毛细管电泳分离技术PPT
毛细管等速电泳

将毛细管等速电泳应用于食品安全检测,如食品添加剂、农药残 留和毒素检测等的分离机制,以提高毛细管等速电泳的分离效果和效 率。
联用技术
将毛细管等速电泳与其他分析技术联用,如质谱、光谱等,以提高 检测灵敏度和准确性。
微型化与便携化
研究开发微型化和便携化的毛细管等速电泳设备,以满足现场快速检 测的需求。
毛细管等速电泳
目录 CONTENT
• 毛细管等速电泳简介 • 毛细管等速电泳实验技术 • 毛细管等速电泳在生物医学中的
应用 • 毛细管等速电泳的优缺点 • 毛细管等速电泳的未来发展
01
毛细管等速电泳简介
定义与原理
定义
毛细管等速电泳是一种利用电场 对带电粒子进行分离的电泳技术 。
原理
在毛细管中施加直流电场,带电 粒子在电场的作用下以不同的速 度进行迁移,通过不同时间到达 检测器,从而实现分离。
标准品
用于校准和验证实验结果。
实验步骤
准备毛细管和电解质溶液。
01
打开电泳仪电源,设置实验参数,如电压 、电流和温度等。
03
02
将毛细管连接到电泳仪上,并确保密封良好 。
04
注入电解质溶液和标准品,开始电泳分离 。
通过检测器检测带电分子,记录数据。
05
06
分析数据,得出结论。
03
毛细管等速电泳在生物医 学中的应用
高效进样技术
优化进样技术,减少样品在毛细管内的扩散和稀 释,提高检测灵敏度和准确性。
自动化与智能化
实现毛细管等速电泳的自动化和智能化,提高分 析速度和降低人工操作误差。
应用拓展
环境监测
将毛细管等速电泳应用于环境监测领域,如水质分析、土壤重金 属检测等。
毛细管电泳法

在毛细管中施加电场,带电粒子在电场的作用下产生迁移,由于迁移速度与粒 子所带电荷、半径、质量等因素有关,因此不同粒子在电场中产生不同的迁移 速度,从而实现分离。
发展历程
01
02
03
1980年代初期
毛细管电泳法由 Jorgenson和Lukacs首次 提出并实验验证。
1980年代中期
该技术逐渐成熟,被广泛 应用于生物、医药、环境 等领域。
饮用水安全
毛细管电泳法能够检测饮用水中 的消毒副产物、有机污染物等, 保障饮用水安全。
在食品检测领域的应用
食品添加剂分析
毛细管电泳法能够分离和检测食品中 的添加剂,如色素、防腐剂等,有助 于食品安全监管。
营养成分分析
毛细管电泳法能够快速分析食品中的 营养成分,如氨基酸、维生素等,有 助于食品质量控制和营养评价。
核酸分析
毛细管电泳法能够分离和检测核酸片段,用于基 因诊断、基因表达研究和法医学鉴定。
3
临床检验
毛细管电泳法可用于检测体液中的小分子代谢物, 如氨基酸、糖类等,辅助临床诊断。
在环境监测领域的应用
污染物分析
毛细管电泳法能够分离和检测水 体、土壤中的有害物质,如重金 属、农药残留等,有助于环境监 测和污染治理。
在化学分析领域的应用
有机物分析
毛细管电泳法能够分离和检测有机化合物,如药物、染料等 ,在药物研发、化工生产等领域有广泛应用。
金属离子分析
毛细管电泳法能够高灵敏度地检测金属离子,如铅、汞、镉 等,可用于地质、冶金和环境等领域的研究。
谢谢
THANKS
加样
将处理好的样品加入毛 细管中,注意控制加样
量。
施加电压
启动电源,施加适当的 电压,使带电粒子在电
毛细管电泳技术及应用

毛细管电泳技术能够高效分离蛋白质 ,包括白蛋白、球蛋白、酶等,为生 物制药、蛋白质组学等领域提供有力 支持。
DNA和RNA分析
毛细管电泳可用于分析DNA和RNA片 段,在基因诊断、基因工程和生物信 息学等领域有广泛应用。
药物分析
药物成分分离
毛细管电泳能够分离和检测药物中的有效成分和杂质,有助于药物质量控制和研发。
仪器设备与操作
仪器设备
包括高压电源、进样系统、毛细管、检测器和数据采集系统等部分。
操作步骤
首先将样品注入毛细管一端,然后施加电压使带电粒子在电场中移动,同时通 过检测器对分离出的粒子进行检测,最后通过数据采集系统记录数据并进行分 析。
02
毛细管电泳的分离模式
区带电泳
总结词
区带电泳是毛细管电泳中最简单的一种形式,其原理是将样 品加在毛细管的一端,然后施加电压,使样品在电场的作用 下进行分离。
详细描述
在区带电泳中,样品在毛细管中形成一色带,由于不同组分 在电场中的迁移率不同,因此会以不同的速度向另一端移动 ,从而实现分离。这种分离模式适用于简单样品,如氨基酸 、肽和蛋白质等。
胶束电动色谱
总结词
胶束电动色谱是在毛细管电泳中加入一种称为表面活性剂的物质,使溶液的离子 强度和粘度发生变化,从而影响离子的迁移率。
要点二
血液中成分分析
通过毛细管电泳技术,可以分析血液中的离子、小分子和 蛋白质等成分,为临床诊断和治疗提供依据。
04
毛细管电泳技术的优缺点
优点
高分离效率
毛细管电泳技术利用电场对带电粒子的作用力,使其在毛 细管中分离,具有极高的分离效率,特别适合于复杂样品 的分离。
高灵敏度
毛细管电泳技术结合了多种检测手段,如紫外-可见光谱 、荧光光谱等,可以实现高灵敏度的检测,有利于痕量物 质的检测。
第五章 高效毛细管电泳分离技术

第五章高效毛细管电泳分离技术第一节毛细管电泳技术发展简史及其特点电泳是指带电粒子在电场作用下向电性相反的方向迁移的现象。
据此对某些化学或生物化学组分进行分离的技术称为电泳技术。
从1930年瑞典科学家Arne Tiselius首次提出电泳法至今已有70年的历史。
电泳法的发展大致可分为三个阶段。
1950年以前属初创阶段,主要是界面移动自由电泳,一般在U型管内进行,无支持物。
50年代至80年代中期出现了各种有支持物的电泳方法,如纸电泳、醋酸纤维电泳、琼脂糖电泳、聚丙烯酰胺凝胶电泳等,70年代后实现了仪器的自动化。
80年代后期出现了毛细管电泳方法,实现了微型化、自动化、高效、快速分析,毛细管电泳技术已经成为同现代色谱技术相比的分析化学领域中的一个令人瞩目的分支。
毛细管电泳(Capillary Electrophoresis,CE)或高效毛细管电泳(High Performance Capillary Electrophoresis,HPCE)是指以毛细管为分离室、以高压电场为驱动力的一类新型现代电泳技术。
毛细管电泳仪的基本结构见图5-1。
HV(0-+30KV)图1 毛细管电泳仪的结构图C—毛细管;D—检测器;E—电极槽;HV—直流高压电源;Pt—铂电极;S—样品;DA—数据采集处理系统完善的毛细管电泳仪应具备(1)有多种施压模式;(2)恒温精度高,恒温范围宽;(3)精确的进样控制;(4)检测器的灵敏度高等条件。
毛细管电泳分离技术用的是内径为5-100μm,外径为370μm,长为10-100cm的弹性熔融石英毛细管,毛细管的特点是(1)体积小;(2)散热快,可承受高电场;(3)可使用自由溶液、凝胶等为支持电解质,在溶液介质下可产生平面形状的电渗流。
毛细管电泳分离技术与传统的平板电泳和现代液相色谱分离技术相比具有很多优点:(1)高效(105-107理论塔板/米);(2)快速(几十秒至几十分钟);(3)分离模式多,选择自由度大;(4)分析对象广,从无机离子到整个细胞;(5)高度自动化;(6)样品需量小,运行成本低,无环境污染。
毛细管电泳法

此外,还有一类基于芯片的二维分离系统主要应用于蛋白质酶解物的分离分析。
除上述分离模式外,芯片自由流电泳也是芯片电泳分离蛋白质的重要方法。芯片自由流电泳是指在芯片中通 过外加电场使样品随缓冲液连续流动的同时沿电场方向进行电迁移,从而按照电泳淌度不同实现分离的电泳分离 模式。Raymond等采用芯片自由流电泳模式分离了人血清蛋白、缓激肽和核糖核酸酶A,其分离长度为3.1 cm,流 出时间为62 S。Kobayashi等采用自由流电泳的分离模式在一个体积为56.5 mm×35 mm×30 mm的微分离室 (60uL)中实现了持续的蛋白质分离,并用羟丙基甲基纤维素涂覆来抑制蛋白质吸附,在25 min内有效分离了细胞 色素C和肌红蛋白。最近,Kohl.heyer等H 3。制作了一种自由流等电聚焦分离蛋白质的玻璃芯片,成功地将人 血清白蛋白(pI=4.4)与等电聚焦标记物(pH 3和9)分离。
仪器要求
所用的仪器为毛细管电泳仪。正文中凡采用毛细管电泳法测定的品种,其所规定的测定参数,除分析模式、 检测方法(如紫外光吸收或荧光检测器的波长、电化学检测器的外加电位等)应按照该品种项下的规定外,其他参 数如毛细管内径、长度、缓冲液的pH值、浓度、改性剂添加量、运行电压或电流的大小、运行的时间长短、毛细 管的温度等,均可参考该品种项下规定的数据,根据所用仪器的条件和预试验的结果,进行必要的调整。
检测方法
毛细管电泳通常用到的检测方法有吸收光谱,荧光光谱,热镜,拉曼光谱,质谱和电化学方法。
第七章 毛细管电泳法

特
点
近似通用,常规应用 灵敏,但试样通常要衍生 高灵敏度,价格昂贵,要衍生化 通用性 选择性,灵敏度高,微量 仪器复杂,可获结构信息, 质量灵敏度高 灵敏度高,操作有特殊要求
放射
10-9-10-11
第七章 高效毛细管电泳 分析法
high performance capillary electrophoresis,HPCE
电场强度
第7章 毛细管电泳
7-1 毛细管电泳的原理
2 电泳和电渗
1. 2.
电渗流的意义
3.
电泳过程中,伴随着电渗现象 电渗流的速度比电泳速度快5-7倍 利用电渗流可将正、负离子或中性分子一起向同 一方向,产生差速迁移,在一次电泳操作中同时 完成正、负离子的分离分析
分情况而论
电渗流是毛细管电泳分离的重要参数 控制电渗流的大小和方向,可提高毛细管电 泳分离的效率、重现性、分离度。
第7章 毛细管电泳
7-2 分离模式
5 毛细管等电聚焦 CIEF: 建立在不同蛋白质或多肽之间等 电点(pI值)差异基础上的分离方 法。 蛋白质的等电点(pI): 指蛋白质分子的表观电荷数为零 时的pH值。
第7章 毛细管电泳
5 毛细管等电聚焦 方法:
1.
2.
3.
进样-等电聚焦-检测 先将脱盐的试样(蛋白质)以≥1%的浓度与两性电 解质溶液混合,用压力进样充入毛细管柱(阳极端), 置于阳极电解质溶液如H3PO4中,检测端为阴极端,置 于阴极电解质如NaOH中。 施加电压,进行电泳实验。两性电解质离子形成pH的 位置梯度,而蛋白质在迁移时会在其等电点的pH区域 内停止移动。这样pI不同的蛋白质各组分会在毛细管 内很窄的不同pH区域内聚焦. 在阳、阴极电解液中加入盐如NaCI或NaOH,破坏pH梯 度,使各组分蛋白质重新带电,在电场力作用下发生 迁移、检测,使不同组分的蛋白质得到分离。
第三章 毛细管电泳分离技术-2015

一、毛细管电泳的进样技术
• (一)直接在线进样 • (二)近端进样及双向进样 • (三)流动注射与毛细管电泳联用(FI-CE) • (四)液相色谱与毛细管电泳联用 • (五)光学门进样 • (六)流动门进样
光学门进样装置示意图
流动门进样装置示意图
二、毛细管电泳检测器
• 由于样品区带在高压电场作用下,迁移速 度较快,因此,CE要求所用的检测器必须 具有很快的响应速度和很高的灵敏度。
• 例如,在一个电泳泳动期间,两个或更多 的蛋白质一起迁移而只形成一条区带。如 果我们在不同的pH值下进行分析,将导致 多余蛋白质带的出现,促使样品中其它蛋 白质的分离。
(4)操作电压
• 一个分子的迁移速率和媒介两边的场强是 成比例的。
• 但是,随着电压的增大对流也上升,导致 更强大功率的产生(功率以对流平方的方 式增加),这样一些功率以热量形式消散。
1.带电分子的本质
• 微粒的净电荷、大小、形状和相对质量对 它们的电泳淌度有相当大的影响。
• 分子的带电量与大小的比例是一个重要的 参数。
• 电量与大小的比例(e/r)越大,分子在给 定条件下,迁移得越快。
2.电泳系统的性质
• 电泳缓冲液的离子构成、温度、电泳缓冲 液的pH值、操作电压、载体介质的选择
• 固、液两相之间的相对运动发生在吸 附层与扩散层之间的滑动面上,此处 的电动势称为界面电动势,也称ζ电位。
• 由于处在扩散层中的正离子的溶剂化 作用,它在电场中发生迁移时,将带 动整个溶液向阴极移动,所以就形成 电渗流。
eo 4
veo
eoE
E 4
• 电渗流速度Veo与ζ电位、ε、E成正比,而 与介质的粘度η成反比。
• 高压电源可对毛细管施加5~50 kV电压,操作电 压一般控制在5~30 kV范围。
第五章毛细管电泳

毛细管电泳中的zeta电势
第二种:荷电粒子表面上的zeta电势
在电介质中,任何带电粒子都可以被看成 是一个偶电层系统的一部分。在这个系统中, 粒子自身的电荷被异号的带电离子中和,这些 异号离子中有一些被不可逆地吸附到粒子上, 而另一些则游离在附近,并扩散到电介质中进 行离子交换。“固定”离子有一个切平面,它 和离得最近的游离离子间的电势称为粒子的 zeta电势。
各种电泳的主要应用方向
小型离子: CZE CITP 小分子: MECC CZE CITP 肽类 : CZE MECC CIEF CITP CGE 蛋白质: CZE CGE CIEF CITP 低聚核苷酸 : CGE MEKC DNA :CGE
毛 细 管 电 泳 仪
毛细管电泳仪的基本结构
毛细管电泳系统包括:进样、填灌/清洗、电流回 路、毛细管/温度控制、检测/记录/数据处理等部分
毛细管电泳是在散热效率极高的毛细管内进行, 它可以加上 0 ~ 30 KV 的高电压进行分离,达 到快速、高效
毛细管电泳的特点
毛细管的特点 容积小,以100㎝长、75μ m内径的毛细管计, 容积仅为4.4 μ l 侧面/截面积比大,使毛细管散热快,能承受 100 ~ 1000V/cm的高电场 能使用自由溶液、凝胶等作为支持介质 在溶液介质下能产生平面形状的电渗流
分析与微量制备
手性/异构体拆分
方法简单化 改善分辨率 快速 成本降低 方法开发过程简单
碱性药物分析—19种混合碱性药物的质量 控制分析
在其它药物分析中的应用
主成分的定量测定 痕量杂质检测 中药材成分分析/指纹图谱 中药复方制剂中化学成分测定 药物计量离子配比测定 药物代谢产物测定 药物与蛋白质的相互作用研究 滥用药物测定 药厂质控
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22
2、分离度
电泳中两峰的分离度,也称分辨率,它表明湍度相 近的组分分开的能力,可表达为(和哪些因素有关):
R s(n1/2/4)( /平 )
柱效
相邻两区带的迁移速度差 两者的平均速度
/平 表示分离的选择性
23
分离度计算式(具体如何计算):
R s2 (tm 2 tm 1)/W (1 W 2)
白质和核酸等离子型生物大分子的分离分析,加 入表面活性剂还可以扩大到中性粒子,甚至应用 到细胞和病毒等的分离。同时,在小分子化合物 的分离分析方面也取得了重大进展。
4
5
第二节 毛细管电泳基本原理
一、毛细管电泳的理论基础 毛细管电泳法:是指以弹性石英毛细管为分离通道,以高压
直流电场为驱动力,依据样品中各组分的淌度(单位电场 强度下的迁移速度)和/或分配行为的差异而实现分离的 一种分析方法。 在毛细管电泳中带电粒子所受的驱动力:
• 1909年,由Michaelis对此现象的描述中提出电 泳这个术语(elektron和pbore,分别代表电和搬运 者的意思 )
• 20世纪30年代,通过Tiselius的研究,电泳技术 才得到有实际意义的发展,Tiseluis也因此获得 了1948年度的诺贝尔奖。
• 到20世纪50年代,电泳已经是一种与纸和薄层的 平面色谱技术一样的实验室常用技术。
层。 ③ 具体方法有:
17
18
19
20
(二)分离效率和分离
电渗湍度
柱效可用理论塔板数n表示
毛细管电泳分离柱效方程式
两端电压
N l2
aV pp l eeV o l
2 Dt2 DL 2 D L
理论塔板高
毛细管总长度
溶质扩散系数
实验上可按下式求出理论塔板数
10
固、液两相之间的相对运动发生在吸附层 与扩散层之间的滑动面上,此处的电动势 称为界面电动势,也称ζ电位。
由于处在扩散层中的正离子的溶剂化作用, 它在电场中发生迁移时,将带动整个溶液 向阴极移动,所以就形成电渗流(Electro Osmotic Flow, EOF)。
11
介质的介电常数
界面电动势
9
电渗流的产生
毛细管内壁表面上的硅醇基在pH>3的水溶液中,可电离 而产生SiO-负离子,使毛细管内壁带上负电荷,因此,溶 液中的一部分正离子就靠静电作用而吸附于毛细管内壁上, 形成一个双电层(Electric double layer)。其中一层是带 负电的内壁,一层是带正电的溶液离子吸附层。但溶液中 的其余大部分正离子则是离内壁越远,越呈自由状态,于 是在吸附层之外又存在着一个扩散层 。
电泳力
电渗力
6
(一)电泳和电渗
电泳(Electrophoresis)是指溶液中带电粒子(离 子、胶团)在电场中定向移动的现象。电泳是驱动电 解质运动的第一种动力。
电泳迁移速度Ve : Ve= μeE = μeV/L
注:μe:电泳迁移率(电泳淌度); E:电场强度; V-毛细管柱两 端施加的电压;L-毛细管柱的长度。
电渗流迁移率
溶剂流迁移速度
eo 4
介质的粘度
veo eoE4E
电渗流速度Veo与ζ电位、ε、E成正比,而 与介质的粘度η成反比。
12
与HPLC柱不同,毛细管中的电渗流呈平面 流型,它不存在径向梯度。
13
电渗流的意义
1. 电泳过程中伴随着电渗现象 2. 电渗流的速度比电泳速度快5-7倍 3. 利用电渗流可将正、负离子或中性分子一起
第三章 毛细管电泳分离技术
1
第一节 概 述
电泳是基于两种或多种带电粒子或微粒,它 们所在的介质受到外加直流电场的作用下, 其迁移速率不同而得到分离的一类方法。 (electrophoresis )
2
发展历程
• 1807年,Ferdinand Frederic Reuss就观察到了 荷电物质在电场力作用下会发生运动的现象。
➢ 正离子:νt =νeo + ν+ ➢ 中性分子:νt = νeo ➢ 负离子:νt =νeo - νˉ
注:电渗流的速度 为泳流的若5-7倍
16
电渗流是毛细管电泳分离的重要参数,控 制电渗流的大小和方向,可提高毛细管电 泳分离的效率、重现性、分离度
➢ 抑制毛细管中电渗流的办法:
① 消除固液界面间的ζ电位或提高溶液的粘度; ② 在毛细管的内壁涂上聚合物,如聚丙烯酰胺涂
电泳图上从起点至电泳峰 最大值之间的距离
电泳峰的半高峰宽
21
毛细管电泳分离柱效方程式
N l2
aV pp l eeV o l
2 Dt2 DL 2 D L
提高分离电压是增加分离效率的主要途径,在相 同的操作电压下,l/L =1,分离效率最高(短的毛 细管)。此外,N与溶质的扩散系数D成反比,所 以用毛细管电泳分离大分子时,可得到高的柱效。
向同一方向,产生差速迁移,在一次电泳操 作中同时完成正、负离子的分离分析。
14
电解质区带的移动速度(Vi)等于电解质区带的 电泳迁移速度(Ve)与溶剂流速度(Veo)之和。 Vi = Ve + Veo
15
当把样品从阳极端注入毛细管时,假设A物质为 负离子,B物质为正离子,则带不同电荷的离子 将按下面的速度迁移到阴极,到时间t时,A、B 物质已经分离了。
• 20世纪70年代在HPLC的推动下,电泳分离技术 成为了一种“灰姑娘”式的技术
3
• 1981年,Jorgenson等介绍了毛细管区带电泳技 术。
• 1984年Terabe等提出的胶束电动毛细管色谱。 • 1987年,Hjerten建立了毛细管等电聚焦。 • 1987年,由Chohen等提出了毛细管凝胶电泳。 • 1991年,Monnig等首次提出了高速毛细管电泳。 • 目前,毛细管电泳已广泛应用于氨基酸、肽、蛋
μe =νe/E= Q/f
7
ve
Q f VL
QV
6RsL
注: Q-离子所带的净电荷;f-Stokes阻力系数。η是缓冲 溶液的粘度(动力学的),Rs是离子的有效半径(包括溶剂化层)
当毛细管长度一定时,带电离子的迁移速度 与溶质离子的电荷、施加的电压、缓冲溶液 的粘度及带电离子的大小有关。
8
电渗(Electro osmosis)是驱动电解质运动 的第二种作用力,它使毛细管中的溶剂在 直流电场作用下发生定向运动。