一元线性回归方程
一元线性回归

12.9 一元线性回归以前我们所研究的函数关系是完全确定的,但在实际问题中,常常会遇到两个变量之间具有密切关系却又不能用一个确定的数学式子表达,这种非确定性的关系称为相关关系。
通过大量的试验和观察,用统计的方法找到试验结果的统计规律,这种方法称为回归分析。
一元回归分析是研究两个变量之间的相关关系的方法。
如果两个变量之间的关系是线性的,这就是一元线性回归问题。
一元线性回归问题主要分以下三个方面:(1)通过对大量试验数据的分析、处理,得到两个变量之间的经验公式即一元线性回归方程。
(2)对经验公式的可信程度进行检验,判断经验公式是否可信。
(3)利用已建立的经验公式,进行预测和控制。
12.9.1 一元线性回归方程 1.散点图与回归直线在一元线性回归分析里,主要是考察随机变量y 与普通变量x 之间的关系。
通过试验,可得到x 、y 的若干对实测数据,将这些数据在坐标系中描绘出来,所得到的图叫做散点图。
例1 在硝酸钠(NaNO 3)的溶解度试验中,测得在不同温度x (℃)下,溶解于100解 将每对观察值(x i ,y i )在直角坐标系中描出,得散点图如图12.11所示。
从图12.11可看出,这些点虽不在一条直线上,但都在一条直线附近。
于是,很自然会想到用一条直线来近似地表示x 与y 之间的关系,这条直线的方程就叫做y 对x 的一元线性回归方程。
设这条直线的方程为yˆ=a+bx 其中a 、b 叫做回归系数(y ˆ表示直线上y 的值与实际值y i 不同)。
图12.11下面是怎样确定a 和b ,使直线总的看来最靠近这几个点。
2.最小二乘法与回归方程在一次试验中,取得n 对数据(x i ,y i ),其中y i 是随机变量y 对应于x i 的观察值。
我们所要求的直线应该是使所有︱y i -yˆ︱之和最小的一条直线,其中i y ˆ=a+bx i 。
由于绝对值在处理上比较麻烦,所以用平方和来代替,即要求a 、b 的值使Q=21)ˆ(i ni iyy-∑=最小。
一元线性回归方程

北京市城市居民家庭生活抽样调查表1 14 12 10 8 6 4 2 0 1976 1978 1980 1982 1984 1986 1988
Y: 人 均 收 入
x:年份
北京市城市居民家庭生活抽样调查图表 2 10 8 6 4 2 0 0 2 4 6 8
Y:人均食品支出
10 12 14 16 18
Fα (1,n-2),得否定域为F >Fα (1,n-2);
4.代入样本信息,F落入否定域则否定原假设, 线性关系显著;落入接受域则接受原假设, 线性关系不显著.
相关系数检验法: 相关系数检验法:
1.提出原假设:H0:b=0; lxy 2.选择统计量 R = lxxl yy 3.对给定的显著性水平α,查临界值rα (n-2), 得否定域为R >rα (n-2); 4.代入样本信息,R落入否定域则否定原假设,线性关 系显著;落入接受域则接受原假设,线性关系不显著.
第二节
一元线性回归方程
一 回归直线方程
两个变量之间的线性关系,其回归模型为: 两个变量之间的线性关系,其回归模型为:
yi = a + bxi + εi
ε 称为 y称为因变量,x称为自变量,
随机扰动,a,b称为待估计的回归参 数,下标i表示第i个观测值。
对于回归模型,我们假设:
εi ~ N( 0,σ ),i = 1,2,⋯,n E( εiε j ) = 0,i ≠ j
pt
qt
概率 0.25 0.50 0.25 0.25 0.50 0.25 … 0.25 0.50 0.25
qt = 11 − 4 pt+ εt
其中
这时, 这时,方程的形式为
εt
为随机变量. 为随机变量
一元线性回归方程的建立

第二节一元线性回归方程的建立一元线性回归分析是处理两个变量之间关系的最简单模型,它所研究的对象是两个变量之间的线性相关关系。
通过对这个模型的讨论,我们不仅可以掌握有关一元线性回归的知识,而且可以从中了解回归分析方法的基本思想、方法和应用。
一、问题的提出例2-1-1 为了研究氮含量对铁合金溶液初生奥氏体析出温度的影响,测定了不同氮含量时铁合金溶液初生奥氏体析出温度,得到表2-1-1给出的5组数据。
表2-1-1 氮含量与灰铸铁初生奥氏体析出温度测试数据如果把氮含量作为横坐标,把初生奥氏体析出温度作为纵坐标,将这些数据标在平面直角坐标上,则得图2-1-1,这个图称为散点图。
从图2-1-1可以看出,数据点基本落在一条直线附近。
这告诉我们,变量X与Y的关系大致可看作是线性关系,即它们之间的相互关系可以用线性关系来描述。
但是由于并非所有的数据点完全落在一条直线上,因此X与Y的关系并没有确切到可以唯一地由一个X值确定一个Y值的程度。
其它因素,诸如其它微量元素的含量以及测试误差等都会影响Y 的测试结果。
如果我们要研究X与Y的关系,可以作线性拟合(2-1-1)二、最小二乘法原理如果把用回归方程计算得到的i值(i=1,2,…n)称为回归值,那么实际测量值y i与回归值i之间存在着偏差,我们把这(i=1,2,3,…,n)。
这样,我们就可以用残差平种偏差称为残差,记为e i方和来度量测量值与回归直线的接近或偏差程度。
残差平方和定义为: (2-1-2) 所谓最小二乘法,就是选择a和b使Q(a,b)最小,即用最小二乘法得到的回归直线是在所有直线中与测量值残差平方和Q最小的一条。
由(2-1-2)式可知Q是关于a,b的二次函数,所以它的最小值总是存在的。
下面讨论的a和b的求法。
一元线性回归

由此可推测:当火灾发生地离最近的消 防 站 为 10km 时 , 火 灾 损 失 大 致 在
ˆ y 10.279 49.19 59.369(千元) 当火 ;
灾发生地离最近的消防站为 2km 时,火灾损 失大致在 20.117(千元)
三、0,1的性质
1, 线性
1
(x x ) y
为 y 关于 x 的一元线性经验回归方程 (简称为回归直
ˆ 线方程) 0 为截距, 1 为经验回归直线的斜率。 , ˆ
引进矩阵的形式:
y1 1 x1 1 0 y2 1 x2 2 设 y , X , , 1 y 1 x n n n
变量之间具有密切关联 而又不能由一个或某一些变 量唯一确定另外一个变量的 关系称为变量之间的相关关 系.
y
y f ( x)
y
Y f (X )
0
(a) 函数关系
x
0
(b) 统计关系
x
种类
正相关 负相关
一元相关 多元相关
线性相关 曲线相关
y
y
y
y
正相关
x
负相关
x
曲线相关
x
不相关
x
例 2 城镇居民的收入与消费支出之间有很大的关 联,居民的收入提高了,消费也随之潇洒,但居民的 收入不能完全确定消费,人们的消费支出受到不同年 龄段的消费习惯的影响,也受到不同消费理念的影响。 因此居民的收入 x 与消费支出 y 就呈现出某种不确定 性。 我们将上海市城镇居民可支配收入与支出的数据 (1985 年~2002 年)用散点图表示,可以发现居民的 收入 x 与消费支出 y 基本上呈现线性关系,但并不完 全在一条直线上。 附数据与图形。
计量经济学讲义——线性回归模型的异方差问题1

Gleiser检验与Park检验存在同样的弱点。
(9.3) (9.4) (9.5)
9.4 异方差的诊断-方法4:怀特(White)检验法
Yi = B1 + B 2 X 2 i + B3 X 3 i + u i
2、做如下辅助回归: (9.6) (9.7)
1、首先用普通最小二乘法估计方程(9.6),获得残差ei
E(Y|X)=α+β*X Y
+u +u -u -u -u +u
0
同方差(homoscedasticity)
X 0
E(Y|X)=α+β*X
异方差(heteroscedasticity)
X
一元线性回归分析-回归的假定条件
假定5 无自相关假定,即两个误差项之间不相关。 Cov(ui,uj) = 0。
ui
9.2 异方差的性质
例9.1 美国创新研究:销售对研究与开发的影响 ^ R&D = 266.2575 + 0.030878*Sales se=(1002.963) (0.008347) t =(0.265471) (3.699508) p =(0.7940) R2 = 0.461032 从回归结果可以看出: (1)随着销售额的增加,R&D也逐渐增加,即销售 额每增加一百万美元,研发相应的增加3.1 万美元。 (2)随着销售额的增加,R&D支出围绕样本回归线 的波动也逐渐变大,表现出异方差性。 (0.0019)
一元线性回归分析

(n
2)
S2 ˆ0
2 ˆ0
:
2(n 2)
S 2 ˆ1
S2
n
(Xt X )2
t 1
(n
2)
S2 ˆ1
2 ˆ1
:
2(n 2)
所以根据t分布的定义,有
ˆ0 0 ~ t(n 2), ˆ1 1 ~ t(n 2)
Sˆ0
Sˆ1
进而得出了0的置信水平为1-区间估计为
et Yt Yˆt称为残差,与总体的误差项ut对应,n为样 本的容量。
样本回归函数与总体回归函数区别
1、总体回归线是未知的,只有一条。样本回归线是根据样本数 据拟合的,每抽取一组样本,便可以拟合一条样本回归线。
2、总体回归函数中的β0和β1是未知的参数,表现为常数。而样
本回归函数中的 ˆ0和是ˆ1 随机变量,其具体数值随所抽取
S 44.0632
Sef S
1 1 n
( X f X )2
n
45.543
( Xt X )2
t 1
所求置信区间为:(188.6565 97.6806)
回归分析的SPSS实现
“Analyze->Regression->Linear”
0
n
2 t1 Xt (Yt ˆ0 ˆ1 Xt ) 0
nˆ0
n
ˆ1
t 1
Xt
n
Yt
t 1
n
n
n
ˆ0
t 1
Xt
ˆ1
t 1
X
2 t
一元线性回归解法总结

一元线性回归手工法:⎪⎩⎪⎨⎧−−=−=22110ˆˆˆx x y x xy x y βββ 或 ()()()∑∑==−−−=ni ini i ix xy y x x1211ˆβini i n i ini ini iy x n xy x n x y n y x n x ∑∑∑∑========1122111111 此时可以令Y Y y X X x i i i i −=−= , (离差)则∑∑=21ˆiii xy x β(经验)回归方程为: )(ˆˆˆˆ110x x y x y −+=+=βββ 程序法:1.确定回归系数的点估计值:b=regress( Y , X ) 对一元线性回归,取p =1即可01ˆˆˆp b βββ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦M 12n Y Y Y Y ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦M 111212122212111...p p n n np x x x x x x X x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦L L M M M M程序数据的输入可以参考如下:x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]';2.回归分析及检验:[b,bint,r,rint,stats]=regress(Y ,X)b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 180.9531 0.0000即7194.0ˆ,073.16ˆ10=−=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F =180.9531, p =0.0000 p <0.05, 可知回归模型 y =-16.073+0.7194x 成立.这个程序可以进行,第一步的拟合优度与相关系数检验, 第三步的方程的整体性检验(F 检验) ,因此第一步的拟合优度 r 平方已算出就根据 r 2 =1意味着完全拟合,r 2 =0意味着被解释变量与解释变量之间没有线性关系,0< r 2 <1时,r 2越接近于1拟合效果越好。
第四章 一元线性回归

n
xi x
2 ( x x ) i i 1
n
( 0 1 xi ) 1
(4.28)
2 ˆ ( x x ) 0, ( x x ) x ( x x ) i i i 证得 1是 1 的无偏估计,其中用到 i ˆ 同理可证 是 0 的无偏估计。
2 (4.9) ˆ ˆ min ( y x ) ( y x ) ˆ ˆ i 0 1 i i 0 1 i Q( 0 , 1 ) ,
n
2
n
ˆ0 , ˆ1 就成为回归参数 0 , 1 的 • 依照(4.9)式求出的 最小二乘估计。称
xi x
i 1 i 1
其中 ( x
i 1
是 yi 的常数,所以 1 是 yi 的线性组合。同理可 以证明 0是 yi 的线性组合。 ˆ , ˆ 亦为 因为 y i 为随机变量,所以作为 yi 的线性组合, 0 1 随机变量,因此各自有其概率分布、均值、方差、标准差及两 者的协方差。
0
无偏估计的意义是。如果屡次变更数据,反复求 0 , 1 的 估计值,这两个估计值没有高估或低估的系统趋势,他们的 平均值将趋于 0 , 1 。 ˆ ˆ x ) x E y ˆi ) E ( E( y 0 1 i 0 1 i 进一步有, ,表明回归值 是 的无偏估计,也说明 与真实值 的平均值是相同的。
(4.2)
• 这里 E ( )表示 差。
的数学期望,var( )表示
的方
• 对(4.1)式两端求期望,得 E( y) 0 1 x (4.3) 称(4.3)式为回归方程。 • 一般情况下,我们所研究的某个实际 问题,获得的n组样本观测值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附件二:实验报告格式(首页)
山东轻工业学院实验报告成绩
课程名称计量经济学基础指导教师实验日期 2013-4-20 院(系)商学院专业班级实验地点 :二机房
学生姓名学号同组人无
实验项目名称一元线性回归方程
一、实验目的和要求
1、熟悉Eviews的窗口与界面
2、掌握Eviews的命令与菜单的操作
3、掌握用Eviews估计与检验一元线性回归模
4、影响消费的因素可能很多,比如国内生产总值,经济增长,物价指数,居民收入等等。
主要
讨论是否在收入水平提高时,消费也会随之提高。
二、实验原理
Eviews具有现代Windows软件可视化操作的优良性。
可以使用鼠标对标准的Windows菜单和对话框进行操作。
操作结果出现在窗口中并能采用标准的Windows技术对操作结果进行处理。
此外,Eviews还拥有强大的命令功能和批处理语言功能。
在Eviews的命令行中输入、编辑和执行命令。
在程序文件中建立和存储命令,以便在后续的研究项目中使用这些程序。
三、主要仪器设备、试剂或材料
Eviews软件、课本、电脑、对问题的经济理论的分析、所涉及的经济变量、变量的设定,熟悉EVIEWS操作。
四、实验方法与步骤
(1)单击任务栏上的“开始”→“所有程序”→“Eviews5”程序组→“Eviews5”图标。
(2)新建文件:File→New→Workfile,出现对话框“工作文件范围”,选取或填上数据类型、起止时间 1980-1998。
OK后,得到一个无名字的工作文件,其中有:时间范围、当前工作文件样本范围、filter 、默认方程、系数向量C、序列RESID。
(3)命令方式新建文件
在EViews软件的命令窗口中直接键入CREATE命令,也可以建立工作文件。
命令格式为: CREATE 时间频率类型起始期终止期
则以上菜单方式过程可写为:CREATE A 1980 1998
(4) 工作文件创立后,需将工作文件保存到磁盘.单击菜单兰中File→Save或Save as→输入文件名、路径→保存。
(5)输入数据
进入数据编辑窗口
DATA命令方式
在EViews软件的命令窗口键入DATA命令,命令格式为:
DATA <序列名1> <序列名2>…<序列名n>
本例中可在命令窗口键入如下命令,将显示一个数组窗口,此时可以按全屏幕编辑方式输入每个变量的数据。
DATA Y X
数据输入完毕,单击工作文件窗口工具条的Save或单击菜单兰的File→Save将数据存入磁盘。
(6)命令方式
在主菜单命令行键入
LS Y C X 回车
FORECAST--OK(
(7)单击Equation 窗口中的View → Actual, Fitted, Resid → Table按钮,可以得到拟合直线和残差的有关结果.
五、实验数据记录、处理及结果分析
β1 =0.691754 是样本回归方程的斜率,它表示该市城镇居民的边际消费倾向,说明年可支配收入每增加1元,将0.691754元用于消费性支出;βo=135.3063是样本回归方程的截距,它表示不受可支配收入影响的自发消费行为。
βo和β1的符号和大小均符合经济理论及目前该市的实际情况。
六、讨论、心得
初步投身于计量经济学,通过利用Eviews软件将所学到的计量知识进行实践,让我加深了对理论的理解和掌握,直观而充分地体会到老师课堂讲授内容的精华之所在。
在实验过程中我们提高了手动操作软件、数量化分析与解决问题的能力,还可以培养我在处理实验经济问题的严谨的科学的态度,并且避免了课堂知识与实际应用的脱节。
虽然在实验过程中出现了很多错误,但这些经验却锤炼了我们发现问题的眼光,丰富了我们分析问题的思路。
通过这次实验让我受益匪浅。
这次操作后,对Eviews软件有了更深层的了解,学会了对软件进行简单的操作,对实际的经济问题进行分析与检验。
使原本枯燥、繁琐、难懂的课本知识变得简洁化,跨越理论和实践的鸿沟,同时使我对计量经济学产生兴趣。
通过这次的实验,我对课上所学的最小二乘法有了进一步的理解,在掌握理论知识的同时,将其与实际的经济问题联系起来。
通过本次上机实验,我认识到我们一定要掌握Eviews,并且通过这次学习,我逐渐了解了关于Eviews的相关知识。
相信Eviews将会给我们的学习和生活带来诸多便利。
附件三:实验报告附页
山东轻工业学院实验报告(附页)。