北师大版九年级数学上册第3章第2节《用频率估计概率》第1课时学案
九年级数学北师大版上册 第3章《用频率估计概率》教学设计 教案

教学设计用频率估计概率一、学生知识状况分析学生通过以前的学习,已经会用列表法或树状图求简单的随机事件的概率。
对用试验方法估计随机事件发生的概率有了初步的认识,知道了“当试验次数较大,试验频率稳定于理论概率,并可据此估计某一事件发生的概率”.二、教学任务分析本节课的重点是掌握试验的方法估计复杂的随机事件发生的概率。
难点是试验估计随机事件发生的概率。
为此,本节课的教学目标是:1、感受随机事件发生的频率的稳定性,理解事件发生的频率与概率的关系。
2、能用试验频率估计一些随机事件发生的概率,进一步体会概率的意义。
三、教学过程分析第一环节:课前3分钟(对相关知识进行回顾学习)1、事件的分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧随机事件不可能事件必然事件确定性事件事件2、什么是频率?在相同情况下,进行了n 次试验,在这n 次试验中,事件A 发生了m 次,则事件A 发生的频率P=nm . 3、练习:(1)下列事件,是确定事件的是( )A.投掷一枚图钉,针尖朝上、朝下的概率一样.B.从一幅扑克中任意抽出一张牌,花色是红桃.C.任意选择电视的某一频道,正在播放动画片.D.在同一年出生的367名学生中,至少有两人的生日是同一天.(2)明天下雨的概率为95%,那么下列说法错误的是( )A.明天下雨的可能性较大B.明天不下雨的可能性较小C.明天有可能是晴天D.明天不可能是晴天第二环节:情境引入内容:下表列出了一些历史上的数学家所做的掷硬币试验的数据:目的:以历史上的抛硬币试验引入本课,激发学生的学习兴趣.结论:当试验次数很大时,一个事件发生频率一般稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.在相同情况下随机的抽取若干个体进行试验,进行试验统计.并计算事件发生的频率nm ,根据频率估计该事件发生的概率.第三环节:实践演练例1、抛掷一只纸杯的重复试验的结果如下表:(1)在表内的空格初填上适当的数(2)任意抛掷一只纸杯,杯口朝上的概率为.练习一:1、对某服装厂的成品西装进行抽查,结果如下表:(1)请完成上表(2)任抽一件是次品的概率是多少?(3)如果销售1 500件西服,那么大约需要准备多少件正品西装供买到次品西装的顾客调换?思考:摸球游戏现在有一个盒子,3个红球,7个白球,每个球除颜色外全部相同。
北师大版九年级数学上册导学案 第三章第2节用频率估计概率

3.2用频率估计概率【教学目标】知识与技能通过试验,理解当试验次数较大时试验频率稳定于理论概率,并可据此估计一事件发生的概率。
过程与方法经历试验,统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。
情感、态度与价值观积极参与数学活动.通过实验提高学生学习数学的兴趣;提高自身的数学交流水平,增强与人合作的精神和解决实际问题的能力,发展学生的辩证思维能力。
【教学重难点】教学重点:通过实验估计随机事件发生的概率的方法教学难点:领会当实验次数很大时,可以用一个事件发生的频率来估计这一事件发生的概率【导学过程】【创设情景,引入新课】回顾思考】1.用树状图和列表的方法求概率时应注意。
并且实验出现的结果是。
2.比如掷一枚图钉,有几种结果?它们是等可能的吗?3.掷一只墨水笔尖,也有“正”“反”两种可能,但出现的可能性相等吗?结论:一个试验,虽然结果有有限个,但各个结果出现的可能性不相等,求这一事件的概率只有动手做大量的试验.因为我们知道:当实验次数很大时,实验频率稳定于理论概率,并可据此估计某一事件发生的概率.【自主探究】1.议一议:400个同学中,一定有两个同学的生日相同(可以不同年)吗?为什么? 300个同学呢?为什么?有人说:“50个同学中,就很有可能有两个同学的生日相同.”这话正确吗?为什么?调查全班同学,看看有无两个同学的生日相同.2.想一想:如果你们班50个同学中有两个同学的生日相同,那么说明50个同学中有两个同学的生日相同的概率是1吗?为什么? 如果你们班50个同学中没有两个同学的生日相同,那么能说明50个同学中没有两个同学的生日相同的概率是0吗?为什么?3.做一做:每个同学课外调查10个人的生日,从全班的调查结果中随机选取50个被调查人,看看他们中有无两个同学的生日相同.将全班同学的调查数据集中起来,设计一个方案,估计50个人中有两个同学的生日相同的概率.课外调查的10个人的生肖分别是什么?他们中有2个人的生肖相同吗?6个人中呢?利用全班的调查数据设计一个方案,估计6个人中有2个人生肖相同的概率.通过调查,我们估计了6个人中有两个人生肖相同的概率. 要想使这种估计尽可能精确,就需要尽可能多地增加调查对象,而这样做即费时又费力. 能不能不用调查即可估计出这一概率呢?有人说,可以用12个编有号码,大小相同的球代替12种不同的生肖,这样每个人的生肖就有对应着一个球. 6个人中有两个人【课堂探究案】1.现在有一个盒子,3个红球,7个白球,每个球除颜色外全部相同。
北师大版九年级数学上册:3.2 用频率估计概率 学案

用频率估计概率【学习目标】1.知识与技能:理解每次试验可能结果不是有限个,或各种可能结果发生的可能性不相等时,用频率估计概率的方法;能应用模拟实验求概率及其它们的应用。
2.过程与方法:通过实验切实感受到用频率估计概率的理论基础。
3.情感态度与价值观:感受学习数学的趣味性。
【旧知链接】1.你还记得什么是频数、什么叫频率、什么叫概率吗?频数:多次重复实验中,某一事件发生的叫频数。
频率:多次实验中,某一事件发生的频数与比值叫该事件在这组实验中发生的频率。
概率:某一事件发生的可能程度2.学具准备:实验用品【学习设计】比较用列举法求概率与用频率求概率的条件与方法。
【学习过程】内容模块“导学·合作·探究”流程模块操作流程自主学习环节交流合作环节展示自评环节探究总结环节、巩固延伸环节设计重点自学指导(内容·学法·时间)互动策略(形式·过程·时间)展示方案(方案、建议、时间)随堂笔记(规律总结·重点摘记·成果记录·知识生成)导学一实验:将一枚硬币抛起,使其自然下落,每抛两次作为一次实验,当硬币落定后,金额面朝上,我们叫做“正”,另一面朝1.组内群学:小组长组织本组学生进行实验,做好方案预设一:(5min)观察:随着抛掷次数增加,“正面向等级评定:同类演练:1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色导学二上,我们叫做“反”。
全班分成十组,每组同学掷一枚硬币50次,记录好“正面向上”的次数,计算出“正面向上”的频率。
在重复抛掷一枚硬币时,“正面向上”的频率在0.5左右,随着抛掷次数的增加,一般地,频率出现一定的;在0.5左右摆动的幅度会,这时,就称“正面向上”的频率稳定于0.5.我们就称事件正面向上发生的概率为0.5。
(14min)总结:(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率。
最新北师版初中数学九年级上册3.2 用频率估计概率导学案

32 用频率估计概率学习目标:1.了解模拟实验在求一个实际问题中的作用,进一步提高用数学知识解决实际问题的能力。
2.初步学会对一个简单的问题提出一种可行的模拟实验。
3.提高学生动手能力,加强集体合作意识,丰富知识面,激发学习兴趣。
渗透数形结合思想和分类思想。
重点:理解用模拟实验解决实际问题的合理性。
难点:会对简单问题提出模拟实验策略。
【预习案】复习引入事件发生的概率随着_________的增加, _________逐渐在某个数值附近,我们可以用平稳时________估计这一事情的概率.一般地,如果某事件A发生的_______稳定于某个常数p,则事件A发生的概率为_______【探究案】探究点:用频率估计概率问题1:某林业部门要考察某种幼树的移植成活率,应采用什么具体的做法?________ ________________________根据统计表1,请完成表中的空缺,并完成表后的问题。
从表中发现,幼树移植成活的频率在______左右摆动,并且随着统计数值的增加,这规律越明显,所以幼树移植成活的概率为:_______________问题2:某公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时没千克大约定价为多少元比较合适?估算橘子损坏统计如下表:根据上表:柑橘损坏的频率在______ 常数左右摆动,并且随统计量的增加逐渐明显。
因此可以估计柑橘损坏率为:________;则柑橘完好的概率为:________。
根据估计的概率可知:在10000千克的柑橘中完好质量为________________________完好柑橘的实际成本为:_____________________________________________________设每千克柑橘的销售价为元,则应有:_____________________________________【训练案】1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为 ( )A.90个 B.24个.70个 D.32个2.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为().A.11000B.1200.12D.153.下列说法正确的是( ).A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B.为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;.彩票中奖的机会是1%,买100张一定会中奖;D.中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论.4.小亮把全班50名同学的期中数学测试成绩,绘成如图所示的条形图,其中从左起第一、二、三、四个小长方形高的比是1∶3∶5∶1.从中同时抽一份最低分数段和一份最高分数段的成绩的概率分别是().A.110、110B.110、12.12、110D.12、12分)5.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原有( ).A .10粒B .160粒 . 450粒 D .500粒6.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是53,这个53的含义是( ).A .只发出5份调查卷,其中三份是喜欢足球的答卷;B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8;.在答卷中,喜欢足球的答卷占总答卷的53;D .在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.7.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为51,四位同学分别采用了下列装法,你认为他们中装错的是( ). A .口袋中装入10个小球,其中只有两个红球;B .装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球; .装入红球5个,白球13个,黑球2个;D .装入红球7个,白球13个,黑球2个,黄球13个.8.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数记录了下(单位:元):2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5, 5,2,5,6,5,5,0,6,5,6,5,2,5,0假如老师随机问一个同学的零用钱,老师最有可能得到的回答是( ). A . 2元 B .5元 .6元 D .0元二、填一填9. 同时抛掷两枚硬币,按照正面出现的次数,可以分为“2个正面”、“1个正面”和“没有正面”这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:5由上表结果,计算得出现“2个正面”、“1个正面”和“没有正面”这3种结果的频率分别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.10.红星养猪场400头猪的质量(质量均为整数千克)频率分布如下,其中数据不在分点上从中任选一头猪,质量在65g以上的概率是___________.11.为配和新课程的实施,某市举行了“应用与创新”知识竞赛,共有1万名学生参加了这次竞赛(满分100分,得分全为整数)。
九年级数学上册 第三章 概率的进一步认识 2 用频率估计概率教案 (新版)北师大版

课题
用频率估计概率
课时安排
共(1)课时
课程标准
能通过对事件发生频率的分析,估计事件发生的概率;培养学生的动手能力和处理数据
的能力,培养学生的理性精神.
学习目标
能够通过试验获得事件发生的频率,并通过大量重复试验,让学生体会到随机事件内部所蕴涵的客观规律——频率的稳定性.知道大量重复试验时频率可作为事件发生概率的估计值.
环
节
三
分组试验
全班分成10组,两人一组,每组同学掷一枚硬币50次,一名同学掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行,以实事求是的态度通过画“正”字的方式统计“正面向上”的频数,整理并记录下来。
课中作业
王老汉为了与客户签订购销合同,对自己的鱼塘中的鱼的总质量进行估计.第一次捞出100条鱼,称得质量约为184㎏,并将每条鱼都做上记号,在回鱼塘中.当它们混合与鱼群后,又捞出200条,称得质量为416㎏,且有记号的鱼有20条.
(1)请你估计一下,鱼塘中的鱼有多少条?
(2)请你计算一下,鱼塘中的鱼的总质量大约是多少㎏?
课后作业设计:
袋子中装有蓝、白、红三个球,从中摸出一个再放回去,共摸三次,摸到三个红色球,摸到两个蓝色球、一个红色球,摸到一个蓝色球、一个红色球、一个白色球的概率各是多少?画树形图说明
(修改人:)
板书设计:
用频率估计概率
教学重点
了解解用频率估计概率的必要性和合理性
教学方法
合作交流,共同探究
课前作业
掷一个矿泉水瓶盖,它落地时哪一面会朝上?
教学过程
教学环节
课堂合作交流
二次备课
(修改人:)
环
节一
一、复习引入
北师大九年级上册 3.2 用频率估计概率 教学设计

3.2用频率估计概率教学设计任意抛一枚质地均匀的硬币,“正面朝上”的概率是0.5,许多科学家曾做过成千上万次的实验,其中部分结果如下表:观察上表,可以发现实验次数越多,频率越接近概率.(m>n),那么一定有一个抽屉中放进了至少2个物品”.300个同学中,一定有两个同学的生日相同吗?不一定.但有2个同学的生日相同的可能性较大.“我认为咱们班50个同学中很可能就有2个同学的生日相同.”,你同意这种说法吗?同意。
【议一议】为了证明上述的说法是否正确,我们可以通过大量重复试验,用“50个人中有2个人的生日相同”的频率来估计这一事件的概率.请你设计试验方案.(1)每个同学课外调查10个人的生日.(2)从全班的调查结果中随机选择50个被调查人的生日,记录其中有无2个人的生日相同.每选取50个被调查人的生日为一次试验,重复尽可能多次试验,并将数据记录在表格中.“50人中有2人生日相同”的频率=“50人中有2人生日相同”的频数总调查次数(3)根据上表中的数据,估计“50个人中有2个人的生日相同”的概率.“n个人中至少有2人相同”的概率统计如下:【归纳】(1)用频率估计概率:当试验次数足够大时,随机事件出现的频率稳定于相应的理论概率附近;(2)用频率估计概率的条件:试验的次数必须足够大.(3)计算方法:一般地,在大量重复试验中,如果事稳定于某个常数p,那么估计事件A 件A发生的频率mn发生的概率P(A)=p.【想一想】(1)一个口袋中有3个红球、7个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,这个球是红球的概率是多少?(2)一个口袋中有红球、白球共10个,这些球除颜色外都相同,如果不将球倒出来数,那么你能设计一个试验方案,估计其中红球与白球的比例吗?(1)每次随机摸出一个球并记录颜色,然后将球放回,搅匀,当次数越多,试验频率将越稳定于理论概率.(2)每次随机摸出6个球,并记录其中红球与白球的比例,然后将球放回,搅匀,当次数越多,试验频率将越稳定于理论概率.【思考】频率与概率有什么区别与联系?所谓频率,是在相同条件下进行重复试验时事件发生的次数与试验总次数的比值,其本身是随机的,在试验前不能够确定,且随着试验的不同而发生改变,而一个随机事件发生的概率是确定的常数,是客观存在的,与试验次数无关..例、六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同)的不透明的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动的人数为40 000人次,公园游戏场发放的福娃玩具为10 000个.(1)求参加一次这种游戏活动得到福娃玩具的频率;(2)请你估计袋中白球有多少个.方法指导:(1)由40 000人次中公园游戏场发放的福娃玩具为10 000个,结合频率的意义可直接求得;(2)由概率与频率的关系可估计从袋中任意摸出一个球,恰好是红球的概率,从而引进未知数,构造方程求解.解:(1)∵1000040000=14,∴参加一次这种游戏活动得到福娃玩具的频率为14 (2)∵试验次数很大时,频率接近于理论概率,∴估计从袋中任意摸出一个球,恰好是红球的概率是14.设袋中白球有x 个.1.不透明的袋子里放有4个黑球和若干个白球(这些球除颜色外都相同),老师将全班学生分成10个小组,进行摸球试验,经过大量重复摸球试验,统计显示,从中摸出白球的频率稳定在0.2附近,则袋子中白球的个数是 ( )A.1 B.2 C.3 D.4 2.甲、乙两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是 ( ) A.掷一枚正六面体的骰子,出现1点的概率B.任意写一个整数,它能被2整除的概率C.抛一枚质地均匀的硬币,出现正面朝上的概率D.从一个装有2个白球和1个红球的袋子中任取1个球,取到红球的概率3.下表记录了某种幼树在一定条件下移植成活的情况:由此估计这种幼树在此条件下移植成活的概率是_____(精确到0.1).4.在一个不透明的盒子里装有除颜色不同其余均相同的黑、白两种球,其中白球24个,黑球若干.小兵将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.1);(2)假如你摸一次,估计你摸到白球的概率P(白球)= .5.某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重 2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的重量.。
新北师大版九年级上册初中数学 3-2用频率估计概率 教案

第三章概率的进一步认识3.2 用频率估计概率1.借助试验,体会随机事件在每一次试验中发生与否具有不确定性.2.通过操作,体验重复试验的次数与事件发生的频率之间的关系.3.能从频率值角度估计事件发生的概率.通过试验体会用频率估计概率的合理性.试验方案的设计.《红楼梦》第62回中有这样的情节:当下又值宝玉生日已到,原来宝琴也是这日,二人相同.……袭人笑道:“这是他来给你拜寿.今儿也是他的生日,你也该给他拜寿.”宝玉听了,喜的忙作下揖去,说:原来今儿也是姐姐的芳诞.”平儿还福不迭.……探春忙问:“原来邢妹妹也是今儿,我怎么就忘了.”……探春笑道:“倒有些意思,一年十二个月,月月有几人生日.人多了,便这等巧了,也有三个一日,两个一日的……”上述一日两人或者多人过生日的现象在生活中也有很多,你能用概率的知识解释一下原因吗?今天我们就来学习用频率估计概率.教师提出问题串:(1)400个同学中,一定有2个同学的生日相同(可以不同年)吗?有什么依据呢?(2)300个同学中,一定有2个同学的生日相同(可以不同年)吗?学生:(1)一定.(2)不一定.教师:我认为咱们班50个同学中很可能就有2个同学的生日相同,你相信吗? 学生:表示怀疑,不太相信.·做一做(1)每个同学课外调查10个人的生日.(2)从全班的调查结果中随机选取50个被调查人的生日,记录其中有无2个人的生日相同.每选取50个被调查人的生日为一次试验,重复尽可能多次试验,并将数据记录在下表中:试验总次数50100150200250…“有2个人的生日相同”的次数“有2个人的生日相同”的频率(3)根据上表中的数据,估计“50个人中有2个人的生日相同”的概率.设计方案:学生自主设计.附学生设计的方案:方案一:将每个同学调查的生日随机排列成一个方阵,然后按某一规则从中选取50个数据进行试验(如从某行某列开始,自左而右,自上而下,选出50个数).方案二:把全班每个同学所调查的数据写在纸条上,放在箱子里随机抽取.方案三:从50个同学手里随机抽取一个调查数据,组成50个数据.方案四:全班分成10个小组,把每个小组调查数据放在一起,打乱次序,随机抽取5个,然后10个小组的结果放在一起成50个数据.在进行大量的重复试验时,随着试验次数的增加,一个不确定事件发生的频率会逐渐稳定到某一个数值.我们可以用平稳时的频率来估计这个事件发生的概率. ·想一想(1)一个口袋中有3个红球、7个白球,这些球除颜色外都相同.从口袋中随机摸出1个球,这个球是红球的概率是多少?(2)一个口袋中有红球、白球共10个,这些球除颜色外都相同.如果不将球倒出来数,那么你能设计一个试验方案,估计其中红球和白球的比例吗?(3)你还能提出并解决哪些与问题(2)类似的问题?与同伴交流.同学们自己探讨交流.学生:(1)310.(2)从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,共摸100次,其中摸到红球n次,则其中红球和白球的比例为n∶(100-n). (3)答案不唯一,比如池塘里不同品种的鱼的比例,一个地区不同鸟类的比例等.例1、在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:实验种子1 5 50 100 200 500 1000 2000 3000n(粒)发芽频数0 4 45 92 188 476 951 1900 2850m(粒)发芽频数m/n(1)计算表中各个频数.(2)估计该麦种的发芽概率(3)如果播种该种小麦每公顷所需麦苗数为4181818棵,种子发芽后的成秧率为87%,该麦种的千粒质量为35g,那么播种3公顷该种小麦,估计约需麦种多少kg?分析:(1)学生根据数据自行计算(2)估计概率不能随便取其中一个频率区估计概率,也不能以为最后的频率就是概率,而要看频率随实验次数的增加是否趋于稳定。
北师大版九年级数学上册3

1.通过小组合作、讨论交流等形式,培养学生主动探索、合作学习的能力。
2.通过观察、分析、归纳等方法,使学生掌握从特殊到一般、从具体到抽象的认知规律。
3.利用频率估计概率的方法,使学生学会用数学手段解决实际问题,提高学生的应用能力。
4.引导学生运用数形结合的思想,将抽象的数学问题具体化、形象化,提高学生的数学素养。
2.讨论问题:各小组分享自己的实验过程和结果,讨论频率与概率之间的关系,探讨如何利用频率来估计概率。
3.教师指导:在各小组讨论过程中,教师巡回指导,解答学生的疑问,引导学生深入探讨问题。
(四)课堂练习
1.设计练习题:根据本节课所学内容,设计具有代表性的练习题,让学生独立完成。
2.练习题类型:选择题、填空题、解答题等,涵盖频率与概率的基本概念、频率分布表和直方图的制作等。
4.部分学生可能在面对复杂问题时,缺乏解决问题的信心和耐心,教师需要关注这些学生的心理状态,给予适当的鼓励和支持。
三、教学重难点和教学设想
(一)教学重难点
1.重点:使学生掌握频率和概率的关系,能够运用频率来估计概率。
难点:让学生理解频率与概率之间的内在联系,并能够将这一概念应用于实际问题中。
2.重点:培养学生通过观察、分析、归纳等方法,从实际问题中抽象出数学模型的能力。
4.布置作业:布置与本节课相关的课后作业,要求学生在课后进一步巩固所学知识。
五、作业布置
为了巩固学生对频率估计概率的理解和应用能力,特布置以下作业:
1.必做作业:
a.完成课本第3.2节后的练习题1、2、3。
b.选择一个生活中的随机事件,通过实验收集数据,并制作频率分布表和频率分布直方图,用频率估计该事件发生的概率,并将实验过程和结果写成报告。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:用频率估计概率
【学习目标】1.学会根据问题的特点,用频率来估计事件发生的概率。
2.能利用频率和概率的关系解决日常生活中的相关问题。
【学习重点】通过对事件发生的频率的分析来估计事件发生的概率.
【学习难点】大量重复试验得到频率的稳定值的分析.
一、自主预习,认真准备。
1.一组数据“3、5、5、3、3”中的“5”出现的频数是,频率是。
2.一次语文检测中,100名学生中有36人得优秀,则优秀人数的频数为,优秀人数的频率是。
3.当试验的所有可能的结果不是有限个或各种可能的结果发生的可能性不相等时,我们一般通过_____ 来估计概率.
4.在同样条件下,大量重复试验时,根据一个随机事件发生的频率逐渐稳定到一个______可以估计这个事件发生的概率
二、自主探究、合作交流:
活动一:
1.每个同学课外调查10个人的生日。
2.从全班的调查结果中随机选取50个被调查人的生日,记录其中有无2个人的生日相同。
每选取50个被调查人的生日为一次试验,重复尽可能多次试验,并将数据记录在下表中:
试验总次数50 100 150 200 250 ···有2人生日相同的次数
有2人生日相同的频率
3、根据上表中的数据,估计“50人中有2人的生日相同”的概率
活动二:
1.一个口袋中有3个红球、7个白球,这些球除颜色外都相同。
从口袋中随机摸出一个球,这个球是红球的概率是多少?
2.一个口袋中有红球、白球共10个,这些球除颜色外都相同,如果不将球倒出来数,你能设计一个试验方案,估计红球和白球的比例吗?
3.你还能提出并解决那些与问题2类似的问题?
三、当堂练习,检测固学
1.将含有4种花色的36张扑克牌正面都朝下.每次抽出一张记下花色后再原样放回,洗匀牌后再抽,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约____张
2.用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为1
2
,摸
到红球的概率为13,摸到黄球的概率为1
6
.则应设____个白球,___个红球,_ _个黄球
3.一个口袋中放有20个球,其中红球6个,白球和黑球个若干个,每个球出了颜色外没有任何区别.
(1)小王通过大量反复实验(每次取一个球,放回搅匀后再取)发现,取出黑球的概率稳定在1
4
左右,请你估计袋中黑球的个数. (2)若小王取出的第一个是白球,将它放在桌上,从袋中余下的球中在再任意取一个球,取出红球的概率是多少?
4.学校门口经常有小贩搞摸奖活动,某小贩在一只黑色的口袋里装有颜色不同的50只小球,其中红色1只,黄色2只,绿色10只,其余为白球,搅拌均匀后,每2元摸1球,奖品的情况标注在球上(如图):
红球 黄球 绿球 白球
(1)如果花2元摸1个球,那么摸不到奖的概率是多少?
(2)如果花4元同时摸2个球,那么获得10元奖品的概率是多少?
8元 奖品 5元 奖品 1元 奖品 无奖品。