宁夏银川市第二中学人教版高中数学必修二 1.1 空间几何体的结构教案
新人教版必修二高中数学第一章空间几何体教案

第一章空间几何体本章教材分析柱体、锥体、台体和球体是简单的几何体,复杂的几何体大都是由这些简单的几何体组合而成的.有关柱体、锥体、台体和球体的研究是研究比较复杂的几何体的基础.本章研究空间几何体的结构特征、三视图和直观图、表面积和体积等.运用直观感知、操作确认、度量计算等方法,认识和探索空间几何图形及其性质.本章中的有关概念,主要采用分析具体实例的共同特点,再抽象其本质属性空间图形而得到.教学中应充分使用直观模型,必要时要求学生自己制作模型,引导学生直观感知模型,然后再抽象出有关空间几何体的本质属性,从而形成概念.本章内容是在义务教育阶段学习的基础上展开的.例如,对于棱柱,在义务教育阶段直观认识正方体、长方体等的基础上,进一步研究了棱柱的结构特征及其体积、表面积.因此,在教材内容安排中,特别注意了与义务教育阶段“空间与图形”相关内容的衔接.值得注意的是在教学中,要坚持循序渐进,逐步渗透空间想象能力面的训练.由于受有关线面位置关系知识的限制,在讲解空间几何体的结构时,少问为什么,多强调感性认识.要准确把握这方面的要求,防止拔高教学.重视函数与信息技术整合的要求,通过电脑绘制简单几何体的模型,使学生初步感受到信息技术在学习中的重要作用.为了体现教材的选择性,在练习题安排上加大了弹性,教师应根据学生的实际,合理地进行取舍.1.1 空间几何体的结构1.1.1 柱、锥、台、球的结构特征整体设计教学分析本节教材先展示大量几何体的实物、模型、图片等,让学生感受空间几何体的结构特征,从整体上认识空间几何体,再深入细节认识,更符合学生的认知规律.值得注意的是:由于没有点、直线、平面的有关知识,所以本节的学习不能建立在严格的逻辑推理的基础上,这与以往的教材有较大的区别,教师在教学中要充分注意到这一点.本节教学尽量使用信息技术等手段,向学生展示更多具有典型几何结构特征的空间物体,增强学生的感受.三维目标1.掌握柱、锥、台、球的结构特征,学会观察、分析图形,提高空间想象能力和几何直观能力.2.能够描述现实生活中简单物体的结构,学会建立几何模型研究空间图形,培养数学建模的思想. 重点难点教学重点:柱、锥、台、球的结构特征.教学难点:归纳柱、锥、台、球的结构特征.课时安排1课时教学过程导入新课思路1.从古至今,各个国家的建筑物都有各自的特色,古有埃及的金字塔,今有各城市大厦的旋转酒吧、旋转餐厅,还有上海东方明珠塔上的两个球形建筑等.它们都是独具匠心、整体协调的建筑物,是建筑师们集体智慧的结晶.今天我们如何从数学的角度来看待这些建筑物呢?引出课题:柱、锥、台、球的结构特征.思路2.在我们的生活中会经常发现一些具有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流.教师对学生的活动及时给予评价.引出课题:柱、锥、台、球的结构特征.推进新课新知探究提出问题1.观察下面的图片,请将这些图片中的物体分成两类,并说明分类的标准是什么?图12.你能给出多面体和旋转体的定义吗?活动:让学生分组讨论,根据初中已有的知识,学生很快就能分成两类,对没有思路的学生,教师予以提示.1.根据围成几何体的面是否都是平面来分类.2.根据围成几何体的面的特点来定义多面体,利用动态的观点来定义旋转体.讨论结果:1.通过观察,可以发现,(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)具有同样的特点:组成几何体的每个面都是平面图形,并且都是平面多边形,像这样的几何体称为多面体;(1)、(3)、(4)、(6)、(8)、(10)、(11)、(12)具有同样的特点:组成它们的面不全是平面图形,像这样的几何体称为旋转体.2.多面体:一般地,由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点.按围成多面体。
新人教版高中数学必修二教案:1.1空间几何体

1.1空间几何体【知识要点】1. 认识几何体:a. 棱柱的结构特征:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
b. 棱锥的结构特征:有一个面是多边形,其余各面都是一个公共顶点的三角形,由这些面所围成的几何体叫棱锥。
c. 圆柱、圆锥、圆台、棱台的结构特征:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的几何体叫做圆柱;以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的几何体叫做圆锥;用一个平行于圆锥地面的平面去截圆锥,底面与截面之间叫做圆台;用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
d. 球:半圆以它的直径为旋转轴,旋转一周所成的曲面叫做球面。
球面所围成的几何体叫做球体,简称球。
半圆的圆心叫做球心。
连接球心和球面上任意一点的线段叫做球的半径。
连接球面上的两点并且经过球心的线段叫做球的直径。
2. 圆柱、圆锥、圆台的侧面展开图a. 圆柱:如图1-1-2,在矩形1OO BA 中,在1OO =AB=h=l ,AO=r 。
圆柱的侧面展开图是一个矩形,在矩形ABCD 中,AD=BC=2r π,BD 是从B 绕圆柱侧面一周到A 的最短距离。
b. 圆锥:如图1-1-3,在Rt 三角形OPA 中,222l h r =+,圆锥的侧面展开图是一个扇形,在扇形PAA '中,AA '=C=2r π。
AA '为从A 出发绕圆锥侧面一周再回到A 的最短距离。
c. 圆台:如图1-1-4,在直角梯形OO A A ''中,222()l h r r '=+-。
圆台的侧面展开图是一个扇环,在扇环AA B B ''中,2;2A B r AB r ππ'''==。
3. 几何体的侧面积a. 直棱柱的侧面展开图是矩形,直棱柱侧面面积计算公式:S ch =直棱柱侧面积 即直棱柱的侧面积等于它的底面周长和高的乘积。
高中数学必修二 教案 空间几何体的结构

1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征1.1.2 圆柱、圆锥、圆台、球及组合体的结构特征一、空间几何体的有关概念1.空间几何体对于空间中的物体,如果我们只考虑其形状和大小,而不考虑其他因素,那么由这些物体抽象出来的就叫做空间几何体.例如,一个正方体形包装箱,占有的空间部分就是一个几何体,这个几何体就是我们熟悉的正方体.2.多面体(1)多面体:一般地,我们把由若干个围成的几何体叫做多面体.(2)多面体的面:围成多面体的各个多边形叫做多面体的面,如图中面ABB′A′,面BCC ′B′等.(3)多面体的棱:相邻两个面的公共边叫做多面体的棱, 如图中棱AA′,棱BB′等.(4)多面体的顶点:棱与棱的公共点叫做多面体的顶点, 如图中顶点A,B,C等.3.旋转体(1)旋转体:由一个平面图形绕它所在平面内的一条定直线所形成的封闭几何体.如图所示为一个旋转体,它可以看作由矩形OBB′O′绕其边OO′所在的直线旋转而形成.(2)旋转体的轴:平面图形旋转时所围绕的定直线.如图中直线OO′是该旋转体的轴.二、几种最基本的空间几何体1.棱柱的结构特征定义一般地,有两个面互相,其余各面都是,并且每相邻两个四边形的公共边都互相,由这些面所围成的多面体叫做棱柱(prism).图形及表示①用表示底面的各顶点字母来表示棱柱.如图所示的六棱柱可以表示为棱柱ABCDEF−A′B′C′D′E′F′.学*科网②用棱柱的对角线表示棱柱.如图,(1)可表示为四棱柱AC1或四棱柱BD1等;(2)可表示为六棱柱AD1或六棱柱AE1等;(3)可表示为五棱柱AC1或五棱柱AD1等.这种记法要说明棱柱是几棱柱.相关概念①棱柱的底面:棱柱中,两个互相的面叫做棱柱的底面,简称底.②棱柱的侧面:除底面外,其余各面叫做棱柱的侧面.③棱柱的侧棱:相邻侧面的公共边叫做棱柱的侧棱.④棱柱的顶点:侧面与底面的公共顶点叫做棱柱的顶点.结构特征①底面互相.②侧面都是.③每相邻两个平行四边形的公共边互相.分类①棱柱可以按底面的边数进行分类,底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……即棱柱的底面是几边形,这样的棱柱就叫做几棱柱.②按侧棱与底面是否垂直分类,可分为斜棱柱和直棱柱.侧棱与底面不垂直的棱柱叫做,侧棱垂直于底面的棱柱叫做直棱柱.特别地,底面是正多边形的直棱柱叫做.2.棱锥的结构特征定义一般地,有一个面是,其余各面都是有一个公共顶点的,由这些面所围成的多面体叫做棱锥(pyramid).学*科网图形及表示①表示顶点和底面各顶点的字母表示棱锥.如图所示的四棱锥可表示为棱锥S−ABCD.②用顶点和底面多边形的一条对角线的相应字母表示棱锥(三棱锥除外).如图所示的棱锥可记为四棱锥S−AC.相关概念①棱锥的底面:在棱锥中,这个多边形面叫做棱锥的底面或底.②棱锥的侧面:有公共顶点的各个三角形面叫做棱锥的侧面.③棱锥的顶点:各侧面的公共顶点叫做棱锥的顶点.④棱锥的侧棱:相邻侧面的公共边叫做棱锥的侧棱.结构特征①底面是.②侧面都是.③侧面有一个.分类按底面的边数进行分类:底面是三角形、四边形、五边形……的棱锥分别叫做三棱锥、四棱锥、五棱锥……其中,三棱锥又称为.注意:三棱锥的所有面都是三角形,所以四个面都可以看作底.3.棱台的结构特征定义用一个于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台(frustum of a pyramid).图形及表示用表示底面各顶点的字母表示棱台.如图所示的四棱台可以表示为棱台ABCD−A′B′C′D′.相①棱台的下底面、上底面:原棱锥的底面和截面分别叫做棱台的下底面和上底面,关概念如上图所示,面A′B′C′D′为棱台的上底面,面ABCD为棱台的下底面.②棱台的侧面:除上、下底面之外的其他各面叫做棱台的侧面,如上图所示,面ABB′A′,面BCC′B′,面CDD′C′,面ADD′A′都是棱台的侧面.③棱台的侧棱:相邻侧面的公共边叫做棱台的侧棱,如上图所示,棱AA′,棱BB′,棱CC′,棱DD′都是棱台的侧棱.学科*网④棱台的顶点:棱台的侧面与底面的公共顶点叫做棱台的顶点,如上图所示,点A,B,C,D,A′,B′,C′,D′都是棱台的顶点.结构特征①上、下底面互相,且是图形.②各侧棱的延长线交于.③各侧面为.分类由三棱锥、四棱锥、五棱锥……截得的棱台分别叫做三棱台、四棱台、五棱台……注意:由正棱锥截得的棱台叫做.4.圆柱的结构特征定义以的一边所在直线为旋转轴,其余三边旋转形成的面所围成的叫做圆柱(circular cylinder).图形及表示圆柱可以用表示它的轴的字母表示,上图所示的圆柱可以表示为圆柱OO′.相关概念①圆柱的轴:旋转轴叫做圆柱的轴.②圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面.③圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面.④圆柱的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱的母线. 注意:圆柱与棱柱统称为柱体.结构特征①圆柱有两个大小相同的底面,这两个面互相,且底面是圆面而不是圆.②圆柱有无数条母线,且任意一条母线都与圆柱的轴,所以圆柱的任意两条母线互相.③平行于底面的截面是与底面大小相同的圆面,过轴的截面(轴截面)是全等的 .5.圆锥的结构特征定义以的一条边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).图形及表示圆锥可以用表示它的轴的字母表示,如图所示的圆锥可以表示为圆锥SO.相关概念①圆锥的轴:旋转轴叫做圆锥的轴,如上图所示,SO为圆锥的轴.②圆锥的底面:垂直于轴的边旋转而成的圆面叫做圆锥的底面,如上图所示,⊙O 及其内部是圆锥的底面.③圆锥的侧面:直角三角形的斜边绕轴旋转形成的曲面叫做圆锥的侧面.④圆锥的母线:无论旋转到什么位置,斜边都叫做圆锥的母线,如上图所示,SA,SB 等都是圆锥的母线.⑤圆锥的顶点:母线的交点叫做圆锥的顶点,如上图所示,点S为圆锥的顶点.注意:圆锥与棱锥统称为锥体.结构特征①底面是.②有无数条母线,长度且交于.③平行于底面的截面是与底面大小不同的圆面,过轴的截面(轴截面)是全等的.6.圆台的结构特征定义用圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).图形及表示圆台可以用表示它的轴的字母表示,上图所示的圆台可以表示为圆台OO′.相①圆台的下底面、上底面:原圆锥的底面和截面分别叫做圆台的下底面和上底面.关概念②圆台的轴:上、下底面圆心的连线所在的直线叫做圆台的轴.③圆台的侧面:原圆锥的侧面被平面截去后剩余的曲面叫做圆台的侧面.④圆台的母线:原圆锥的母线被平面截去后剩余的部分叫做圆台的母线. 注意:圆台和棱台统称为台体.结构特征①圆台上、下底面是互相且的圆面.②有条母线,且延长线交于一点.③平行于底面的截面是与两底面大小都不等的圆面,过轴的截面(轴截面)是全等的.7.球的结构特征定义以半圆的所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体(solid sphere),简称球.学科—网图形及表示可以用表示球心的字母表示球,上图所示的球可以表示为球O.相关概念①球心:半圆的叫做球的球心.②半径:半圆的叫做球的半径.③直径:半圆的叫做球的直径.8.简单组合体的结构特征定义由、、、等简单几何体组合而成的几何体叫做简单组合体.构成形式①由简单几何体拼接而成,如图(1)所示.②由简单几何体截去或挖去一部分而成,如图(2)所示.常①多面体与多面体的组合体见的几种组合体图(1)中几何体由一个四棱柱挖去一个三棱柱得到,图(2)中几何体由一个四棱柱与一个四棱锥组合而成,图(3)中几何体由一个三棱柱与一个三棱台组合而成.②多面体与旋转体的组合体图(1)中几何体由一个三棱柱挖去一个圆柱得到,图(2)中几何体由一个圆锥挖去一个四棱柱得到,图(3)中几何体由一个球挖去一个三棱锥得到.③旋转体与旋转体的组合体图(1)中几何体由一个球体和一个圆柱组合而成,图(2)中几何体由一个圆台和两个圆柱组合而成,图(3)中几何体由一个圆台、一个圆柱和一个圆锥组合而成.K知识参考答案:一、1.空间图形2.平面多边形3.旋转二、1.平行四边形平行;平行;平行平行四边形平行;斜棱柱正棱柱2.多边形三角形;多边形三角形公共顶点;四面体3.平行;平行相似一点梯形;正棱台4.矩形旋转体;平行平行平行且相等矩形5.直角三角形直角;圆面相等顶点等腰三角形6.平行于;平行不等无数等长等腰梯形7.直径;圆心半径直径8.柱体锥体台体球体K—重点:棱柱、棱锥、棱台、圆柱、圆锥、圆台的结构特征.K—难点:几种特殊的四棱柱及各棱柱之间的关系,球与简单组合体的结构特征、空间几何体的平面展开图. K—易错:解题时凭直观感觉判断几何体致误,要注意紧扣定义.1.K重点——棱柱、棱锥、棱台的结构特征判断一个几何体是棱柱、棱锥还是棱台,要从定义出发,严格按照其结构特征进行推理和判断,才能得出正确结论.如下图所示,观察四个几何体,其中判断正确的是A.①是棱台B.②是棱台C.③不是棱锥D.④是棱柱【答案】D【解析】图①不是由棱锥截来的,所以①不是棱台;图②显然也不是由棱锥截来的,所以②不是棱台;图④前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以④是棱柱;很明显③是棱锥,选D.【思路点拨】从结构特征出发:棱台上、下两个底面平行且相似;棱锥侧面都是三角形且有一个公共顶点;棱柱上、下两个底面平行且侧面都是平行四边形,从而可快速得解.2.K重点——圆柱、圆锥、圆台的结构特征圆柱是绕矩形的一边旋转得到的,圆锥是绕直角三角形的一直角边旋转得到的,圆台是用平行于圆锥底面的平面截圆锥得到的,要以动态的观点去观察和理解,才能熟练掌握其结构特征.一个直角三角形绕斜边旋转360°形成的空间几何体为A.一个圆锥B.一个圆锥和一个圆柱C .两个圆锥D .一个圆锥和一个圆台【答案】C【解析】作出斜边上的高,得到两个小的直角三角形,一个直角三角形绕斜边旋转360°,相当于以两个小直角三角形的直角边为轴旋转,故一个直角三角形绕斜边旋转360°形成的空间几何体是两个同底的圆锥,底面是以直角三角形的斜边上的高为半径的圆面,这两个圆锥的高都在直角三角形的斜边上,且这两个圆锥的高的和等于直角三角形的斜边长.学科%网【思路点拨】利用圆锥的定义,此直角三角形由斜边上的高线分成两个小的直角三角形,以大直角三角形的斜边为轴旋转360°,相当于以小直角三角形的直角边为轴旋转. 3.K 难点——球的结构特征从近几年高考来看,常结合三视图与多面体来考查球内接多面体问题,或以此为载体考查空间几何体的表面积或体积,因此在学习过程中,必须熟练掌握球的结构特征和性质.一个正方体的内切球1O 、外接球2O 、与各棱都相切的球3O 的半径之比为 A .1:3:2B .1:1:1C .1:3:2D .1:2:3【答案】C【解析】设正方体的棱长为1,那么其内切球的半径为21,外接球的半径为23(正方体体对角线的一半),与各棱都相切的球的半径为22(正方体面对角线的一半),所以比值是132∶∶,故选C . 【方法点睛】球与几何体的组合体的问题,尤其是相切,一般不画组合体的直观图,而是画切面图,圆心到切点的距离是半径并且垂直,如果是内切球,那么对面切点的距离就是直径,而对面切点的距离是棱长,如果与棱相切,那么对棱切点的距离就是直径,而切点在棱的中点,所以对棱中点的距离等于面对角线长,而如果外接球,那么相对顶点的距离就是直径,即正方体的体对角线是直径. 4.K 难点——简单组合体的结构特征几何体分割开来看:若几何体由几个面围成,且有面面平行或各面有公共顶点,则从棱柱、棱锥、棱台的概念入手;若题中几何体由某平面图形绕定直线旋转形成,则从圆柱、圆锥、圆台、球的概念入手.如图所示的组合体,其构成形式是 A .左边是三棱台,右边是圆柱 B .左边是三棱柱,右边是圆柱 C .左边是三棱台,右边是长方体D .左边是三棱柱,右边是长方体【答案】D【解析】根据三棱柱和长方体的结构特征,可知此组合体左边是三棱柱,右边是长方体.【解题必备】考查简单组合体的构成,就必须要明白该组合体是由简单几何体拼接、截去还是挖去一部分而成的,因此,要仔细观察简单组合体的组成,并充分结合柱、锥、台、球的几何结构特征进行识别. 5.K 难点——空间几何体的平面展开图 求几何体表面上两点间的最小距离的步骤:(1)将几何体沿着某棱剪开后展开,画出其侧面展开图; (2)将所求曲线问题转化为平面上的线段问题; (3)结合已知条件求得结果.如图,一竖立在水平地面上的圆锥形物体的母线长为4m ,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥表面爬行一周后回到点P 处,若该小虫爬行的最短路程为43m ,则圆锥底面圆的半径等于A .1mB .3m 2C .4m 3D .2m【答案】C【解析】作出该圆锥的侧面展开图,如下图所示:该小虫爬行的最短路程为PP ',在OPP '△中,OP =OP '=4,P P '=43120P OP '∠=.设底面圆的半径为r ,则有1202ππ4180r =⋅,∴34=r .故C 正确.【方法点晴】本题主要考查了圆锥的有关计算及圆锥的侧面展开的应用,着重考查了求立体图形中两点之间的曲线段的最短线路长,解答此类问题一般应把几何体的侧面展开,展开在一个平面内,构造直角三角形,从而求解两点间的线段的长度,用到的知识为:圆锥的弧长等于底面周长,本题的解答中圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥的底面周长,扇形的半径等于圆锥的母线长,体现了“化曲面为平面”的思想方法.6.K易错——空间几何体的判断判断旋转体形状的关键是看平面图形绕哪条直线旋转,同一个平面图形绕不同的旋转轴旋转所形成的旋转体可能不同.如图,最左边的几何体由一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得,现用一个竖直的平面去截这个几何体,则截面图形可能是A.①②B.②③C.③④D.①⑤【错解】B【错因分析】读题不准,上底面已挖去,截面就不会出现②的情况,另外,空间想象能力差且凭主观臆断,考虑不全面导致错解.【正解】当截面过旋转轴时,圆锥的轴截面为等腰三角形,此时①符合条件;当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时⑤符合条件.故截面图形可能是①⑤,选D.1.正方形绕某一条对角线所在直线旋转一周,所得几何体是A.圆柱B.圆锥C.圆台D.两个圆锥2.若正棱锥底面边长与侧棱长相等,则该棱锥一定不是A.三棱锥B.四棱锥C.五棱锥D.六棱锥3.如图所示的组合体是由哪个平面图形旋转形成的A B C D4.有下列三个说法:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②有两个面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中正确的有A.0个B.1个C.2个D.3个5.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定6.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是A.圆柱B.圆锥C .球体D .圆柱、圆锥、球的组合体7.一个封闭的立方体,它的6个表面上分别标上1,2,3,4,5,6这6个数字,现分别如图(1)(2)(3)所示放置,则数字1,2,3对面的数字分别是(1) (2) (3)A .4,5,6B .6,4,5C .5,4,6D .5,6,48.在正方体1111ABCD A B C D 中,P Q R 、、分别是11AB AD B C 、、的中点,那么,过P Q R 、、的正方体的截面图形是 A .三角形 B .四边形 C .五边形D .六边形9.下列几何体是棱台的是 (写出所有满足题意的序号).10.给出下列说法:①圆柱的底面是圆;②经过圆柱任意两条母线的截面是一个矩形;③连接圆柱上、下底面圆周上的两点的线段是圆柱的母线; ④圆柱的任意两条母线互相平行; ⑤圆柱的母线有且只有一条.其中正确的是 (写出所有正确说法的序号).11.下列结论正确的个数是①以半圆的直径所在直线为旋转轴旋转形成的曲面叫做球;②空间中到定点的距离等于定长的所有的点构成的曲面是球面; ③球面和球是同一个概念;④经过球面上不同的两点只能作一个大圆. A .1 B .2 C .3D .412.用一个平行于棱锥底面的平面截这个棱锥,截得的棱台上、下底面面积比为1∶4,截去的棱锥的高是3cm ,则棱台的高是A .12cmB .9cmC .6cmD .3cm13.如图,在正四棱柱ABCD −A 1B 1C 1D 1中,11,3AB AA ==,点E 为AB 上的动点,则D 1E +CE 的最小值为A .22B .10C .5+1D .2+214.有一种骰子,每一面上都有一个英文字母,如图是从3个不同的角度看同一粒骰子的情形,请画出骰子的一个侧面展开图,并根据展开图说明字母H 对面的字母是 .15.如图所示,在长方体中,14cm,2cm,3cm,AB AD AA ===则在长方体表面上连接1A C 、两点的所有曲线长度的最小值为__________.1 2 3 4 5 6 7 8 11 12 13D D A A A D C D A D B 1.【答案】D【解析】连接正方形的两条对角线知对角线互相垂直,故绕对角线旋转一周形成两个圆锥.【易错点晴】一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;该定直线叫做旋转体的轴;封闭的旋转面围成的几何体叫作旋转体.等腰三角形绕过底边上的高所在的直线旋转一周构成的图形就是一个旋转体——圆锥.还有圆柱、圆台、球等都是旋转体.圆O绕过圆心的直线AB旋转一周所成的图形是球.4.【答案】A【解析】本题主要考查棱台的结构特征.①中的平面不一定平行于底面,故①错;②③可用反例去检验,如图所示,故②③错.5.【答案】A【解析】在倾斜过程中左右两侧面的形状完全相同且两面平行,其余四个面都是平行四边形,符合棱柱的特征.8.【答案】D【解析】如图,连接QP,取C1D1的中点H,连接HR,则HR∥QP,再分别取B1B,D1D的中点M,N,连接HN,NQ,PM,MR,易知六边形HNQPMR即是过P,Q,R的正方体的截面图形.选D.【总结归纳】正方体的截面形状:①可以是三角形:等边三角形、等腰三角形、锐角三角形,不可能是直角三角形、钝角三角形;②可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形,截面为四边形时,这个四边形中至少有一组对边平行;③可以是五边形,截面为五边形时必有两组分别平行的边,同时有两个角相等,截面五边形不可能是正五边形;④可以是六边形,截面为六边形时必有三组分别平行的边,同时有两个角相等.截面六边形可以是正六边形.对应截面图形如下图所示.9.【答案】④【解析】①、③都不是由棱锥截成的,不符合棱台的定义,故①③不满足题意.②中的截面不平行于底面,不符合棱台的定义,故②不满足题意.④符合棱台的定义,故填④.10.【答案】②④【解析】①不正确,因为圆柱的底面是圆面而不是圆;②正确,因为母线互相平行,且都垂直于底面;③不正确,因为连接圆柱上、下底面圆周上的两点的线段不一定与圆柱的轴平行;④正确,因为圆柱的任意一条母线都与轴平行;⑤不正确,圆柱的母线有无数条.故填②④. 学科网12.【答案】D【解析】面积比为底面边长比的平方,从而由面积比可得底面边长的比,底面边长的比与截去棱锥和原棱锥高的比相等,从而可求得原棱锥的高,即可得棱台的高.设原棱锥的高为h .依题意可得231()4h=,解得6h =,所以棱台的高为633(cm)-=.故D 正确.13.【答案】B【解析】将正方形ABCD 沿AB 向下翻折到对角面ABC 1D 1内成为正方形ABC 2D 2,在矩形C 1D 1D 2C 2中连接D 1C 2,与AB 的交点即为所求最小值点E ,此时D 1E +CE =D 1C 2.因为对角线BC 1=2,C 1C 2=3,故2211221212=1+3=10+D C D C C C =.14.【答案】O【解析】将原正方体外面朝上展开,得其表面字母的排列如图所示,易得H 对面的字母是O .15.41【解析】将长方体的面分别展开平铺,当四边形11AA D D 和四边形11DD C C 在同一平面内时,最小距离为四边形11AAC C 223(42)45++=;当四边形11AA B B 和四边形11BB C C 在同一平面内时,最小距离为四边形11AAC C 的对角线,=四边形ABCD 和四边形11CDD C 在同一平面内时,最小距离为四边形11ABC D 的对角线,=.【易错点睛】该题考查的是几何体的表面距离的最值问题,结合平面内连接两点的直线段是最短的,所以将长方体的侧面沿着不同的方向展开,使得两个点落在同一平面内,利用勾股定理来求解,选出最小的那个就是,容易出错的地方在于考虑不全面,沿着一个方向展开求得结果,从而出现错误.。
人教课标版高中数学必修2《多面体与旋转体概念、棱柱》教学设计

1.1 空间几何体的结构1.1.1 多面体与旋转体概念、棱柱一、教学目标(一)核心素养通过这节课学习,了解多面体与旋转体的概念、了解棱柱的定义.能够描述现实生活中简单物体的结构,学会建立几何模型研究空间图形,培养数学建模的思想.(二)学习目标1.了解多面体的顶点,棱,表面,对角面的定义.2.结合定义,会判断一个几何体是否为棱柱.3.知道直棱柱,正棱柱,平行六面体的定义.(三)学习重点1.准确理解棱柱的定义.2.棱柱的分类.3.棱柱的表示方法.(四)学习难点1.判断某个几何体是否为棱柱.2.正确区分棱柱的体对角线和面对角线,棱柱的侧面和底面,棱柱的高和侧棱.3.对旋转体的直观理解.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第2,3页,观察课本P2图1.1-1的物体,这些图片中的物体具有什么样的几何结构特征?你能对它们进行分类吗?填空:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.棱柱中,两个互相平行的面叫做棱柱的底面(简称底),其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.按底面的多边形的边数分,有三棱柱、四棱柱、五棱柱等.2.预习自测(1)下列几何体是棱柱的有()A.5个B.4个C.3个D.2个【答案】D.【知识点】棱柱的结构特征【解题过程】由棱柱的定义可知,棱柱中,有两个面互相平行,则可以排除②⑤,又棱柱中,有两个互相平行的底面,其余各面都是四边形,则可以排除④⑥.【思路点拨】由棱柱定义来判断(2)三棱柱共有()个顶点A.4B.5C.6D.7【答案】C.【知识点】棱柱的结构特征【解题过程】n棱柱的顶点个数为2n个,故选C.【思路点拨】熟悉棱柱的定义.(3)四棱柱有()个表面A.5B.6 C.7D.8【答案】B.【知识点】四棱柱的定义【解题过程】四棱柱有上下两个底面和四个侧面,故选B.【思路点拨】棱柱有多少个表面,可以先找两个底面,再数其侧面个数即可.(二)课堂设计1.知识回顾2.问题探究探究一归纳提炼出多面体与旋转体,棱柱的定义★●活动①归纳提炼概念请同学们观察课本P2图1.1-1的物体,学生观察思考,发现上图中的物体大体可分为两大类.其中(2),(5),(7),(9),(13),(14),(15),(16)具有相同的特点:组成几何体的每个面都是平面图形,并且都是平面多边形;(1),(3),(4),(6),(8),(10),(11),(12)具有相同的特点:组成它们的面不全是平面图形.想一想,我们应该给上述两大类几何体取个什么名称才好呢?学生各抒己见,然后老师归纳总结.第一类:由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点.按围成多面体的面数,多面体分为:四面体、五面体、六面体、……我们后面即将学习的棱柱、棱锥、棱台均是多面体.思考:一个多面体最少有个面答案:4第二类:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴.圆柱、圆锥、圆台、球均是旋转体.【设计意图】从生活实例到数学问题,从特殊到一般,体会概念的提炼、抽象过程.●活动②深入挖掘概念与其他多面体相比,图片中的多面体(5)、(7)、(9)具有什么样的共同特征?让学生积极思考,积极发言,为引出棱柱的概念做准备.教师总结:共同特点:有两个面平行,其余的面都是平行四边形.像这样的几何体我们称为棱柱.师生共同完成棱柱的定义:两个平面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体称为棱柱.在棱柱中,两个互相平行的面叫做棱柱的底面;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.表示法:用表示底面各顶点的字母表示棱柱.分类:按底面多边形的边数分为三棱柱、四棱柱、五棱柱……【设计意图】通过对多面体内涵与外延的理解,引出本节课重点:棱柱的定义.探究二通过点、面、线等要素对棱柱进行直观分析●活动①认识棱柱的顶点,底面,侧面,侧棱,对角线等结合棱柱的定义,请学生看下图后回答问题.让学生分别指出这些几何图形是几棱柱,它们有几个顶点,有几个表面,它有几条侧棱,有几个对角面,有几条体对角线,有几条面对角线.教师阐述棱柱的表示方法:用表示底面的各顶点的字母表示棱柱,如上图,四棱柱、五棱柱、六棱柱可分别表示为、、;【设计意图】通过直观图形,加深对棱柱概念的理解.●活动②对概念的反面理解思考:有两个面平行,其余各面都是平行四边形的几何体是不是棱柱?教师变更棱柱的定义,让学生判断正误,进一步加深对棱柱定义的理解答:不一定是棱柱.可举反例.如下图几何体有两个面平行,其余各面都是平行四边形,但它不是棱柱.【设计意图】从反面加深对棱柱的认识.探究三棱柱的其他探讨★●活动①棱柱的另一种分类方式按照侧棱是否和底面垂直,棱柱可分为斜棱柱和直棱柱.侧棱和底面垂直的棱柱叫做直棱柱.直棱柱的每个侧面都是矩形.侧棱和底面不垂直的棱柱叫做斜棱柱.请学生思考回答,下图中有几个直棱柱?答案:有两个直棱柱.老师补充两个概念,为以后的教学做铺垫.平行六面体:底面是平行四边形的四棱柱.正棱柱:底面是正多边形的直棱柱.【设计意图】对直棱柱和正棱柱有直观印象,为后面的学习做铺垫.●活动②巩固基础,检查反馈例1 以下那种几何体属于多面体?()A.球B.圆柱C.圆锥D.四面体【知识点】多面体与旋转体的定义.【数学思想】【解题过程】选项A,B,C均为旋转体,故答案为D.【思路点拨】直接套用定义.【答案】D.例2 下列说法中正确的是()A.棱柱的两个互相平行的平面一定是棱柱的底面B.棱柱中所有的棱长都相等C.棱柱的侧面是平行四边形,但它的底面一定不是平行四边形D.棱柱的面中,至少有两个面互相平行【知识点】棱柱的定义.【数学思想】【解题过程】棱柱的侧面也可能互相平行,比如正方体,故A错误.棱柱的棱长未必全部相等,比如一般的长方体,故B错误.棱柱的底面可以是任意多边形,故C错误.棱柱的上下底面一定互相平行,故D正确.【思路点拨】正确理解棱柱的定义.【答案】D.同类训练在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行【知识点】棱柱的定义.【数学思想】【解题过程】四棱柱的相对表面可以互相平行,故A错误.棱柱的侧棱和底面的边可以相交,故B错误.棱柱的底面可以是三角形,故C错误.由棱柱的定义可知D正确.【思路点拨】正确理解棱柱的定义.【答案】D.【设计意图】巩固棱柱的概念.●活动③强化提升、灵活应用例3 如下图,已知长方体ABCD-A1B1C1D1,过BC和AD分别作一个平面交底面A1B1C1D1于EF,PQ,则长方体被分成的三个几何体中,棱柱的个数是______.【知识点】棱柱的直观认识.【数学思想】空间想象. 【解题过程】由棱柱的定义可得有3个.分别为:三棱柱DQ D AP A 11-,三棱柱CF C BE B 11-,四棱柱DCFQ ABEP -【思路点拨】逐一分析. 【答案】3个.3.课堂总结知识梳理(1)由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点.按围成多面体的面数,多面体分为:四面体、五面体、六面体、……(2)由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴.(3)两个平面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体称为棱柱.在棱柱中,两个互相平行的面叫做棱柱的底面;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.(4)按底面多边形的边数分为三棱柱、四棱柱、五棱柱……(5)按照侧棱是否和底面垂直,棱柱可分为斜棱柱和直棱柱.(6)底面是平行四边形的四棱柱叫平行六面体.(7)底面是正多边形的直棱柱叫正棱柱.重难点归纳:棱柱定义的三个核心要素(1)两个平面互相平行.(2)其余各面都是四边形.(3)每相邻两个四边形的公共边都互相平行.(三)课后作业基础型 自主突破1.下列说法错误的是( )A .多面体至少有四个面B .九棱柱有9条侧棱,9个侧面,侧面为平行四边形C .长方体、正方体都是棱柱D .三棱柱的侧面为三角形【知识点】多面体和棱柱的概念.【数学思想】 【解题过程】多面体中四面体的面最少,有四个,故A 正确.由棱柱定义知道B ,C 正确.棱柱的侧面均为平行四边形,故D 错误.【思路点拨】准确理解棱柱定义.【答案】D . 2.已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},则( )A .E F D CB A ⊆⊆⊆⊆⊆B . E D F BC A ⊆⊆⊆⊆⊆ C .E FD B A C ⊆⊆⊆⊆⊆D .它们之间不都存在包含关系【知识点】特殊棱柱的关系.【数学思想】【解题过程】根据它们的定义分析即可.【思路点拨】仔细区分各种特殊棱柱.【答案】B . 3.一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成( ).A .棱锥B .棱柱C .平面D .长方体【知识点】棱柱定义.【数学思想】运动变化的思想 【解题过程】首先排除A ,C注意到题目说“不平行于矩形所在平面”,排除D.选择B【思路点拨】正确理解题目讲述的运动过程.【答案】B.4.右图中的几何体是由哪个平面图形旋转得到的()A.B.C.D.【知识点】旋转体的定义.【数学思想】运动变化的思想【解题过程】三角形旋转产生圆锥,直角梯形旋转产生圆柱,选择A.【思路点拨】熟悉简单平面图形旋转后产生的几何体.【答案】A.5.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()条A.20 B.15 C.12 D.10【知识点】棱柱对角线的定义.【数学思想】枚举.【解题过程】正五棱柱任意不相邻的两条侧棱可确定一个平面,每个平面可得到正五棱柱的两条对角线,五个平面共可得到10条对角线,故选D.【思路点拨】正确理解对角线的含义.【答案】D.6.如下图所示,一个圆环绕着同一个平面内过圆心的直线旋转180°,想象并说出它形成的几何体的结构特征.【知识点】旋转体的定义.【数学思想】运动变化的思想 【解题过程】圆在转动过程中产生球,圆环转动过程中产生一个大球和一个小球,故本题形成的几何体为一个中间空心的球体.【思路点拨】想象出圆转动产生球的过程. 【答案】一个大球内部挖去一个同球心且半径较小的球.能力型 师生共研7.如下图,正方形ABCD 中,E ,F 分别为CD ,BC 的中点,沿AE ,AF ,EF 将其折成一个多面体,则此多面体共有 条棱.【知识点】多面体展开图.【数学思想】【解题过程】此多面体由四个面构成,故为四面体,它有六条棱.【思路点拨】想象出该多面体的形状. 【答案】6.8.在下图所示的三棱柱ABC -111C B A 中,请连接三条线,把它分成三部分,使每一部分都是一个四面体.【知识点】四面体的概念.【数学思想】【解题过程】如下图,连接A 1B ,BC 1,A 1C ,则三棱柱ABC -A 1B 1C 1被分成三部分,形成三个三棱锥,分别是A 1-ABC ,A 1-BB 1C 1,A 1-BCC 1.【思路点拨】不断尝试构造符合题意的分割方式.【答案】如图.探究型多维突破9.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,沿该正方体的一些棱将正方体剪开,外面朝上展平,得到下面的平面图形,则标“△”的面的方位是()A.南B.北C.西D.下【知识点】柱体展开图.【数学思想】运动变化.【解题过程】将所给图形还原为正方体,如图所示,最上面为△,最左面为东,最里面为上,将正方体旋转后让东面指向东,让“上”面向上可知“△”的方位为北.故选B.【思路点拨】发挥空间想象能力将正方体还原.【答案】B.10.已知一个长方体共顶点的三个面的面积分别是2、3、6,这个长方体的对角线长是________【知识点】长方体对角线长度公式.【数学思想】方程思想.【解题过程】设该长方体的长宽高分别为z,,由已知可得:yx,2=xy ;3=yz ;6=xz ,解得3,1,2===z y x对角线6222=++=z y x d .【思路点拨】设未知数,用它们表示已知条件. 【答案】6.自助餐1.棱柱至少有( )个表面.A .3个B .4个C .5个D .6个【知识点】棱柱定义.【数学思想】【解题过程】三棱柱表面最少,有五个表面.【思路点拨】考察极端情形.【答案】C . 2.给出下列命题,其中正确的个数为( ).(1)直线绕定直线旋转形成柱面;(2)曲线平移一定形成曲面;(3)直角三角形绕它的一条边旋转形成一个圆锥;(4)半圆绕定直线旋转形成球.A .0个B .1个C .2个D .3个【知识点】旋转体定义.【数学思想】 【解题过程】(1)可能形成锥面;(2)可能形成平面;(3)绕斜边旋转形成两个圆锥;(4)半圆未必绕直径旋转;故全部错误.【思路点拨】尽量寻找反例. 【答案】A .3.正方体有 个对角面.【知识点】正方体的性质.【数学思想】枚举法【解题过程】逐一考察知正方体有六个对角面. 【思路点拨】枚举时制定一个分类标准,做到不重不漏.对于棱柱,不相邻的两条侧棱确定的面叫做对角面.正方体是特殊棱柱.【答案】6.4.下列判断正确的是________ (填序号).(1)直平行六面体是长方体;(2)正四棱柱是长方体;(3)各个侧面都是矩形的四棱柱是长方体;(4)底面是矩形的四棱柱是长方体.【知识点】特殊柱体的定义.【数学思想】【解题过程】(1)底面可能是菱形;(2)正确;(3)底面可能是三角形;(4)可能是斜四棱柱,故只有(2)正确.【思路点拨】弄清各种特殊棱柱的定义.【答案】(2).5.下图是边长为1 m的正方体,有一蜘蛛潜伏在A处,B处有一小虫被蜘蛛网粘住,请制作出实物模型,将正方体剪开,描述蜘蛛爬行的最短路线.【知识点】柱体展开图.【数学思想】分类讨论【解题过程】爬行路线如下图(1)—(6)所示:分别展开,算出直线距离.可知AB 间的最短距离为A 、B 两点间的线段的长51222=+.【思路点拨】平面内,两点间线段最短. 【答案】5.6.一个棱柱有10个顶点,所有的侧棱长的和为60 cm ,求每条侧棱的长度.【知识点】棱柱的顶点和侧棱定义.【数学思想】 【解题过程】n 棱柱有2n 个顶点,由于此棱柱有10个顶点,那么此棱柱为五棱柱,又因棱柱的侧棱都相等,五条侧棱长的和为60 cm ,可知每条侧棱长为12 cm .【思路点拨】设未知数,列方程求解. 【答案】12 cm .。
人教版高中数学必修二1.1空间几何体的结构教案(1)

课题:§1.1.1柱、锥、台、球的结构特征(1)一.教学任务分析:(1)通过观察模型、实物,图片,使学生理解并能归纳出棱柱,棱锥,棱台的结构特征;(2)通过对棱柱,棱锥,棱台的结构特征的观察分析,培养学生的观察能力和抽象概括能力;(3)通过教学活动,逐步培养学生探索问题的精神。
二.教学重点与难点:教学重点:让学生感受大量空间实物及模型,重点分析棱柱的结构特征.进而概括出棱锥,棱台的结构特征.教学难点:棱柱结构特征的概括.三.教学基本流程:↓↓↓↓四.教学情境设计:(一)创设情景,揭示课题1.本章开头语:2.利用计算机展示教课书P2中的图1.1-1中的(2)、(5)、(7)及有关实物,图片,引导学生观察,交流、讨论,这些几何体的各自的特点是什么?它们的共同特点是什么?(组织学生讨论,交流,在这个过程中,教师引导学生从围成几何体的面的特征去观察,让学D 1C 1B 1A 1D CBA(二)棱柱的结构特征:(1)有两个面互相平行; (2)其余各面都是平行四边形; (3)每相邻两个四边形的公共边互相平行。
(三)棱柱的有关概念及棱柱的分类与表示方法:(教师与学生结合图形概括出棱柱的概念及相关概念)(1)棱柱的定义;(2)底面;(3)侧棱;(4)侧面;(5)顶点:(6)棱柱的分类和表示方法.(1)三棱柱 (2)四棱柱 (3) 五棱柱 (四)棱柱概念的深化:问题1: 如图,过BC 的截面截去长方体的一角,所得的几何体是不是棱柱?为什么?棱锥的底面棱锥的侧面棱锥的顶点棱锥的侧棱棱锥的高BCDO的概念返回(引导学生如何利用棱柱的概念来判断一个几何体是不是棱柱;即看所给的几何体是否符合棱柱定义的三个条件)问题2:观察长方体和六棱柱, 各共有多少平行平面?能作为底面的各有几对?问题3:如图:是一个“有两个面互相平行,其余各面都是平行四边形”的几何体,这个几何体是棱柱吗?(五)棱锥的结构特征及相关概念利用计算机展示教课书P 2中的图1.1-1中的(14)、(15)及有关实物,图片,引导的有关概念和表示.(六)棱台的结构特征及相关概念.用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫作棱台。
人教版高中数学必修二第一章 空间几何体全章教案

高一数学必修二教案思考7:一般地,怎样定义旋转体?由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体思考1:我们把下面的多面体取名为棱柱,你能说一说棱柱的结构有那些特两底面是全等的多边形,各侧面都是平行四边形思考4:有两个面互相平行,其余各面都是平行四边形的多面体一定是棱柱吗?思考1:我们把下面的多面体取名为棱锥,你能说一说棱锥的结构有那些特思考2:参照棱柱的说法,棱锥的底面、侧面、侧棱、顶点分别是什么含义?例2: 一个三棱柱可以分割成几个三棱锥?1.下列几何体中是棱柱的是()高一数学必修二教案思考1:现实生活中有哪些物体是球状几何体?思考2:从旋转的角度分析,球是由什么图形绕哪条直线旋转而成的?高一数学必修二教案思考4:一般地,简单组合体的构成有那几种基本形式?拼接,截割思考5:试说明如图所示的几何体的结构特征.例4:下面这个几何体是由哪些简单几何体构成的?思考总结:例3和例4都是由简单几何体挖去一部分而成,由此我们总结出:简单组合体的构成,第二种基本形式是由简单几何体挖去一部分而成.至此,我们发现,简单组合体的构成有两种基本形式:1.由简单几何体拼接而成;下面这个几何体是由哪些简单几何体构成的?下面这个几何体是由哪些简单几何体构成的?下面这个几何体是由哪些简单几何体构成的?◇简单组合体的构成有两种基本形式:1.由简单几何体拼接而成;2.简单几何体挖去一部分而成.高一数学必修二教案光是直线传播的,一个不透明物体在光的照射下,在物体后面的屏幕上会留思考2:用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?思考4:用手电筒照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与手电筒的距离发生变化时,影子的大小会有变化吗?思考5:在平行投影中,投影线正对着投影面时叫做正投影,否则叫做斜投影.一个与投影面平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?思考6:一个与投影面不平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?把一个空间几何体投影到一个平面上,可以获得一个平面图形.从多个角思考3:圆柱、圆锥、圆台的三视图分别是什么?思考5:球的三视图是什么?下列三视图表示一个什么几何体?例1:如图是一个倒置的四棱柱的两种摆放,试分别画出其三视图,并比较它们的异同.1.空间几何体的三视图:正视图、侧视图、俯视图;2.三视图的特点:一个几何体的侧视图和正视图高度一样,俯视图和正视图长度一样,侧视图和俯视图宽度一样;高一数学必修二教案思考4:如图,桌子上放着一个长方体和一个圆柱,若把它们看作一个整体,你能画出它们的三视图吗?一个空间几何体都对应一组三视图,若已知一个几何体的三视图,思考2:下列两图分别是两个简单组合体的三视图,想象它们表示的组合体的结构特征,并作适当描述.例2:将一个长方体挖去两个小长方体后剩余的部分如图所示,试画出这个组合体的三视图.例3:说出下面的三视图表示的几何体的结构特征.画出下面几何体的三视图2.画出左下图几何体的三视图.3.画出者个组合体的三视图本节我们主要学习了1、画简单组合体的三视图2、根据三视图还原几何体高一数学必修二教案思考1:把一个矩形水平放置,从适当的角度观察,给人以平行四边形的感觉,如图.比较两图,其中哪些线段之间的位置关系、数量关系发生了变化?哪些思考2:把一个直角梯形水平放置得其直观图如下,比较两图,其中哪些线段思考4:你能用上述方法画水平放置的正六边形的直观图吗?思考5:上述画水平放置的平面图形的直观图的方法叫做斜二测画法,对于水平放置的多边形,常用斜二测画法画它们的直观图.斜二测画法是一种特殊的平行投影画法.你能概括出斜二测画法的基本步骤和规则吗?思考6:斜二测画法可以画任意多边形水平放置的直观图,如果把一个圆水平思考1:对于柱、锥、台等几何体的直观图,可用斜二测画法或椭圆模板画出思考2:怎样画长、宽、高分别为4cm、3cm、2cm的长方体ABCD-A′B′C′D′的直观图?思考5:已知一个几何体的三视图如下,这个几何体的结构特征如何?试用斜例1:如图,一个平面图形的水平放置的斜二测直观图是一个等腰梯形,它的底角为45°,两腰和上底边长均为1,求这个平面图形的面积.空间几何体的直观图的作法:1.斜二测画法:画多边形2.正等测画法:画圆形空间几何体的直观图的特点:3、保持平行关系和竖直关系不变.高一数学必修二教案思考3:圆柱、圆锥、圆台的底面都是圆面,侧面都是曲面,怎样求它们的侧面面积?思考4:圆柱的侧面展开图的形状有哪些特征?如果圆柱的底面半径为r,母线长为l,那么圆柱的表面积公式是什么?思考6:圆台的侧面展开图的形状有哪些特征?如果圆台的上、下底面半径分别为r′、r,母线长为l,那么圆台的表面积公式是什么?思考1:你还记得正方体、长方体和圆柱的体积公式吗?它们可以统一为一个思考3:关于体积有如下几个原理:(1)相同的几何体的体积相等;(2)一个几何体的体积等于它的各部分体积之和;思考6:在台体的体积公式中,若S′=S,S′=0,则公式分别变形为什么?例1:求各棱长都为a的四面体的表面积.例2 一个圆台形花盆盆口直径为20cm,盆底直径为15cm,底部渗水圆孔直径为1.5cm,盆壁长15cm,为了美化花盆的外观,需要涂油漆. 已知每平方米用100毫升油漆,涂100个这样的花盆需要多少油漆(精确到1毫升)?本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式,用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握。
人教版高中数学必修二第一章 空间几何体全章教案

人教版高中数学必修二第一章空间几何体全章教案高一数学必修二教案科目:数学课题:空间几何体的结构特征教学目标:1.让学生通过观察实物、图片,理解并归纳出柱、锥、台、球的结构特征。
2.培养学生善于通过观察实物形状到归纳其性质的能力。
教学过程:一、自主研究观察自己书桌上和课本上的图片,思考以下问题:1.这些图片中的物体具有怎样的形状?2.日常生活中,我们把这些物体的形状叫做什么?如何描述它们的形状?3.组成这些几何体的每个面有什么特点?面与面之间有什么关系?思考1:在我们周围存在着各种各样的物体,它们都占据着空间的一部分。
如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些抽象出来的空间图形就叫做空间几何体。
请列举一些空间几何体的实例。
二、质疑提问1.在平面几何中,我们认识了三角形、正方形、矩形、菱形、梯形、圆、扇形等平面图形。
那么对空间中各种各样的几何体,我们如何认识它们的结构特征?2.对空间中不同形状、大小的几何体,我们如何理解它们的联系和区别?思考2:观察下列图片,你知道这些图片在几何中分别叫什么名称吗?三、问题探究思考3:如果将这些几何体进行适当分类,你认为可以分成哪几种类型?思考4:图(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)有何共同特点?这些几何体可以统一叫什么名称?思考5:图(1)、(3)、(4)、(6)、(8)、(10)、(11)、(12)有何共同特点?这些几何体可以统一叫什么名称?思考6:一般地,怎样定义多面体?围成多面体的各个多边形,相邻两个多边形的公共边,以及这些公共边的公共顶点分别叫什么名称?思考7:一般地,怎样定义旋转体?由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体。
思考1:我们把下面的多面体取名为棱柱,你能说一说棱柱的结构有哪些特征吗?据此你能给棱柱下一个定义吗?思考2:下列多面体都是棱柱吗?如何在名称上区分这些棱柱?如何用符号表示?体的结构特征解决实际问题.1.通过观察实物、图片,使学生理解并能归纳出组合体的结构特征;2.让学生自己观察,通过直观感加强理解;3.培养学生善于通过观察实物形状到归纳其性质的能力.教学内容1.什么是简单组合体?它由哪些基本几何体组成?2.如何通过基本几何体的结构特征来识别简单组合体?3.如何计算简单组合体的表面积和体积?备注思考1:如何计算一个简单组合体的表面积和体积?思考2:如何通过简单组合体的结构特征来识别它?思考3:现实生活中有哪些物体是简单组合体?三、问题探究四、课堂检测1.下列几何体中是简单组合体的是()五、小结评价本节课我们主要是通过观察实例,探究发现了由柱、锥、台、球组成的简单组合体的结构特征,研究了如何通过基本几何体的结构特征来识别简单组合体,以及如何计算简单组合体的表面积和体积,要能灵活运用这些知识解决实际问题.教材版本:必修二教学内容:实际模型的结构特征教学目标:1.了解实际模型的结构特征。
人教版高中数学必修二+1.1+空间几何体的结构教案

1.1 空间几何体的结构教案教学目标:1.知识目标: 能根据几何结构特征对空间物体进行分类;掌握棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征;2.能力目标:会表示有关几何体;能判断组合体是由哪些简单几何体构成的。
3.情感目标:通过对生活中事物联系课本知识,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
教学重点:七种空间几何体的结构特征。
教学难点:七种空间几何体的分类及简单组合体的判断。
教学方式:多媒体教学过程:一、知识回顾1.在平面几何中,我们认识了三角形,正方形,矩形,菱形,梯形,圆,扇形等平面图形.那么对空间中各种各样的几何体,我们如何认识它们的结构特征?2.对空间中不同形状、大小的几何体我们如何理解它们的联系和区别?二、知识探究思考1:在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些抽象出来的空间图形就叫做空间几何体.你能列举那些空间几何体的实例?思考2:观察下列图片,你知道这图片在几何中分别叫什么名称吗?思考3:如果将这些几何体进行适当分类,你认为可以分成那几种类型?思考4:图(2)(5)(7)(9)(13)(14)(15)(16)有何共同特点?这些几何体可以统一叫什么名称?(多面体)思考5:图(1)(3)(4)(6)(8)(10)(11)(12)有何共同特点?这些几何体可以统一叫什么名称?(旋转体)空间几何体的定义:如果只考虑物体的形状和大小,而不考虑其它因素,那么这些由物体抽象出来的空间图形就叫做空间几何体。
多面体的是定义:由若干平面多边形围成的几何体叫做多面体。
旋转体的定义:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.三、几种基本空间几何体的结构特征1、棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 空间几何体的结构教案
教学目标:
1.知识目标: 能根据几何结构特征对空间物体进行分类;掌握棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征;
2.能力目标:会表示有关几何体;能判断组合体是由哪些简单几何体构成的。
3.情感目标:通过对生活中事物联系课本知识,培养学生主动探索、勇
于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
教学重点:
七种空间几何体的结构特征。
教学难点:
七种空间几何体的分类及简单组合体的判断。
教学方式:多媒体
教学过程:
一、知识回顾
1.在平面几何中,我们认识了三角形,正方形,矩形,菱形,梯形,圆,扇形等平面图形.那么对空间中各种各样的几何体,我们如何认识它们的结构特征?
2.对空间中不同形状、大小的几何体我们如何理解它们的联系和区别?
二、知识探究
思考1:在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些抽象出来的空间图形就叫做空间几何体.你能列举那些空间几何体的实例?
思考2:观察下列图片,你知道这图片在几何中分别叫什么名称吗?
思考3:如果将这些几何体进行适当分类,你认为可以分成那几种类型?
思考4:图(2)(5)(7)(9)(13)(14)(15)(16)有何共同特点?这些几何体可以统一叫什么名称?(多面体)
思考5:图(1)(3)(4)(6)(8)(10)(11)(12)有何共同特点?这些几何体可以统一叫什么名称?(旋转体)
空间几何体的定义:如果只考虑物体的形状和大小,而不考虑其它因素,那么这些由物体抽象出来的空间图形就叫做空间几何体。
多面体的是定义:由若干平面多边形围成的几何体叫做多面体。
旋转体的定义:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.
三、几种基本空间几何体的结构特征
1、棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
棱柱中,两个互相平行的面叫做棱柱的底面;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。
底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……用各顶点字母表示棱柱,如棱柱ABCDEF-A’B’C’D’E’F’。
2、棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,底面是三角形、四边形、五边形……的棱锥分别叫做三棱锥、四棱锥、五棱锥……
其中三棱锥又叫四面体。
棱锥也用顶点和底面各顶点字母表示,如棱锥S-ABCD。
3、棱台:用一个平行于棱锥底面的平面区截棱锥,底面于截面之间的部分
叫做棱台。
原棱锥的底面和截面分别叫做棱台的下底面和上底面,棱台也有侧面、侧棱、顶点。
由三棱锥、四棱锥、五棱锥……截得的棱台分别叫做三棱台、四棱台、五棱台……
4、圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体。
旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
圆柱用表示它的轴的字母表示,如圆柱O’O。
5、圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面围成的旋转体。
圆锥也有轴、底面、侧面和母线。
圆锥也用表示它的轴的字母表示,如圆锥SO。
棱锥和圆锥统称为锥体。
6、圆台:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台。
圆台也有轴、底面、侧面、母线。
7、球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体。
半圆的圆心叫做球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径,球常用球心字母O表示,如球O。
四、空间几何体的分类
简单空间几何体概括分类为:柱体、锥体、台体和球体。
但现实世界中的物体除了简单的几何体外,还有大量的几何体是由简单几何体组合而成,简单组合体的构成有两种基本形式:1、由简单几何体拼接而成,如课本P7 (1)(2);
2、由简单几何体截去或挖去一部分而成,如课本P7 (3)(4)。
判断ppt中一些简单组合体的结构特征。
五、巩固练习
1、有两个面互相平行,其余各面都是平行四边形的几何体是不是棱柱(举反例说明,如图)
2、棱柱的任何两个平面都可以作为棱柱的底面吗?
4、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
六、归纳总结
多面体棱柱棱锥棱台
旋转体圆柱圆锥圆台球
柱体锥体台体球体
七、布置课后作业
非常学案课时1。