Mean_Shift_算法概述
mean-shift图像分割

由式 (4) 获得 :
������ = . ������+1
∑������������=1 ������������������������������(||������������������ℎ−������������������������||2)������(||������������������ℎ−������������������������||2) ∑������������=1 ������������������(||������������������ℎ−������������������������||2)������(||������������������ℎ−������������������������||2)
图4 3. 图像分割的细节图片如图 5 所示:
图5
实验小结
根据 mean-shift 算法原理,通过对聚类中心的不断迭代,从而找到相近的类,达到分割 的目的。通过这次实验,进一步理解了图像分割的含义,也充分体现了 mean-shift 算法在图 像分割中的应用。
参考文献
【1】 【2】 【3】
Mean-shift 跟踪算法中核函数窗宽的自动选取——彭宁嵩 杨杰 刘志 张凤超——软 件学报——2005,16(9) Mean-shift 算法的收敛性分析——刘志强 蔡自兴——《《软件学报》》——2007,18 (2) 基于分级 mean-shift 的图像分割算法——汤杨 潘志庚 汤敏 王平安 夏德深
计算机视觉实验三
——利用 mean-shift 进行图像分割
算法简介
mean-shift 是一种非参数概率密度估计的方法。通过有限次的迭代过程,Parzen 窗定义 的概率密度函数能够快速找到数据分布的模式。由于具有原理简单、无需预处理、参数少等 诸多优点,mean-shift 方法在滤波、目标跟踪、图像分割等领域得到了广泛的应用。
均值偏移算法

均值偏移算法1. 概述均值偏移算法(Mean Shift algorithm)是一种非参数化的聚类算法,能够对数据进行自动的聚类分析。
该算法的原理基于密度估计和梯度下降,通过不断迭代的方式找到数据的局部最大密度区域,从而将数据划分成不同的簇。
均值偏移算法在计算机视觉、图像处理以及模式识别等领域都有应用。
2. 均值偏移原理均值偏移算法的核心思想是通过计算样本点与其邻近点之间的距离来寻找密度最大的区域,并将距离小于某个阈值的样本点划分到同一簇中。
具体步骤如下:2.1. 初始化首先,需要初始化聚类中心点。
可以选择从样本中随机选择一些点作为初始的聚类中心。
2.2. 密度估计对于每个聚类中心点,计算它与所有样本点的距离。
可以使用欧氏距离或者其他距离度量方法。
根据距离大小,将样本点按照距离聚类中心点的远近分别分为不同的簇。
2.3. 均值迁移对于每个样本点,计算它距离所属簇其他样本点的中心的平均距离,并将该样本点迁移到距离最近的中心。
重复这一过程,直到所有样本点不再发生迁移。
2.4. 聚类结果经过迭代的均值偏移过程之后,每个样本点都会被分配到一个簇中。
最终的聚类结果即为各个样本点所属的簇。
3. 实例详解下面通过一个实例来详细解释均值偏移算法的工作原理。
假设我们有一组二维数据点,如下所示:[(1, 2), (1.5, 1.8), (5, 8), (8, 8), (1, 0.6), (9, 11)]3.1. 初始化我们随机选择两个点作为初始的聚类中心,比如选择(1, 2)和(9, 11)。
3.2. 密度估计计算每个样本点与聚类中心的距离:距离中心点(1, 2)的距离:[0, 0.2828, 10.8167, 10.8167, 1.412, 13.6015]距离中心点(9, 11)的距离:[13.6015, 13.193, 4.4721, 1.4142, 11.6619, 0]根据距离的大小,可以将数据分为两个初始簇:初始簇1: [(1, 2), (1.5, 1.8), (1, 0.6)]初始簇2: [(5, 8), (8, 8), (9, 11)]3.3. 均值迁移对于簇1中的样本点(1, 2),计算其与其他样本点的平均距离,并将其迁移到距离最近的中心点。
meanshift算法简介

怎样找到数据集合中数据最密集的地方呢?
数据最密集的地方,对应于概率密度最大的地方。我们可 以对概率密度求梯度,梯度的方向就是概率密度增加最大 的方向,从而也就是数据最密集的方向。
令
,假设除了有限个点,轮廓函数 的梯度对所
有
均存在 。将 作为轮廓函数,核函数 为:
fh,K
x
2ck ,d n nhd 2 i1
Meanshift算法的概述及其应用
Meanshift的背景
Mean Shift 这个概念最早是由Fukunaga等人于 1975年在一篇关于概率密度梯度函数的估计中提出 来的,其最初含义正如其名,就是偏移的均值向量。
直到20年以后,也就是1995年,,Yizong Cheng发 表了一篇对均值漂移算法里程碑意义的文章。对基 本的Mean Shift算法在以下两个方面做了改进,首先 Yizong Cheng定义了一族核函数,使得随着样本与 被偏移点的距离不同,其偏移量对均值偏移向量的贡 献也不同,其次Yizong Cheng还设定了一个权重系 数,使得不同的样本点重要性不一样,这大大扩大了 Mean Shift的适用范围.另外Yizong Cheng指出了 Mean Shift可能应用的领域,并给出了具体的例子。
• 一维下的无参数估计 设X1,X2, …Xn是从总体中抽出的独立同分布
的样本,X具有未知的密度函数f(x),则f (x)的核估计为:
h为核函数的带宽。常用的核函数如下:
分别是单位均匀核函数 和单位高斯核函数
多维空间下的无参密度估计:
在d维欧式空间X中,x表示该空间中的一个点, 表示该空间中的
核函数,
(5)若
,则停止;否则y0←y1转步骤②。
限制条件:新目标中心需位于原目标中 心附近。
mean-shift算法公式

mean-shift算法公式Mean-shift算法是一种无参聚类算法,常用于图像分割、目标跟踪和模式识别等领域。
本文将详细介绍mean-shift算法的原理、公式和实际应用场景。
一、原理Mean-shift算法的核心思想是密度估计和质心漂移。
它基于高斯核函数,通过不断更新质心,最终将数据点分为不同的簇。
具体而言,我们要对每个数据点x_i进行密度估计,将其周围的点加权后求和得到密度估计值f(x_i)。
给定一个初始质心x_c,我们通过以下公式计算新质心x_c’:x_c' = \frac{\sum_{x_i \in B(x_c,r)} w(x_i) \times x_i}{\sum_{x_i \in B(x_c,r)} w(x_i)}B(x_c,r)表示以x_c为圆心,半径为r的区域,w(x_i)为高斯权重系数,可以写作w(x_i) = e ^ {-\frac{(x_i - x_c)^2}{2 \times \sigma^2}}\sigma是高斯核函数的标准差,控制窗口大小和权重降低的速度。
在计算新质心后,我们将其移动到新位置,即x_c = x_c’,然后重复以上步骤,直到质心不再改变或者达到预定的迭代次数为止。
最终,所有距离相近的数据点被归为同一簇。
算法的时间复杂度为O(nr^2),其中n为数据点数量,r为窗口半径。
可以通过调整r和\sigma来平衡速度和准确率。
二、公式1. 高斯核函数w(x_i) = e ^ {-\frac{(x_i - x_c)^2}{2 \times \sigma^2}}其中x_i和x_c是数据点和质心的位置向量,\sigma是高斯核函数的标准差。
该函数表示距离越大的数据点的权重越小,与质心距离越近的数据点的权重越大,因此可以有效估计密度。
2. 新质心计算公式x_c' = \frac{\sum_{x_i \in B(x_c,r)} w(x_i) \times x_i}{\sum_{x_i \in B(x_c,r)} w(x_i)}B(x_c,r)表示以x_c为圆心,半径为r的区域,w(x_i)为高斯权重系数。
经典Mean Shift算法介绍

经典Mean Shift算法介绍1无参数密度估计 (1)2核密度梯度估计过程 (3)3算法收敛性分析 (4)均值漂移(Mean Shift)是Fukunaga等提出的一种非参数概率密度梯度估计算法,在统计相似性计算与连续优化方法之间建立了一座桥梁,尽管它效率非常高,但最初并未得到人们的关注。
直到1995年,Cheng改进了Mean Shift算法中的核函数和权重函数,并将其应用于聚类和全局优化,才扩大了该算法的适用范围。
1997年到2003年,Comaniciu等将该方法应用到图像特征空间的分析,对图像进行平滑和分割处理,随后他又将非刚体的跟踪问题近似为一个Mean Shift最优化问题,使得跟踪可以实时进行。
由于Mean Shift算法完全依靠特征空间中的样本点进行分析,不需要任何先验知识,收敛速度快,近年来被广泛应用于模式分类、图像分割、以及目标跟踪等诸多计算机视觉研究领域。
均值漂移方法[4]是一种最优的寻找概率密度极大值的梯度上升法,提供了一种新的目标描述与定位的框架,其基本思想是:通过反复迭代搜索特征空间中样本点最密集的区域,搜索点沿着样本点密度增加的方向“漂移”到局部密度极大点。
基于Mean Shift方法的目标跟踪技术采用核概率密度来描述目标的特征,由于目标的直方图具有特征稳定、抗部分遮挡、计算方法简单和计算量小的特点,因此基于Mean Shift的跟踪一般采用直方图对目标进行建模;然后通过相似性度量,利用Mean Shift搜寻目标位置,最终实现目标的匹配和跟踪。
均值漂移方法将目标特征与空间信息有效地结合起来,避免了使用复杂模型描述目标的形状、外观及其运动,具有很高的稳定性,能够适应目标的形状、大小的连续变换,而且计算速度很快,抗干扰能力强,在解决计算机视觉底层任务过程中表现出了良好的鲁棒性和较高的实时处理能力。
1无参数密度估计目标检测与跟踪过程中,必须用到一定的手段对检测与跟踪的方法进行优化,将目标的表象信息映射到一个特征空间,其中的特征值就是特征空间的随机变量。
MSA计算公式范文

MSA计算公式范文
MSA(Mean Shift Algorithm)是一种无参数的非监督学习算法,用
于对数据进行聚类。
该算法采用核密度估计的方法,通过不断移动数据点
的位置来寻找数据点密度最大的位置,最终将密度相近的数据点聚集在一起。
MSA的计算公式可以分为两个部分:核密度估计和均值漂移。
下面将
详细介绍这两个部分的计算公式。
1.核密度估计
核密度估计用于估计数据点周围的密度。
常用的核函数有高斯核函数、Epanechnikov核函数等。
核密度估计的计算公式如下:
其中,x是待估计密度的点,xi是数据点集中的其中一个点,K是核
函数,h是带宽参数,·,表示绝对值。
2.均值漂移
均值漂移是通过迭代计算来不断移动数据点的位置,直到达到最大密
度位置为止。
每次迭代时,计算数据点在核密度估计函数上的梯度,然后
根据梯度方向移动数据点。
均值漂移的计算公式如下:
其中,x表示当前数据点,qi表示移动后的数据点,N(x)表示以x为
中心,半径为h的所有数据点。
在每次迭代中,移动数据点的位置可以通过以下公式计算:
其中,x表示当前数据点,q(x)表示数据点在当前位置的均值漂移位置,n表示数据点的个数。
通过不断迭代计算,均值漂移算法会将密度相近的数据点聚集在一起。
总结起来,MSA的计算公式包括核密度估计和均值漂移两个部分,前
者用于估计数据点的密度,后者用于不断移动数据点的位置,直到达到最
大密度位置。
这种迭代的方式能够有效地将密度相近的数据点聚集在一起,实现聚类效果。
meanshift算法原理

meanshift算法原理
MeanShift(均值漂移)是一种非参数化的聚类算法,用于在数据集中发现数据点的密集区域。
它基于密度估计的原理,通过计算数据点的局部密度梯度来寻找数据点的聚集中心。
MeanShift 算法的原理如下:
1. 初始化:为每个数据点选择一个随机的聚集中心。
2. 密度估计:对于每个数据点,计算其与其他数据点之间的距离,并将距离定义为核函数的参数。
常用的核函数是高斯核函数。
3. 均值漂移:对于每个数据点,计算其局部密度梯度向量。
梯度向量的方向是从当前数据点指向密度更高的方向,梯度的大小代表密度的变化程度。
使用梯度向量来更新当前数据点的位置。
4. 更新聚集中心:将数据点移动到更新后的位置,并将其作为新的聚集中心。
5. 重复步骤2-4 直到满足停止条件(例如,聚集中心的移动小于某个阈值)。
MeanShift 算法的特点是不需要事先指定聚类的数量,它能够自动确定聚类的形状和数量。
它具有较好的收敛性和适应性,对于非凸形状的聚类问题也能有效地处理。
在应用中,MeanShift 算法可以用于图像分割、目标跟踪、图像压缩等领域。
它在计算复杂度上较高,但在一些特定的数据集和问题中表现出良好的效果。
多特征带宽自适应Mean Shift目标跟踪算法

M u l t i . f e a t u r e Ba n d wi d t h Ad a p t i v e
Me a n S h i t f T a r g e t Tr a c k i n g Al g o r i t h m
DI NG Ye - b i n g , ZHAO Fe n g , HAO S h i - h a i
] [ Ke y w o r d s ]t rg a e t t r a c k i n g ; k e me l f u n c t i o n b a n d wi d t h ; t e x t u r e ; p r o b a b i l i t y d e n s i y; t mo me n t
特征带宽 自 适应 目 标 跟踪算法 。采用颜色和纹理信 息创 建特征模型 ,在最优 目 标位置 区域投 影,以生成概率密 度分布 图 , 通过计算获得 目 标密 度块的长度和宽度 ,从而 自 适 应调整核函数带宽 ,用椭 圆锁定 目 标, 椭 圆形状参数 由 目 标概率密度 的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Mean Shift 概述Mean Shift 简介Mean Shift 这个概念最早是由Fukunaga等人[1]于1975年在一篇关于概率密度梯度函数的估计中提出来的,其最初含义正如其名,就是偏移的均值向量,在这里Mean Shift是一个名词,它指代的是一个向量,但随着Mean Shift理论的发展,Mean Shift的含义也发生了变化,如果我们说Mean Shift算法,一般是指一个迭代的步骤,即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束.然而在以后的很长一段时间内Mean Shift并没有引起人们的注意,直到20年以后,也就是1995年,另外一篇关于Mean Shift的重要文献[2]才发表.在这篇重要的文献中,Yizong Cheng 对基本的Mean Shift算法在以下两个方面做了推广,首先Yizong Cheng定义了一族核函数,使得随着样本与被偏移点的距离不同,其偏移量对均值偏移向量的贡献也不同,其次Yizong Cheng还设定了一个权重系数,使得不同的样本点重要性不一样,这大大扩大了Mean Shift的适用范围.另外Yizong Cheng指出了Mean Shift可能应用的领域,并给出了具体的例子.Comaniciu等人[3][4]把Mean Shift成功的运用的特征空间的分析,在图像平滑和图像分割中Mean Shift都得到了很好的应用. Comaniciu等在文章中证明了,Mean Shift算法在满足一定条件下,一定可以收敛到最近的一个概率密度函数的稳态点,因此Mean Shift算法可以用来检测概率密度函数中存在的模态.Comaniciu等人[5]还把非刚体的跟踪问题近似为一个Mean Shift最优化问题,使得跟踪可以实时的进行.在后面的几节,本文将详细的说明Mean Shift的基本思想及其扩展,其背后的物理含义,以及算法步骤,并给出理论证明.最后本文还将给出Mean Shift在聚类,图像平滑,图像分割,物体实时跟踪这几个方面的具体应用.Mean Shift 的基本思想及其扩展基本Mean Shift给定d 维空间d R 中的n 个样本点i x ,i=1,…,n,在x 点的Mean Shift 向量的基本形式定义为:()()1i hh i x S M x x x k ∈≡-∑(1)其中,h S 是一个半径为h 的高维球区域,满足以下关系的y 点的集合,()()(){}2:Th S x y y x y x h ≡--≤ (2)k 表示在这n 个样本点i x 中,有k 个点落入h S 区域中.我们可以看到()i x x -是样本点i x 相对于点x 的偏移向量,(1)式定义的Mean Shift 向量()h M x 就是对落入区域h S 中的k 个样本点相对于点x 的偏移向量求和然后再平均.从直观上看,如果样本点i x 从一个概率密度函数()f x 中采样得到,由于非零的概率密度梯度指向概率密度增加最大的方向,因此从平均上来说, h S 区域内的样本点更多的落在沿着概率密度梯度的方向.因此,对应的, Mean Shift 向量()h M x 应该指向概率密度梯度的方向.图1,Mean Shift 示意图如上图所示, 大圆圈所圈定的范围就是h S ,小圆圈代表落入h S 区域内的样本点i h x S ∈,黑点就是Mean Shift 的基准点x ,箭头表示样本点相对于基准点x 的偏移向量,很明显的,我们可以看出,平均的偏移向量()h M x 会指向样本分布最多的区域,也就是概率密度函数的梯度方向.扩展的Mean Shift核函数首先我们引进核函数的概念.定义:X 代表一个d 维的欧氏空间,x 是该空间中的一个点,用一列向量表示. x 的模2T xx x =.R 表示实数域.如果一个函数:K X R →存在一个剖面函数[]:0,k R ∞→,即()2()K x k x=(3)并且满足:(1) k 是非负的.(2) k 是非增的,即如果a b <那么()()k a k b ≥. (3) k 是分段连续的,并且()k r dr ∞<∞⎰那么,函数()K x 就被称为核函数.举例:在Mean Shift 中,有两类核函数经常用到,他们分别是, 单位均匀核函数:1 if 1()0 if 1x F x x ⎧<⎪=⎨≥⎪⎩ (4) 单位高斯核函数:2()xN x e-= (5)这两类核函数如下图所示.图2, (a) 单位均匀核函数 (b) 单位高斯核函数一个核函数可以与一个均匀核函数相乘而截尾,如一个截尾的高斯核函数为,()2if ()0 ifx e x N F x x ββλλλ-⎧<⎪=⎨≥⎪⎩ (6)图 3 显示了不同的,βλ值所对应的截尾高斯核函数的示意图.图3 截尾高斯核函数 (a) 11N F (b) 0.11N FMean Shift 扩展形式从(1)式我们可以看出,只要是落入h S 的采样点,无论其离x 远近,对最终的()h M x 计算的贡献是一样的,然而我们知道,一般的说来,离x 越近的采样点对估计x 周围的统计特性越有效,因此我们引进核函数的概念,在计算()h M x 时可以考虑距离的影响;同时我们也可以认为在这所有的样本点i x 中,重要性并不一样,因此我们对每个样本都引入一个权重系数.如此以来我们就可以把基本的Mean Shift 形式扩展为:()11()()()()()nHi i i i nHi i i Gx x w x x x M x Gx x w x ==--≡-∑∑ (7)其中: ()()1/21/2()H i i G x x HG H x x ---=-()G x 是一个单位核函数H 是一个正定的对称d d ⨯矩阵,我们一般称之为带宽矩阵()0i w x ≥是一个赋给采样点i x 的权重在实际应用的过程中,带宽矩阵H 一般被限定为一个对角矩阵221diag ,...,d H h h ⎡⎤=⎣⎦,甚至更简单的被取为正比于单位矩阵,即2H h I =.由于后一形式只需要确定一个系数h ,在Mean Shift 中常常被采用,在本文的后面部分我们也采用这种形式,因此(7)式又可以被写为:()11()()()()()ni i i i h ni i i x xG w x x x hM x x x G w x h ==--≡-∑∑ (8)我们可以看到,如果对所有的采样点i x 满足(1)()1i w x =(2) 1 if 1()0 if 1x G x x ⎧<⎪=⎨≥⎪⎩则(8)式完全退化为(1)式,也就是说,我们所给出的扩展的Mean Shift 形式在某些情况下会退化为最基本的Mean Shift 形式.Mean Shift 的物理含义正如上一节直观性的指出,Mean Shift 指向概率密度梯度方向,这一节将证明Mean Shift 向量()h M x 是归一化的概率密度梯度.在本节我们还给出了迭代Mean Shift 算法的详细描述,并证明,该算法会收敛到概率密度函数的一个稳态点.概率密度梯度对一个概率密度函数()f x ,已知d 维空间中n 个采样点i x ,i=1,…,n, ()f x 的核函数估计(也称为Parzen 窗估计)为,11()ˆ()()ni i i n di i x x K w x h fx h w x ==-⎛⎫⎪⎝⎭=∑∑ (9)其中()0i w x ≥是一个赋给采样点i x 的权重()K x 是一个核函数,并且满足()1k x dx =⎰我们另外定义: 核函数()K x 的剖面函数()k x ,使得()2()K x kx=(10);()k x 的负导函数()g x ,即'()()g x k x =-,其对应的核函数()2()G x g x= (11)概率密度函数()f x 的梯度()f x ∇的估计为:()2'1212()ˆˆ()()()ni i i i nd i i x xx x k w x h f x f x h w x =+=⎛⎫--⎪ ⎪⎝⎭∇=∇=∑∑(12)由上面的定义, '()()g x k x =-,()2()G x gx =,上式可以重写为()()21212112112()ˆ()()()()2 ()()nii i i nd i i n i n i i i i i i n d n i i i i i x xx x G w x h f x h w x x x x x x x G w x G w x h h x x h h w x G w x h =+=====⎛⎫-- ⎪ ⎪⎝⎭∇=⎡⎤⎛⎫-⎡-⎤⎛⎫-⎢⎥ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎢⎥=⎢⎥-⎛⎫⎢⎥⎢⎥ ⎪⎢⎥⎝⎭⎢⎥⎣⎦⎣⎦∑∑∑∑∑∑ (13)上式右边的第二个中括号内的那一部分就是(8)式定义的Mean Shift 向量,第一个中括号内的那一部分是以()G x 为核函数对概率密度函数()f x 的估计,我们记做ˆ()G f x ,而(9)式定义的ˆ()f x 我们重新记做ˆ()Kf x ,因此(11)式可以重新写为: ˆ()f x ∇=ˆ()K f x ∇=()22ˆ()G h f x M x h(14)由(12)式我们可以得出,()2ˆ()1ˆ2()Kh G f x M x h f x ∇=(15)(15)式表明,用核函数G 在x 点计算得到的Mean Shift 向量()h M x 正比于归一化的用核函数K 估计的概率密度的函数ˆ()Kf x 的梯度,归一化因子为用核函数G 估计的x 点的概率密度.因此Mean Shift 向量()h M x 总是指向概率密度增加最大的方向.Mean Shift 算法 算法步骤我们在前面已经指出,我们在提及Mean Shift 向量和Mean Shift 算法的时候指代不同的概念,Mean Shift 向量是名词,指的是一个向量;而Mean Shift 算法是动词,指的是一个迭代的步骤.我们把(8)式的x 提到求和号的外面来,可以得到下式,()11()()()()ni i i i h n i i i x xG w x x hM x x x x G w x h ==-=--∑∑(16)我们把上式右边的第一项记为()h m x ,即11()()()()()ni i i i h n i i i x xG w x x hm x x x G w x h ==-=-∑∑(17)给定一个初始点x ,核函数()G X , 容许误差ε,Mean Shift 算法循环的执行下面三步,直至结束条件满足, (1).计算()h m x (2).把()h m x 赋给x(3).如果()h m x x ε-<,结束循环;若不然,继续执行(1).由(16)式我们知道, ()()h h m x x M x =+,因此上面的步骤也就是不断的沿着概率密度的梯度方向移动,同时步长不仅与梯度的大小有关,也与该点的概率密度有关,在密度大的地方,更接近我们要找的概率密度的峰值,Mean Shift 算法使得移动的步长小一些,相反,在密度小的地方,移动的步长就大一些.在满足一定条件下,Mean Shift 算法一定会收敛到该点附近的峰值,这一收敛性由下面一小节给出证明.算法的收敛性证明我们用{}j y ,1,2,...j =来表示Mean Shift 算法中移动点的痕迹,由(17)式我们可写为,111()()()()ni ji ii j n i ji i x y G w x x h y x y G w x h=+=-=-∑∑, 1,2,...j = (18)与j y 对应的概率密度函数估计值ˆ()jf y 可表示为,11()ˆ()()ni j i i K j n di i x y K w x h f y h w x ==-⎛⎫⎪⎝⎭=∑∑ (19)下面的定理将证明序列{}j y 和{}ˆ()jf y 的收敛性. 定理:如果核函数()K x 有一个凸的,单调递增的剖面函数,核函数()G x 由式(10)和(11)定义,则序列{}j y 和{}ˆ()jf y 是收敛的. 证明:由于n 是有限的,核函数()(0)K x K ≤,因此序列{}ˆ()jf y 是有界的,所以我们只需要证明{}ˆ()j f y 是严格递增的的,即要证明,对所有j=1,2,…如果1j jy y +≠,那么ˆ()j f y 1ˆ()j f y +< (20)不失一般性,我们可以假设0j y =,由(19)式和(10)式,我们可以得到1ˆ()j f y +ˆ()j f y -=221111 ()()n i j i ji ni d i i x y x y k k w x h h h w x +==⎡⎤⎛⎫⎛⎫--⎢⎥ ⎪ ⎪- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∑∑ (21) 由于剖面函数()k x 的凸性意味着对所有12,[0,)x x ∈∞且12x x ≠,有'2121()()()()k x k x k x x x ≥+-(22)因为'()()g x k x =-,上式可以写为,2112()()()()k x k x g x x x -≥- (23)结合(21)与(23)式,可以得到,1ˆ()j f y +ˆ()jf y -222111211 ()()ni j i j i i n i d i i x y g x y x w x h h w x ++=+=⎛⎫-⎡⎤⎪≥--⎢⎥⎣⎦⎪⎝⎭∑∑2211112112()()ni j T j i j i n i d i i x y g y x y w x h h w x +++=+=⎛⎫-⎡⎤⎪=-⎢⎥⎣⎦ ⎪⎝⎭∑∑12221211112()()()j n nT ii i i j i n d i i i i x x y x g w x y g w x h h h w x +++===⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∑∑∑(24)由(18)式我们可以得出,1ˆ()j f y +ˆ()jf y -2211211()n ij n i d i i x y g hhw x +=+=⎛⎫≥ ⎪ ⎪⎝⎭∑∑(25)由于剖面函数()k x 是单调递减的,所以求和项210nii x g h =⎛⎫>⎪ ⎪⎝⎭∑,因此,只要10j j y y +≠= (25)式的右边项严格大于零,即1ˆ()j f y +ˆ()jf y >.由此可证得,序列{}ˆ()j f y 收敛 为了证明序列{}j y 的收敛性,对于0j y ≠,(25)式可以写为1ˆ()j f y +ˆ()jf y -2211211()ni jj jn i d i i x y y y g hhw x +=+=⎛⎫- ⎪≥- ⎪⎝⎭∑∑(26) 现在对于标号j,j+1,…,j+m -1,对(26)式的左右两边分别求和,得到 ˆ()j m f y +ˆ()jf y -22111211...()ni j m j m j m ni d i i x y y y g h h w x +-++-=+=⎛⎫- ⎪≥-+ ⎪⎝⎭∑∑2211211()ni jj jn i d i i x y y y g hhw x +=+=⎛⎫- ⎪+- ⎪⎝⎭∑∑2211211...()j m j m j j n d i i y y y y M h w x ++--+=⎡⎤≥-++-⎢⎥⎣⎦∑2211()j m jn d i i y y M hw x ++=≥-∑(27)其中M 表示对应序列{}j y 的所有求和项21n i ji x y g h =⎛⎫-⎪ ⎪⎝⎭∑的最小值.由于{}ˆ()j f y 收敛,它是一个Cauchy 序列,(27)式意味着{}jy 也是一个Cauchy 序列,因此,序列{}j y 收敛.Mean Shift 的应用从前面关于Mean Shift 和概率密度梯度的关系的论述,我们可以清楚的看到,Mean Shift 算法本质上是一个自适应的梯度上升搜索峰值的方法,如下图所示,如果数据集{},1,...i x i n =服从概率密度函数f(x),给定一个如图初始点x ,Mean Shift 算法就会一步步的移动,最终收敛到第一个峰值点.从这张图上,我们可以看到Mean Shift 至少有如下三方面的应用:(1)聚类,数据集{},1,...i x i n =中的每一点都可以作为初始点,分别执行Mean Shift 算法,收敛到同一个点算作一类;(2)模态的检测,概率密度函数中的一个峰值就是一个模态,Mean Shift在峰值处收敛,自然可以找到该模态.(3)最优化,Mean Shift 可以找到峰值,自然可以作为最优化的方法,Mean Shift 算法进行最优化的关键是要把最优化的目标转化成Mean Shift 隐含估计的概率密度函数.图4.Mean Shift 算法示意图Mean Shift 算法在许多领域获得了非常成功的应用,下面简要的介绍一下其在图像平滑,图像分割以及物体跟踪中的应用,一来说明其强大的生命力,二来使对上文描述的算法有一个直观的了解.图像平滑与分割一幅图像可以表示成一个二维网格点上p 维向量,每一个网格点代表一个象素,1p =表示这是一个灰度图,3p =表示彩色图,3p >表示一个多谱图,网格点的坐标表示图像的空间信息.我们统一考虑图像的空间信息和色彩(或灰度等)信息,组成一个2p +维的向量(,)s r x x x =,其中s x 表示网格点的坐标,r x 表示该网格点上p 维向量特征.我们用核函数,s r h h K 来估计x 的分布, ,s r h h K 具有如下形式,22,2s rs r h h p s r sr C x x K k k h h h h ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭⎝⎭ (28)其中,s r h h 控制着平滑的解析度,C 是一个归一化常数.我们分别用i x 和i z ,i =1,…,n 表示原始和平滑后的图像.用Mean Shift 算法进行图像平滑的具体步骤如下, 对每一个象素点, 1,初始化1j =,并且使,1i i y x =2,运用Mean Shift 算法计算,1i j y +,直到收敛.记收敛后的值为,i c y3.赋值(),,s ri i i c z x y =图5是原始图像,图中40⨯20白框区域被选中来更好的显示基于Mean Shift 的图像平滑步骤,图6显示了这一区域的平滑步骤,x, y 表示这一区域内的象素点的坐标,图6(a)在一个三维空间显示了各个象素点的灰度值,图6(b)显示各点的移动痕迹,黑点是最终收敛值,图6(c)显示了平滑后的各象素点的灰度值,图6(d)是继续分割后的结果.图5.原始图像图6.(a)原始图像的各象素点灰度值.(b)各象素点的Mean Shift移动路径.(c)平滑后的各象素点的灰度值.(d)分割后的结果图7显示了图5经过平滑后的结果,我们可以看到,草地上的草地纹理被平滑掉了,而图像中边缘仍然很好的保持着..图7平滑后的结果h h是非常重要的参数,人们可以根据解析度的在基于Mean Shift的图像平滑中,式(28)中的,s rh h会对最终的平滑结果有一定的影响,图7显示了这两个参数对平要求而直接给定,不同,s rh影响更大一些.滑结果的影响,我们可以看出,s图8,原始图和平滑后的图基于Mean Shift的图像分割与图像平滑非常类似,只需要把收敛到同一点的起始点归为一类,然后把这一类的标号赋给这些起始点,在图像分割中有时还需要把包含象素点太少类去掉,图6(d)显示分割后的灰度值.图8,显示了图5经过分隔后的结果图8,分割后的结果物体跟踪我们用一个物体的灰度或色彩分布来描述这个物体,假设物体中心位于0x ,则该物体可以表示为()21ˆi i s ns u i x xqC k b x u h δ=⎛⎫- ⎪⎡⎤=-⎣⎦ ⎪⎝⎭∑(29)候选的位于y 的物体可以描述为()21ˆ()hn s s i u h i i x ypy C k b x u h δ=⎛⎫-⎡⎤ ⎪=-⎣⎦ ⎪⎝⎭∑(30)因此物体跟踪可以简化为寻找最优的y ,使得ˆ()u py 与ˆu q 最相似. ˆ()u py 与ˆu q 的最相似性用Bhattacharrya 系数ˆ()y ρ来度量分布,即 []1ˆ()(),mu y p y q ρρ=≡= (31)式(31)在ˆu p()0ˆy 点泰勒展开可得,[]1111(),(22m mu u u p y q p y ρ==≈∑(32)把式(30)带入式,整理可得,[]211(),22mnhii u i C y x p y q w k h ρ==⎛⎫-≈ ⎪ ⎪⎝⎭∑ (33)其中,1[()mi i u w b x u δ==-∑对式(33)右边的第二项,我们可以利用Mean Shift 算法进行最优化.在Comaniciu 等人的文章中,他们只用平均每帧图像只用4.19次Mean Shift 迭代就可以收敛,他们的结果很显示在600MHz 的PC 机上,他们的程序可以每秒处理30帧352⨯240象素的图像.下图显示了各帧需要的Mean Shift 迭代次数.图9,各帧需要的Mean Shift迭代次数下图显示了Comaniciu等人的跟踪结果图10,基于Mean Shift的物体跟踪结果结论本文回顾了Mean Shift的发展历史,介绍了它的基本思想,给出了具体的算法步骤,详细证明了它与梯度上升搜索法的联系,并给出Mean Shift算法的收敛性证明,最后给出了Mean Shift在图像平滑,图像分割以及实时物体跟踪中的具体应用,显示Mean Shift强大的生命力.参考文献[1]The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition (1975)[2]Mean shift, mode seeking, and clustering (1995)[3]Mean Shift: a robust approach toward feature space analysis (2002)[4]Real-time tracking of non-rigid objects using mean shift (2000)[5]Mean-shift Blob Tracking through Scale Space (2003)[6]An algorithm for data-driven bandwidth selection(2003)。