,当t为2s,10s,s,15s时,△ABC的一边所在的直线与半圆O所在圆相切.(2)当△ABC的一边所在的直线与半圆O所在的圆相切时,半圆O与直径DE围成的区域与△ABC三边围成的区域有重叠部分的只有如图②与③所示的两种情形.①如图②,设OA与半圆O的交点为M,易知重叠部分是圆心角为90°,半径为5cm的扇形,所求重叠部分面积为:S扇形EOM=π×52=π(cm2)②图③,当圆O与AC相切时,半径长是×=,则半圆O在△ABC的内部,因而重合部分就是半圆O,则面积是:π()2=.27.已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF=S△ABC;(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.【考点】旋转的性质;直角三角形全等的判定.【分析】先作出恰当的辅助线,再利用全等三角形的性质进行解答.【解答】解:(1)显然△AED,△DEF,△ECF,△BDF都为等腰直角三角形,且全等,则S△DEF+S△CEF=S△ABC;(2)图2成立;图3不成立.图2证明:过点D作DM⊥AC,DN⊥BC,则∠DME=∠DNF=∠MDN=90°,又∵∠C=90°,∴DM∥BC,DN∥AC,∵D为AB边的中点,由中位线定理可知:DN=AC,MD=BC,∵AC=BC,∴MD=ND,∵∠EDF=90°,∴∠MDE+∠EDN=90°,∠NDF+∠EDN=90°,∴∠MDE=∠NDF,在△DME与△DNF中,∵,∴△DME≌△DNF(ASA),∴S△DME=S△DNF,∴S四边形DM=S四边形DECF=S△DEF+S△CEF,由以上可知S四边形DM=S△ABC,∴S△DEF+S△CEF=S△ABC.图3不成立,连接DC,证明:△DEC≌△DBF(ASA,∠DCE=∠DBF=135°)∴S△DEF=S五边形DBFEC,=S△CFE+S△DBC,=S△CFE+,∴S△DEF﹣S△CFE=.故S△DEF、S△CEF、S△ABC的关系是:S△DEF﹣S△CEF=S△ABC.。
贵州省贵阳市云岩区第二实验中学2022-2023学年九年级下学期3月月考数学试题

贵州省贵阳市云岩区第二实验中学2022-2023学年九年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A ....3.2022年北京冬奥会的全球转播观众超过2000000000人,成为有史以来数字化参与度最高的冬奥会,2000000000这个数用科学记数法表示为()A .100.210⨯.9210⨯8210⨯82010⨯4.若二次根式有意义,则实数x 的取值范围是()A .1x ≥.1x >0x ≥0x >5.已知22A ∠=︒,则下列四个角中A ∠的余角是()A ...D .A.刻舟求剑B.旭日东升C.夕阳西下D.瓜熟蒂落∠=∠的依据是8.如图是用直尺和圆规作已知角的平分线的示意图,则说明CAD DAB()A.SAS B.ASA C.AAS D.SSS9.如图,在平面直角坐标系中有P,Q,M,N四个点,其中恰有三点在一次函数()0=+的y kx b k=+<的图象上.根据图中四点的位置,判断这四个点中不在函数y kx b图象上的点是()A.点P B.点Q C.点M D.点N 10.费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):29,32,33,35,35,40,则这组数据的众数和中位数分别是()A.35,35B.34,33C.34,35D.35,34 11.如图是长为a,宽为b的小长方形卡片,把六张这样的小长方形卡片不重叠地放在一个底面为长方形(长为8,宽为6)的盒子底部(如图2),盒子底部未被卡片覆盖的部分用阴影表示,则两块阴影部分的周长之和为()A.16B.24C.20D.28y=x+bx+c与y=x的图象如图所示,有以下结12.函数2<<时,2x+(b-1)x+c<0.其中正确的个论:①2b-4c>0②b+c=-1③3b+c+6=0④当1x3数是()A.1B.2C.3D.4二、填空题三、解答题17.(1)如图,有理数比较大小:b c,a c+0.(1)若要表示手机部A机型这5个月销售量的变化趋势,该采用统计图;(2)该品牌5月份的销售额是万元,手机部5月份的销售额是万元;(3)小明和小红准备在A,B,E三款手机中选择一款手机购买,请问他们选择同一款手机的概率是多少?19.某商场进货员预测一种应季T恤衫能畅销市场,就用4000元购进一批这种面市后果然供不应求.商场又用8800元购进了第二批这种T恤衫,所购数量是第一批(1)求证:BC EF ∥;(2)求证:EF 是O 的切线;(3)若10BF =,15OB =,求证:AE =24.如图,在平面直角坐标系中,直线物线214y x bx c =-++经过点A 、C .(1)求抛物线解析式及顶点M 坐标;(2)P 为抛物线第一象限内一点,使得点P 的坐标;(3)当1m x m +≤≤时,(1)中二次函数有最大值为25.利用“平行+垂直”作延长线或借助问题的常用方法,(1)发现:如图1,AB CD ∥,CB 平分ACD ∠,求证:ABC 是等腰三角形.交BC 的延长线于点F ,交CD 于点M ,若7AD =,3CF =,tan 3EBF ∠=,求BD 的长.。
北京市第二十二中学、北京市第二十一校2022-2023学年九年级下学期数学月考试卷(3月)(原卷版)

·北京22中、21中联盟校2022-2023学年度月考试卷初三年级数学学科本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分.考试结束后,将本试卷与答题纸一并交回.祝各位考生考试倾利!第I卷一、选择题(共16分,每题2分)1. 中国首次火星探测任务天问一号探测器在2021年2月10日成功被火星捕获,成为中国第一颗人造火星卫星,并在距离火星约11000米处,拍摄了火星全景图像.将11000用科学记数法表示应为()A. 31.110´ C. 4´ B. 51110´ D.1.11050.1110´2. 如图是某几何体的三视图,该几何体是()A. 长方体B. 三棱柱C. 三棱锥D. 圆锥3. 如图,//,100,50,Ð=°Ð=°Ð的度数为()AB CD A BCD ACBA. 25°B. 30°C. 45°D. 50°4. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 角B. 等腰三角形C. 平行四边形D. 正六边形5. 实数a在数轴上的对应点的位置如图所示,若实数b满足0+>,则b的值可以是(a b)A. 1-B. 0C. 1D. 26. 《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x 人,物价为y 钱,根据题意,下面所列方程组正确的是( )A. 8374x y x y +=ìí-=îB. 8374x y x y -=ìí+=îC. 8374x y x y +=ìí+=îD.8374x y x y-=ìí-=î7. 下列两个变量之间的关系为反比例关系的是( )A. 圆的周长与其半径的关系B. 平行四边形面积一定时,其一边长与这边上的高的关系C. 销售单价一定时,销售总价与销售数量的关系D. 汽车匀速行驶过程中,行驶路程与行驶时间的关系8. 如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为2194y x x =-+; ②若点(1,)B n -在这个二次函数图象上,则n m >;③该二次函数图象与x 轴的另一个交点为(4,0)-; ④当06x <<时,8m y <<,所有正确结论的序号是( )A. ①③B. ①④C. ②③D. ②④第Ⅱ卷二、填空题(本题共16分,每小题2分)9. 要使式子5x -有意义,则x 的取值范围是________.10. 分解因式:229x y -=__.11. 若23x y =,则代数式2x y x y-+的值是___________.12. 不透明的盒子中有3个红球,1个白球,这些球除颜色外无其他差别,从中随机摸出一个球不放回,再从中随机摸出一个球,两次摸出的恰好都是红球的概率是_______.13. 如图,在O e 中,半径OC AB ^于点H ,若40OAB Ð=°,则ABC Ð=_______°.14. 如图,小石同学在A ,B 两点分别测得某建筑物上条幅两端C ,D 两点的仰角均为60°,若点O ,A ,B 在同一直线上,A ,B 两点间距离为3米,则条幅的高CD 为______米.15. 幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方,将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖列以及两条对角线上的数字之和都是15,则a 的值为________.16. 某中学为积极开展校园足球运动,计划购买A 和B 两种品牌的足球,已知一个A 品牌足球价格为120元,一个B 品牌足球价格为150元.学校准备用3000元购买这两种足球(两种足球都买),并且3000元全部用完,则该校共有______种购买方案.三、解答题(共68分,17-22题,每题5分,23-26题,每题6分,27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:(0184cos 4521-°+--.18. 解不等式组:524113142x x x x +³-ìïí+->+ïî 19. 已知2320x x +-=,求代数式()()()22223x y x y x x y +---+的值.20. 已知:如图Rt ABC V 中,90ACB Ð=°.求作:点P ,使得点P 在AC 上,且点P 到AB 的距离等于PC .作法:①以点B 为圆心,以任意长为半径作弧,分别交射线,BA BC 于点,D E ;②分别以点,D E 为圆心,以大于12DE 的长为半径作弧,两弧在ABC Ð内部交于点F ;③作射线BF 交AC 于点P .则点P 即为所求.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面证明.证明:连接,DF FE .在BDF V 和BEF △中,,.DB EB DF EF BF BF =ìï=íï=îBDF BEF \V V ≌.ABF CBF \Ð=Ð(_________________)(填推理的依据).90ACB Ð=°Q ,点P 在AC 上,PC BC \^.作PQ AB ^于点Q ,Q 点P 在BF 上,PC \=__________(______________________)(填推理的依据).21. 关于x 的方程22(21)0x m x m -++=有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取最小的整数时,求此时的方程的根.22. 在平面直角坐标系xOy 中,一次函数()0y kx b k =+¹的图象经过点(0,1),(1,0)A B -.(1)求k ,b 的值;(2)当1x >时,对于x 的每一个值,函数2y x n =-+的值小于一次函数y kx b =+的值,直接写出n 的取值范围.23. 如图,矩形ABCD 的对角线AC 、BD 交于点O ,且DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 是菱形;(2)若∠BAC =30°,AC =4,求菱形OCED 的面积.24. 如图,AB 是O e 的直径,弦CD AB ^于点E ,O e 的切线CF 交AB 的延长线于点F ,连接OC ,DF .(1)求证:DF 是O e 的切线;(2)若3sin ,105OFC BF Ð==,求CD 的长.25. 某公园内人工喷泉有一个竖直的喷水枪,喷出的水流路径可以看作是抛物线的一部分.记喷出的水流距喷水枪的水平距离为m x ,距地面的竖直高度为m y ,获得数据如下:小景根据学习函数的经验,对函数随自变量x 的变化而变化的规律进行了探究.下面是小景的探究过程,请补充完整:(1)在平面直角坐标系xOy 中,描出以表中各对对应值为坐标的点,并画出该函数的图象;(2)水流的最高点距喷水枪的水平距离为________m ;(3)结合函数图象,解决问题:公园准备在距喷水枪水平距离为3.5m 处加装一个石柱,使该喷水枪喷出的水流刚好落在石柱顶端,则石柱的高度约为_____m .26. 在平面直角坐标系xOy 中,物线222=-+-y x tx t t .(1)求抛物线的顶点坐标(用含t 的代数式表示);(2)点()()1122,,,P x y Q x y 在抛物线上,其中1212,1-££+=-t x t x t .①若1y 的最小值是2-,求1y 的最大值;②若对于12,x x ,都有12y y <,直接写出t 的取值范围.27. 在ABC V 中,90ACB Ð=°,2AC BC ==,将线段CB 绕点C 顺时针旋转α角得到线段CD ,连接BD ,过点C 作CE BD ^于点E ,连接AD 交CB ,CE 于点F ,G .(1)当60a=°时,如图1,依题意补全图形,直接写出AGCÐ的大小;(2)当60a¹°时,如图2,试判断线段AG与CE之间的数量关系,并证明你的结论;(3)若F为BC的中点,直接写出BD的长.28. 在平面直角坐标系xOy中,Oe的半径为1.对于线段PQ给出如下定义:若线段PQ 与Oe有两个交点M,N,且==e的“倍弦线”.PM MN NQ,则称线段PQ是O(1)如图,点A,B,C,D的横、纵坐标都是整数.在线段AB,AD,CB,CD中,e的“倍弦线”是_____________;O(2)Oe的“倍弦线”PQ与直线2x=交于点E,求点E纵坐标y的取值范围;E(3)若O=+与线段PQ有公共点,直接写出e的“倍弦线”PQ过点()1,0,直线y x bb的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
洋墩中学九年级(下)数学3月月考试题
亲爱的同学们,细心地审读,认真地分析,全面地解答是我们战胜中考的法宝之一,作完下面试题后,相信您一定会获得又一个成功! 一、选择题(每题3分) 1.2-的绝对值等于( )
A.±2 B . -2 C.2 D. 4
2.在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数
用科学记数法表示为( )
A .2.7×105
B .2.7×106
C .2.7×107
D .2. 7×108 3. 下列计算中,正确的是( )
A 、a 3
·a 2
=a 5
B 、a 3
÷a=a 3
C 、(a 3)2
=a 5
D 、(3a)3
=3a
3
4. 在△ABC 中,已知AB=5,AC=3,BC=4,则下列结论中正确的是( ) A 、sinA=45 B 、cosB=35 C 、tanA=34 D 、tanB=43
5. 如图是由七个相同的小正方体堆成的物体,这个物体的俯视图是( )
6.二次函数y =x 2的图象向下平移2个单位,得到新图象的二次函数表达式是( ) A .y =x 2-2 B .y =(x -2)2 C .y =x 2+2 D .y =(x +2)2
7. 用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自
转),其中蕴含的图形运动是( )
A .平移和旋转
B .对称和旋转
C .对称和平移
D .旋转和平移
8.在直角坐标系中,已知O(0,0),A(2,0),B(0,4),C(0,3),D 为x 轴上一点.若以D 、O 、C 为
顶点的三角形与△AOB 相似,这样的D 点有( ) A .2个 B .3个 C .4个 D .5个 9.已知两圆的半径分别为1cm 和2cm ,圆心距为4cm ,
A .
B .
C .
D .
则两圆的位置关系是( )
A .内切
B .外切
C .外离
D .相交
10.如图,已知⊙O 的半径为10,弦12,AB =M 是A B
上任意一点,则线段O M 的长可能是( )
A .5
B .7
C .9
D .11
二、填空题(每题4分)
11. 化简:8523-的结果为 。
12.三峡工程是具有防洪、发电、航运、养殖,供水等巨大综合利用效益的特大水利水电工程,其防洪库容量约为322150000000m , 这个数用科学记数法(保留3个有效数字)表示为________3m .
13.一个等腰三角形的两边长分别是2cm 、5cm , 则它的周长为_____________cm .。
. 14.如图,根据图中数字的规律,在最后一个图形中m 的值为___________.
15.如图,A B C ∆为等腰直角三角形,90,,BAC AB AC ∠==
A B C ∆的面积等于32,D 是B C 上一点,:1:3,BD DC =
以A D 为边作正方形,ADEF 则正方形AD EF 的面积等于_________.
16.某品牌的复读机每台进价是400元, 售价为480元, “五²一”期间搞活动打9折
促销, 则销售1台复读机的利润是_________元
三、解答题(本大题4个小题,每小题6分,共24分)
17.计算:()0
2
13()
56sin 452
π--+----
O
A
B
M
10 题图
A B C
D
E
F 15题图
18.解方程:2
6160x x --=
19.如图是规格为8³8的正方形网格,请在所给网格中......
按下列要求操作: ⑴ 请在网格中建立平面直角坐标系, 使A 点坐标为(-2,4),B 点坐标为(-4,2); ⑵ 在第二象限内的格点上..........
画一点C, 使点C 与线段AB 组成一个以AB 为底的等腰三角形, 且腰长是无理数, 则C 点坐标是 , △ABC 的周长是 (结果保留根号);
⑶ 画出△ABC 以点C 为旋转中心、旋转180°后的△A′B′C, 连结AB′和A′B, 试说出四边形ABA′B′是何特殊四边形, 并说明理由.
北
20.如图,A B 、两镇相距60km ,小山C 在A 镇的北偏东60°方向,在B 镇的北偏西30°方向. 经探测,发现小山C 周围20km 的圆形区域内储有大量煤炭,有关部门规定,该区域内禁止建房修路.现计划修筑连接A B 、两镇的一条笔直的公路,试分析这条公路是否会经过该区域?
1.7)
四、解答题(本大题4个小题,每小题10分,共40分)
21.先化简,再求值:先将代数式2
1111x
x x x ⎛
⎫⎛
⎫-
÷+ ⎪ ⎪+-⎝⎭⎝⎭化简,再从33x -<<的范围内选取一个合适的整数x 代入求值
22.如图,一次函数y kx b =+的图象与反比例函数m y x
=的图象交于(3,1),(2,)A B n -两
点,直线A B 分别交x 轴、y 轴于,D C 两点. (1)求上述反比例函数和一次函数的解析式; (2)连接,AO BO 、 求出A O B ∆的面积; (3)请由图象直接写出,当x 满足什么条件时, 一次函数的值小于反比例函数的值?
23.(本小题满分10分)
李老师要对初三(1)、(2)班的考试情况进行分析,在两个班里随机抽取了30名学
生的考试成绩:87,75,94,60,51,86,73,89,93,67,57,88,82,66,88,
88,85,67,91,65,78,89,80,72,78,84,90,64,71,86。
根据上述消息回答下列问题: (1) 请填完下面的表格;
(2) 估计这两个班级本次考试成绩在80分及80分以上的占_______%; (3) 补全这30名学生考试成绩的频率分布直方图;
x
(4) 是否一定能根据这30名学生的成绩估计全区考试成绩?答:_______。
(5) 80~90组的平均分为________,中位数为_______。
(注:每个分数段含最小数,不含最大数)
24.如图,AB 是⊙O 的直径,BC 是弦,OD ⊥BC 于E ,交BC ⌒
于D .
(1)请写出四个不同类型....的正确结论; (2)若BC = 8,ED = 2,求⊙O 的半径. O E
D
C
B
A
五、解答题(本大题2个小题,其中25题10分,26题12分,共22分) 25.某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为
老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为
纪念品.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册。
(1)求每件文化衫和每本相册的价格分别为多少元?
(2)有几种购买文化衫和相册的方案?哪种方案用于购买老师纪念品的资金更充足?
26.如图,已知抛物线与x轴交于A B
、两点,A在B的左侧,A坐标为(1,0),
-与y轴交于点(0,3),
∆的面积为6.
C A B C
(1)求抛物线的解析式;
(2)抛物线的对称轴与直线B C相交于点,
M点N为x轴上一点,当以,,
M N B为顶点的三角形与A B C
∆相似时,请你求出B N的长度;
(3)设抛物线的顶点为,
∆是等
D在线段B C上方的抛物线上是否存在点,P使得P D C
腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.。