高一数学必修二空间几何体的结构
高一数学空间几何体的结构课件

探究问题
分别以直角三角形的不同的边所在的直线为 轴旋转三角形得到的旋转体形状相同吗? 如果不 同请你画出来。
1.1.1 柱、 锥、 台、 球
的结构特征
1. 棱柱的结构特征
什么叫棱柱? 有两个面互相平行, 其余各面都是四边形,并 且每相邻两个四边形的公 共边都互相平行,由这些 面围成的多面体叫做棱柱.
1.1 空间几何体的结构
奥运场馆
鸟巢
奥运场馆
水立方
世博场馆
中国馆 世博轴
演艺中心
在我们周围存在着各种各样的物体,它们 都占据着空间的一部分,如果我们只考虑 这些物体的形状和大小,而不考虑其它因 素,那么由这些抽象出来的空间图形就叫 做空间几何体.
11/12/2014
5
观察这八个几何体,说说它们有何共同的特 征?
思考 ? 这两个几何体与棱锥有什么关系?
S
截面A' B ' C ' D ' E '∽ 底面 ABCDE
E'
A' D' C' B'
D O
E A
C
B
3. 棱台的结构特征
什么是棱台? 一般地,用一个平行于棱锥底面的平面去截 棱锥,底面和截面中间的部分的多面体叫做棱台.
上底面 侧面
侧棱
下底面
顶点
三棱台
(2)侧面都是平行四边形. F
底面
18
(3)侧棱平行且相等.
11/12/2014
顶点
2.棱锥的结构特征
什么是棱锥?
一般地,有一个面是 多边形,其余各面都是有 一个公共点的三角形,由 这些面围成的多面体叫做 棱锥.
符号表示:四棱锥S-ABCD
高一数学必修二课件1.2.3空间几何体的直观图

A
B
F M E
N
O
D
C
x
扩 展
画水平放置的圆的直观图。
y′
O′
x′
接下来学习空间几何体的直观图的画法。
例二 画长、宽、高分别为4cm、3cm、2cm的长方 体的直观图。
z
y
y
C1
D1
A1
3
M
D
Q
B1 C N B
x
A P
o
x
4
基本步骤:
(1)画轴.画x轴,y轴,z轴,三轴交于点O,使 ∠ xoy=45°,∠ xoz=90°。
y
D A C B D C
x
A
B
4. 右图是ΔABC利用斜二测画法得到的水平 放置的直观图ΔA'B'C',其中A'B'∥y'轴, B'C'∥x'轴,若ΔA'B'C'的面积是3,则 ΔABC的面积是( 3 2 ).
y
A’
B’
C'
x
5. 正棱锥的直观图的画法。
S z’
y’ D E A O’ B C x’
1.解: (Ⅰ)如图
(Ⅱ)所求多面体体积
V V长方体 V正三棱锥
284 1 1 (cm 2 ) 4 4 6 2 2 2 3 3 2
课堂练习
1. 下面的说法正确吗? (1)水平放置的正方形的直观图可能是梯形。 (2)两条相交直线的直观图可能平行。 (3)互相垂直的两条直线的直观图仍互相垂直。
确定线段长度
高考链接
1.(2008 宁夏、海南)如下的三个图中,上面 的是一个长方体截去一个角所得多面体的直观 图,它的正视图和侧视图在下面画出(单位: cm)。(1)在正视图下面,按照画三视图的 要求画出该多面体的俯视图;(2)按照给出 的尺寸,求该多面体的体积;(3)在所给直 观图中连结,证明: ∥面EFG BC
高一数学知识点总结_空间几何体的结构知识点

⾼⼀数学知识点总结_空间⼏何体的结构知识点⾼⼀数学怎么学? 学⽣学习期间,在课堂的时间占了⼀⼤部分。
因此听课的效率如何,决定着学习的基本状况,今天⼩编在这给⼤家整理了⾼⼀数学知识点总结,接下来随着⼩编⼀起来看看吧!⾼⼀数学知识点总结(⼀)空间⼏何体的结构知识点1、静态的观点有两个平⾏的平⾯,其他的⾯是曲⾯;动态的观点:矩形绕其⼀边旋转形成的⾯围成的旋转体,象这样的旋转体称为圆柱。
2、定义:以矩形的⼀边所在直线为旋转轴,其余各边旋转⽽形成的的曲⾯所围成的旋转体叫做圆柱,旋转轴叫圆柱的轴;垂直于旋转轴的边旋转⽽成的圆⾯叫做圆柱的底⾯;平⾏于圆柱轴的边旋转⽽成的⾯叫圆柱的侧⾯,圆柱的侧⾯⼜称圆柱的⾯。
⽆论转到什么位置,不垂直于轴的边都叫圆柱侧⾯的母线。
表⽰:圆柱⽤表⽰轴的字母表⽰。
规定:圆柱和棱柱统称为柱体。
3、静态观点:有⼀平⾯,其他的⾯是曲⾯;动态的观点:直⾓三⾓形绕其⼀直⾓旋转形成的⾯围成的旋转体,像这样的旋转体称为圆锥。
4、定义:以直⾓三⾓形的⼀条直⾓边所在的直线为旋转轴,其余两边旋转⽽形成的⾯所围成的旋转体叫做圆锥。
旋转轴叫圆锥的轴;垂直于旋转轴的边旋转⽽成的圆⾯成为圆锥的底⾯;不垂直于旋转轴的边旋转⽽成的曲⾯叫圆锥的侧⾯,圆锥的侧⾯⼜称圆锥的⾯,⽆论旋转到什么位置,这条边都叫做圆锥侧⾯的母线。
表⽰:圆锥⽤表⽰轴的字母表⽰。
规定:圆锥和棱锥统称为锥体。
5、定义:以半直⾓梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转⽽形成的曲⾯所围成的⼏何体叫圆台。
还可以看成⽤平⾏于圆锥底⾯的平⾯截这个圆锥,截⾯于底⾯之间的部分。
旋转轴叫圆台的轴。
垂直于旋转轴的边旋转⽽形成的圆⾯称为圆台的底⾯;不垂直于旋转轴的边旋转⽽成的曲⾯叫做圆台的侧⾯,⽆论转到什么位置,这条边都叫圆台侧⾯的母线。
表⽰:圆台⽤表⽰轴的字母表⽰。
规定:圆台和棱台统称为台体。
6、定义:以半圆的直径所在的直线为旋转轴,将半圆旋转⼀周所形成的曲⾯称为球⾯,球⾯所围成的旋转体称为球体,简称为球。
空间几何体的结构_王素华.ppt

三棱柱
四棱柱
五棱柱
四、棱柱的表示
用底面各顶点的字母表示棱柱。
三棱柱ABC-A'B'C' 四棱柱ABCD-A'B'C'D'
六棱柱ABCDEF-A'B'C'D'E'F
常见的棱柱
长方体:侧面和底面都是矩形的棱柱. 正方体:侧面和底面都是正方形的棱柱.
棱柱的结构特征
思考:你能举出关于棱柱的生活实例吗?
么四边形?
平行四边形
理论迁移
例1、过BC的截面截长方体的一角,使 EF∥B’C’所得的几何体是不是棱柱,为 什么?
D' F C'
D' D C
A' D
E
B' C
A
F
C'
B
A
B
A'
E
B'
思考:有两个面互相平行, 其余各面都是四边形的几何体是 棱柱吗? 答:不一定是.如右图所 示,不是棱柱. 思考:有两个面互相平行, 其余各面都是平行四边形的几 何体是棱柱吗? 答:不一定是.如右图所 示,不是棱柱.
底 面
E
侧棱 F
D
C
A
侧面
B
顶点
思考:棱柱上、下两个底面的形状大小 如何?各侧面的形状如何?
两底面是全等的多边形, 各侧面都是平行四边形
三、棱柱的分类
思考:各种各样的棱柱,主要有什么不 同?你认为棱柱的三 角形、四边形、五边形、 …… 我们把这 样的棱柱分别叫做三棱柱、四棱柱、五棱 柱、……
二、棱柱的有关概念
两个互相平行的面 棱柱的底面:
H/
高一数学授课讲义(必修二)

② 给出斜二测画法规则:
建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX,OY,建立直角坐标系;
画出斜坐标系,在画直观图的纸上(平面上)画出对应的O’X’,O’Y’,使 =450(或1350),它们确定的平面表示水平平面;
画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半;
④讨论:棱、圆与柱、锥、台的组合得到6个几何体.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系?(以台体的上底面变化为线索)
2.教学球体的结构特征:
①定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体.结合图形认识:球心、半径、直径.→球的表示.
②讨论:球有一些什么几何性质?
结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高.
讨论:棱台的分类及表示?圆台的表示?圆台可如何旋转而得?
③讨论:棱台、圆台分别具有一些什么几何性质?
★棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.
★ 圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.
→结合图形认识:底面、轴、侧面、母线、高.→表示方法
③讨论:棱柱与圆柱、棱柱与棱锥的共同特征?→柱体、锥体.
④观察书P2若干图形,找出相应几何体;
三、巩固练习:
1.已知圆锥的轴截面等腰三角形的腰长为5cm,,面积为12cm,求圆锥的底面半径.
2.已知圆柱的底面半径为3cm,,轴截面面积为24cm,求圆柱的母线长.
必修2-第一章空间几何体-1.1柱、锥、台、球的结构特征

侧面、对角面都是三角形;平行于底面的截面 与底面相似,其相似比等于顶点到截面距离与高 的比的平方。
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
想一想:
用一个平行于棱锥底面的平面去截棱 锥,得到怎样的两个几何体?
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
侧棱
F A
ED
B
侧面
C
顶点
的公共边叫侧棱,侧面与底面
的公共顶点叫棱柱的顶点。
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
棱柱的分类:棱柱的底面可以是三角形、 四边形、五边形、 …… 我们把这样的棱柱 分别叫做三棱柱、四棱柱、五棱柱、……
三棱柱
四棱柱
五棱柱
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
D’
GG’
C’
A’
F’
F
B’
HH ’
D
E E’
C
A
B
答:都是棱柱.
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
探究4:
观察右边的棱柱,共有多少 对平行平面?能作为棱柱的 底面的有几对?
答:四对平行平面;只有一对可以作为棱 柱的底面. 棱柱的任何两个平行平面都可以作为棱柱 的底面吗?
用一个平行于棱锥底面 的平面去截棱锥,底面与截 面之间的部分是棱台。
D’
D A’
C’
B’
C
A
B
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
棱台的分类:
由三棱锥、四棱锥、五棱锥…截得的棱 台,分别叫做三棱台,四棱台,五棱台…
棱台的表示方法:
1.1.1 棱柱、棱锥、棱台的结构特征-高一数学教材配套教学课件(人教A版必修二)
(2)有关概念: ①底面:_两__个__互__相__平__行__的__面__; ②侧面:_其__余__各__面__; ③侧棱:_相__邻__侧__面__的__公__共__边__; ④顶点:_侧__面__与__底__面__的__公__共__顶__点__.
【对点训练】 1.棱柱的侧面 ( A.是平行四边形 C.是三角形
分类 按底面多边形的边数分:三棱锥、四棱锥、…
【对点训练】 1.下列图形所表示的几何体中,不是棱锥的为 ( )
【解析】选A.根据棱锥的结构特征,可知A不是棱锥.
2.下面描述中,不是棱锥的几何结构特征的为 ( ) A.三棱锥有四个面是三角形 B.棱锥都有两个面是互相平行的多边形 C.棱锥的侧面都是三角形 D.棱锥的侧棱交于一点
形的几何体不一定是棱台;③两个互相平行的面是正
方形,其余各面是四边形的几何体一定是棱台.其中正
确的说法的序号有 ( )
A.0个
B.1个
C.2个
D.3个
【解析】选C.①正确,因为具有这些特 征的几何体的侧棱一定不相交于一点, 故一定不是棱台;②正确,如图所示;③不正确,当 两个平行的正方形完全相等时,一定不是棱台.
顶点:侧面与上(下)底面的 _公__共__顶__点__
分类
由几棱锥截得即为几棱台:如三棱台、四棱 台、…
【对点训练】 1.下列三种叙述,正确的有 ( ) ①用一个平面去截棱锥,棱锥底面和截面之间的部分 是棱台; ②两个底面平行且相似,其余各面都是梯形的多面体 是棱台;
③有两个面互相平行,其余四个面都是等腰梯形的六
A.南
B.北
C.西
D.下
【解析】选B.正方体展开图还原为正方体,如图所示, 故标△的方位为北.
【补偿训练】如图,在三棱锥V-ABC中,VA=VB=VC=4, ∠AVB=∠AVC=∠BVC=30°,过点A作截面△AEF,求 △AEF周长的最小值.
空间几何体的结构
棱锥的分类: 棱锥的分类: 按底面多边形的边数, 按底面多边形的边数,可以分为三 棱锥、四棱锥、五棱锥、 棱锥、四棱锥、五棱锥、…… S A B D C
什么叫棱台 棱台的分类: 棱台的分类: 由三棱锥、四棱锥、五棱锥…截 由三棱锥、四棱锥、五棱锥 截 得的棱台,分别叫做三棱台 四棱台, 三棱台, 得的棱台,分别叫做三棱台,四棱台, 五棱台… 五棱台
我们把由一个平面图形绕它所在平面内的一条 旋转体。 定直线旋转所形成的封闭几何体叫做旋转体 定直线旋转所形成的封闭几何体叫做旋转体。 这条定直线叫做旋转体的轴 这条定直线叫做旋转体的轴。
A' O'
轴
A O
棱柱的分类:棱柱的底面可以是三角形、 棱柱的分类:棱柱的底面可以是三角形、 四边形、五边形、 四边形、五边形、 …… 我们把这样的棱柱 分别叫做三棱柱 四棱柱、五棱柱、 三棱柱、 分别叫做三棱柱、四棱柱、五棱柱、……
观察下面的几何体,哪些是棱柱? 观察下面的几何体,哪些是棱柱?
练习: 练习:<1> P9 1(2) ( ) B:有两个面互相平行,其余各面都是平 有两个面互相平行, 行四边形的几何体是棱柱吗? 行四边形的几何体是棱柱吗? 不一定是. 答:不一定是. 如图所示,不是棱柱. 如图所示,不是棱柱.
什么叫棱锥
空间几何体的结构
1.空间几何体
如果我们只考虑物体的形状和大小, 如果我们只考虑物体的形状和大小,而不考 形状 虑其它因素, 虑其它因素,那么由这些物体抽象出来的空 间图形就叫做空间几何体。 间图形就叫做空间几何体。 空间几何体
一般地, 一般地,我们把由若干个平面 多面体。 多边形围成的几何体叫做多面体 多边形围成的几何体叫做多面体。
母 线
高一数学人教A版必修2:1-1-1棱柱、棱锥、棱台的结构特征课件
第六页,编辑于星期日:二十二点 一分。
新课引入 中国人认为:没有规矩不成方圆,按照制定出来的规矩做 事,就可以获得整体的和谐统一.在中国传统文化中,“天圆 地方”的设计思想催生了“水立方”,它与圆形的“鸟 巢”——国家体育场相互呼应,相得益彰,可以说“水立方” 就是现代时尚和中国传统文化的智慧结晶,它的建成是我的中 华民族的骄傲,它给我们带来了美的享受和美的向往.“鸟巢” 和“水立方”也都是由一些简单几何体组成的,本节我们学习 棱柱、棱锥、棱台等这些简单几何体的结构特征.
些物体抽象出来的空间图形就叫做空间几何体
第一章 1.1 1.1.1
第九页,编辑于星期日:二十二点 一分。
概念
定义
一般地,我们把由若干个 平面多边形 围成的几何体叫
多面 做多面体.围成多面体的各个多边形叫做多面体的 面 ;
体 相邻两个面的 公共边 叫做多面体的棱;棱与棱的 公共点
叫做多面体的顶点
旋转 体
故(1)(2)(3)正确,(4)不正确.
第一章 1.1 1.1.1
第三十一页,编辑于星期日:二十二点 一分。
根据下列关于几何体的描述,说出几何体的名称: (1)由八个面围成,其中两个面是互相平行且全等的正六 边形,其他各面都是矩形; (2)由五个面围成,其中一个面是正方形,其他各面都是 有一个公共顶点的全等三角形; (3)由五个面围成,其中上、下两个面是相似三角形,其 余各面都是梯形,并且这些梯形的腰延长后能相交于一点.
定义 之间的部分叫做棱台 原棱锥的底面和截面分别叫做棱台的下底面 和 上底面
有关 ;其他各面叫做棱台的 侧面 ;相邻侧面的公共边 叫 概念 做棱台的侧棱;底面与 侧面 的公共顶点叫做棱台的
第8章 立体几何初步(复习课件)高一数学(人教A版2019必修第二册)
81 C. 4 π
D.16π
(1)如图,设 PE 为正四棱锥 P-ABCD 的高,则正四棱锥 P-ABCD 的 外接球的球心 O 必在其高 PE 所在的直线上,延长 PE 交球面于一点 F,连接 AE,AF.
由球的性质可知△PAF为直角三角形且AE⊥PF,
又底面边长为4, 所以AE=2 2 , PE=6, 所以侧棱长PA=
3
在Rt△CDE中,
故二面角B-AP-C的正切值为2.
tanCED CD 2 3 2, DE 3
归纳总结
(1)求异面直线所成的角常用平移转化法(转化为相交直线的 夹角). (2)求直线与平面所成的角常用射影转化法(即作垂线、找射影). (3)二面角的平面角的作法常有三种:①定义法;②三垂线法; ③垂面法.
的表面积为 16π,则 O 到平面 ABC 的距离为
A. 3
3 B.2
√C.1
3 D. 2
解析 如图所示,过球心O作OO1⊥平面ABC, 则O1为等边三角形ABC的外心. 设△ABC的边长为a, 则 43a2=943,解得 a=3, ∴O1A=23× 23×3= 3. 设球O的半径为r,则由4πr2=16π,得r=2,即OA=2. 在 Rt△OO1A 中,OO1= OA2-O1A2=1,
五、直线、平面平行的判定与性质
1.直线与平面平行
(1)判定定理:平面外一条直线与这个平面内的一条直线平行, 则该直线与此平面平行(线线平行⇒线面平行).
(2)性质定理:一条直线与一个平面平行,则过这条直线的任 一平面与此平面的交线与该直线平行(简记为“线面平行⇒线 线平行”).
2.平面与平面平行
则直线 PB 与 AD1 所成的角为( )
A.
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D’ C’
A’
B’
D C
A
B
实用文档
变式:长方体ABCD-A’B’C’D’按如图截去 一部分,其中FG∥A’D’.你能说出这两部分
的几何体是什么吗?
D’
G
G’
C’
C’
A’
F
D
B’ F’
H
H’
E
C E’
A
B
实用文档
实用文档
通过观察,你发现它们 想
具有哪些特点?
底面
九:球的结构特征
定义:以半圆的直 径所在直线为旋转轴, 半圆面旋转一周形成 的几何体.
实用文档
半径 O
球心
小结:
空间几何体多面体Fra bibliotek旋转体
棱棱 柱台
棱
柱圆 台圆 锥圆体球
锥 实用文档
一
想
?
实用文档
五、棱台的概念:用一个平行于棱锥底面 的平面去截棱锥,底面和截面之间的部分 叫做棱台。
A1 D1
C B1 1
上底面
侧面 侧棱 下底面 顶点
实用文档
2.判断下列几何体是不是棱台,并说明 为什么.
实用文档
探究:棱柱、棱锥、棱台都是多面体,三
者关系如何?当底面发生变化时,它们能否 相互转化?
棱柱:有两个面互相平行,其余各面都是四边 形,并且每相邻两个四边形的公共边都互相平
行,由这些面所围成的几何体叫做棱柱。
顶点 侧面
底面
侧棱
用表示底面各顶点表示棱柱。
实用文档
问题:有两个面互相平行,其余各面都是 平行四边形的几何体是棱柱吗? 答:不一定是. 如图所示,不是棱柱.
实用文档
问题1:长方体ABCD-A’B’C’D’中,你能
棱台
上下底面一样 棱柱
上底面变成一个点
棱锥
实用文档
六:什么叫圆柱
定义:以矩形的一边所在直线为
旋转轴,其余边旋转形成的曲面所
围成的几何体叫做圆柱。
A’
母 线
A
O’ B’ 轴
侧 面
O B
底面
实用文档
七:圆锥的结构特征
定义:以直角三角形的一条
直角边所在直线为旋转轴,
母
其余两边旋转形成的曲面所 线
围成的几何体叫做圆锥。
B’
由一个平面图形绕它
A’
O’
轴
所在平面内的一条定
直线旋转所形成的封
闭几何体叫做旋转体
B
A
O
实用文档
实用文档
通过观察,你发现它们
想
具有哪些特征呢?
一
1、有两个面互相平行;
想
2、其余各面都是四边形; ?
3、每相邻两个四边形的公共
边都互相平行.
满足上述三个条件的多面体 叫棱柱.
实用文档
三:棱柱的结构特征:
A
顶点 S
轴
侧 面
O B
底面
实用文档
八:圆台的结构特征
O’ O
实用文档
圆台的结构特征
1、定义:用一个平行于圆锥底面的平面去 截圆锥,底面与截面之间的部分,这样的 几何体叫做圆台。
实用文档
2、圆台的表示:用表示它的轴的字母表 示,如圆台OO′
3、圆台与棱台统称为台体。
O'
底面
轴
侧面
母线
O
实用文档
实用文档
实用文档
实用文档
1.空间几何体
如果我们只考虑物体的形状和大小,而不考 虑其它因素,那么由这些物体抽象出来的空 间图形就叫做空间几何体。
实用文档
将上述图片中的物体分成两类,说明分类标准是什么? 实用文档
实用文档
一:多面体 由若干个平面多边
形围成的几何体
实用文档
实用文档
二:旋转体
一
想
?
实用文档
四:棱锥的结构特征
棱锥:有一个面是多边形,其余各面都是有 一个公共顶点的三角形,由这些面所围成的
几何体叫做棱锥。
顶点 S
侧面
侧棱
底面 A
D B
C 棱锥也用表 示顶点和底 面各顶点的 字母表示。
实用文档
1.下面图形中,为棱锥的是
(1)
(2)
实用文档
(3)
上述几何体是棱锥吗? 想
与棱锥有什么关系?