4土中应力的计算
4土中应力的计算

4-8, 4-10
4.3 基底压力
基底压力的简化计算
4.3 基底压力的简化计算
一、中心荷载下的基底压力P(kPa)
室内设计地面
F
+0.00
G
+0.00
F
室外设计地面
G
d d
b p
(a)
b
p
(b)
p F G A
d — 基础埋深 (m);必须从设 计地面或室内 外平均设计地 面算起。
F — 作用任基础上的竖向力设计值(kN);
4.3 地基附加应力
竖向集中力作用时的地基附加应力
竖向集中力 P(KN)作用在无 限半空间表面, 任 意 点 M(x 、 y 、 z) 处 的 六 个 应 力分量和三个 位移分量的解 析 解 —— 布 辛 奈斯克解。
4.3 地基附加应力
4.3 地基附加应力
布辛奈斯克解答:
三个正应力:
x
3P x2 z
2
R5
1
2
3
R2 Rz z2 R3(R z)
x2 (2R z)
R3
(R
z)2
y
3P y2z
2
R5
1 2
3
R2 Rz z R3(R z)
2
y2(2R z)
R3
(R
z)2
1
计算时注意地下水位的影响: (1)在地下水位以下,如埋藏有不透水层,由于不透水层中不存在
水的浮力,所以层面及层面以下的自重应力应按上覆土层的水 土总重计算 (2)地下水位位于同一土层中时,地下水位面应作为分层的界面。
土力学:第三章土中应力计算

附加应力的分布规律
平面分布规律
附加应力在平面上的分布呈扩散状,随着深度的 增加而减小。
深度分布规律
在一定深度范围内,附加应力随深度的增加而增 大,达到一定深度后基本保持稳定。
方向分布规律
附加应力在不同方向上的分布不同,与外部荷载 的方向和土体的性质有关。
附加应力的影响因素
01
外部荷载
外部荷载的大小、分布和作用方 式直接影响附加应力的分布和大 小。
在水平方向上,自重应力 表现为均匀分布。
侧向应力
在土体边缘,自重应力表 现为侧向应力,对土体的 稳定性产生影响。
自重应力的影响因素
土的密度
土的密度越大,自重应力越大。
重力加速度
重力加速度越大,自重应力越大。
土体的几何形状和尺寸
土体的几何形状和尺寸对自重应力的分布和大小有显著影响。
04 土中附加应力计算
02
03
土体的性质
边界条件
土体的容重、压缩性、内摩擦角、 粘聚力等性质对附加应力的影响 较大。
土体的边界条件,如固定边界、 自由边界等,对附加应力的分布 和大小也有影响。
05 土中有效应力计算
CHAPTER
有效应力的概念与计算方法
有效应力的概念
有效应力是指土壤颗粒之间的法向应 力,是土壤保持其结构稳定和防止剪 切破坏的主要因素。
土中应力计算的重要性
01
02
03
工程安全
准确的土中应力计算是确 保工程安全的前提,能够 预测可能出现的危险和制 定应对措施。
设计优化
通过土中应力计算,可以 优化设计方案,提高工程 结构的稳定性和经济性。
科学研究
土中应力计算有助于深入 研究土力学性质和规律, 推动土力学学科的发展。
土力学-土中应力计算

(1)地下水位下降情况
水位未降前 scz前=′z
水位下降后
scz后 = z
scz后 scz前
因scz后 scz前 土中有效应力增加
地面沉降
原地下水位 1
变动后地下水位 1′
原自重应力分布曲线
1′
变动后地下水位
1
原地下水位
地下水位变动后的 自重应力分布曲线
2′
2
z
2
2′
z
(2)地下水位上升
地基土和基础的刚度;荷载;基础埋深;地基土性质
基底压力是地基和 基础在上部荷载作 用下相互作用的结 果,受荷载条件、 基础条件和地基条 件的影响
暂不考虑上部结构的影 响,用荷载代替上部结 构,使问题得以简化
•大小
荷载条件: •方向
•分布
基础条件:
• 刚度 • 形状 • 大小 • 埋深
• 土类
地基条件: • 密度
二.水平向自重应力计算
s cx s cy K0s cz
z
K0——侧压力系数
t 0
scz scy
W
scx
F=1
无侧向变形(有侧限)条件下:
scz scx
εx εy 0
σx σy
scy
根据弹性力学中广义虎克定律:
εx
1 E
σx
υ
σy
σz
ch s cx s cy K0s cz
K0
• 土层结构等
1.基础的刚度的影响
柔性基础(EI=0)
Eg.土坝(堤)、路基、油罐等薄板基础、机场跑道。
沉降各处不同, 中央大边缘小
变形地面
反力
基底压力分布与 作用的荷载的分
布完全相同
4土中应力

§4 土中应力
§4.4 地基附加应力 4.4.3 线荷载和条形荷载作用时的地基附加应力
1、线荷载作用时的地基附加应力-弗拉曼解
•由于线荷载沿y坐标无限延伸, 因此与y轴垂直,平行于xoz任 何平面上的应力状态完全相同。 这种情况属于弹性力学平面问 题。 •平面问题只有三个独立的应 力分量
§4 土中应力
Ph
矩形基础:
条形基础:
§4 土中应力 §4.3 基底压力 4.3.3 基底附加压力
基底附加压(应)力是建筑物对基底下地 基产生的应力增量,是引起地基压缩变形 的应力,是计算地基中附加应力的依据。
p 0 p σ ch p γ m h
P——基底压力; σch——基底处土中自重应力,kPa; γm——基底标高以上天然土层的加权平均值;
※b—三角形分布荷载的一边为b。
※p—三角形分布荷载的最大值(基底附加应力)。
§4 土中应力
§4.4 地基附加应力 4.4.2 矩形荷载和圆形荷载作用时的地基附加应力
2. 矩形面积三角形分布荷载角点下的附加应力
对于矩形面积三角形分布荷载不在角点下 的附加应力计算:
(1)仍然要使用 “角点法”。 (2)对基础中心点下的附加应力,可分为相 等的四块,按均布荷载情况一次算出。 (3)对梯形荷载情况,按同样方法解决。
所以在不透水底面的上下可以有两个突变的自 重应力值。
§4 土中应力 §4.2 土中自重应力
4.2.3 地下水位升降时土中自重应力
§4 土中应力 §4.2 土中自重应力
4.2.4 土质堤坝自身的自重应力 (有限构筑物的自重应力)
计算 面
计算 面
4土中应力

第4章 土中应力4.1 概 述土中应力按其起因分为:自重应力和附加应力。
自重应力——由土体本身有效重量产生的应力称为自重应力。
两种情况:(1)在自重作用下已经完成压缩固结,自重应力不再引起土体或地基的变形;(2)土体在自重作用下尚未完成固结,它将引起土体或地基的变形。
自重压力——土中竖向自重应力 附加压力——土中竖向附加应力某点总应力=土中某点的自重应力+附加应力4.2 土中自重应力自重应力:由土体本身有效重量产生的应力称为自重应力。
一般而言,土体在自重作用下,在漫长的地质历史上已压缩稳定,不再引起土的变形(新沉积土或近期人工充填土除外)。
一、竖直向自重应力自重应力——土体初始应力,指由土体自身的有效重力产生的应力。
假定⎩⎨⎧平面均不存在剪应力土体中所有竖直面和水无限弹性体土体具有水平表面的半1、竖直自重应力cz σ(称为自重应力,用c σ表示)设地基中某单元体离地面的距离z ,土的容重为γ,则单元体上竖直向自重应力等于单位面积上的土柱有效重量,即z cz ⋅=γσ可见,土的竖向自重应力随着深度直线增大,呈三角形分布。
注:(1)计算点在地下水为以下,由于水对土体有浮力作用,则水下部分土柱的有效重量应采用土的浮容重'γ或饱和容重sat γ计算;① 当位于地下水位以下的土为砂土时,土中水为自由水,计算时用'γ。
② 当位于地下水位以下的土为坚硬粘土时0<L I ,在饱和坚硬粘土中只含有结合水,计算自重应力时应采用饱和容重。
③ 水下粘土,当L I ≥1时,用'γ。
④ 如果是介乎砂土和坚硬粘土之间的土,则要按具体情况分析选用适当的容重。
(2)自重应力是由多层土组成,注意分层计算【思考】为何要如此假设? 对于天然重度为γ 的均质土:z cz γσ=对于成层土,并存在地下水:ini i n n cz h h h h ∑==+⋅⋅⋅++=12211γγγγσ式中 :i γ――第i 层土的重度,kN/m 3,地下水位以上的土层一般采用天然重度,地下水位以下的土层采用浮重度,毛细饱和带的土层采用饱和重度.注意:① 在地下水位以下,若埋藏有不透水层(如基岩层、连续分布的硬粘性土层),不透水层中不存在水的浮力,层面及层面以下的自重应力按上覆土层的水土总重计算;② 新近沉积的土层或新近堆填的土层,在自重应力作用下的变形尚未完成,还应考虑它们在自重应力作用下的变形。
土体中的应力计算

土体中的应力计算在土体中,应力是指单位面积上的力的作用,可以分为垂直应力和水平应力。
垂直应力是指垂直于土体中其中一点的力的作用,通常用σ表示,单位为N/m²或Pa;水平应力是指与土体中其中一点切向的力的作用,通常用τ表示,单位为N/m²或Pa。
在计算土体中的应力时,需要先确定作用力的大小和方向。
作用力可以分为自重应力、表面荷载和边界条件所引起的应力。
自重应力是由土体自身的重力引起的应力,可以通过土体的密度和重力加速度来计算;表面荷载是由于外界施加在土体上的荷载,可以通过荷载的大小和分布情况来计算;边界条件所引起的应力是由于土体边界的约束而产生的应力,可以根据边界条件的空间限制来计算。
计算垂直应力时,需要将作用力作用在单位面积上,即垂直应力等于作用力的大小除以土体的面积。
例如,对于自重应力来说,垂直应力可以通过土体的密度乘以重力加速度来计算。
而对于表面荷载来说,垂直应力可以通过荷载的大小和分布情况来计算。
计算水平应力时,需要考虑土体的弹性特性。
根据弹性理论,水平应力的大小与垂直应力的大小和土体的弹性模量有关。
弹性模量是反映土体抵抗应力的能力的指标,可以通过试验或经验公式估算得到。
一般来说,弹性模量越大,土体的抵抗应力能力越强,水平应力的大小也越大。
在应力计算时,还需要考虑土体的变形特性。
土体的变形可以分为弹性变形和塑性变形两种。
弹性变形是指在荷载作用后,土体恢复到无荷载状态时的变形,是可逆的,可以通过应力和应变之间的线性关系进行计算。
而塑性变形是指在荷载作用后,土体不完全恢复到无荷载状态时的变形,是不可逆的,需要通过试验或经验公式来确定。
总之,土体中的应力计算是根据应力平衡原理和弹性力学原理进行的,需要考虑土体的类型、作用力的大小和方向以及土体的弹性和变形特性。
通过合理的应力计算,可以为土壤工程和土木工程的设计和施工提供基础数据。
4土中应力(自重-地基附加应力)

水对土体有浮力作用,则下部 分柱体取有效重度,即
cz ( w ) z ' z
当地下水位下降,地基中有效自重应力增加,从而引起地面
大面积沉降的严重后果
当地下水位上升时,水位上升引起地基承载力的减小,湿陷
性土的陷塌
原地下水位
1’
1 1
1’
原地下水位
2’
2
2
2’
4.不透水层的影响
四、公式的应用
1.均质地基土的自重应力stress in homogeneous soil
cz Z
2.成层地基土的自重应力
当地基为成层土体时,设各土层 的厚度为hi,重度为i,则在深度z处 土的自重应力计算公式为:
式中n为从天然地面到深度z处的 土层数。
3.地下水的影响
计算点在地下水位下时,由于
不透水层层面的自重应力按上覆土层的水土总重计算
5.自重应力图的绘制 ① 建立直角坐标系 ② 确立特征点并编号 (地面、层面、 地下水位面、不透水层层面)
③ 计算各点的竖向自重应力
④ 按比例绘出特征点自重应力的位置 ⑤ 用直线连接各点 ⑥ 校核 (地下水位处,不透水层处)
§4.3 基底压力
一、概述
土力学中应力符号的规定
z
zx
地基:半无限空间
o
∞ x ∞
y yz
xy
x
∞ y
z
x xy xz ij = yx y yz zx zy z
一. 土力学中应力符号的规定
zx
材料力学
z +
正应力
剪应力
-
zx
土力学
z
4 土中应力计算

8
z 10m :
z zi 4 0.045 0.047 0.368kPa
i 1
8
第五节 竖向分布荷载作用下 土中应力计算
分布荷载作用下土中应力计算
• 在基底范围取元素 面积dF,作用在 元素面积上的分布 集中力可以用集中 力dQ表示。
dF d d dQ p( , )d d
第四章 土中应力计算
第一节 概述
• 土中应力:是指土体在自身重力、构筑 物荷载以及其它因素(土中水渗流、地 震等)作用下,土中所产生的应力。土 中应力包括自重应力与附加应力。 • 计算方法:主要采用弹性力学公式,也 就是把地基土视为均匀的、各向同性的 半无限弹性体。
土的应力-应变关系
• 连续介质问题 • 线性弹性体问题 • 均质、等向问题
• 某建筑场地 的地质柱状 图和土的有 关指标列于 图中。计算 地面下深度 为2.5m、 3.6m、 5.0m、 6.0m、 9.0m 处的自重应 力,并绘出 分布图。
例 题 4.1
例 题4.2
• 计算绘制地基中自重应力沿深度分布曲线。
第三节 基础底面的 压力分布与计算
基础底面压力分布的概念
• 接触压力问题及其 影响因素:基础刚 度、尺寸、埋深、 土性、荷载大小
• 绝对柔性基础 • 柔性基础 • 刚性基础
基础底面压力分布的概念
• 刚性基础:基础各点的沉降是相同的,基 底压力分布随荷载的增大依次呈马鞍形分 布、抛物线形分布及钟形分布。
接触压力计算方法
• 简化方法——材料力学轴心和偏心受 压公式 • 弹性地基上的梁板理论——弹性力学 理论,考虑基础刚度的影响
例题 4.7
某基础为方形,基础 深度范围内土的重度 γ=18kN/m3,试计算 基础最大压力边角下 深度z=2m处的附加 应力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y x
) xz x (1 P(1 )P xz x 2 u ( 1 ) u (1 2 3 ) 3E 2 R ( R z ) R 2E R R( R z ) 1 ) yz y (yz P (1v )P y ( 1 2 ) 2 3 v ( 1 ) E R R ( R z ) 2 3 2E P R R ( R z ) 2 1 (1 2 ) z w 12 (1 ) 3 P (1 ) 2 z E R R ) w 3 2(1 2E R R
第4章
土中应力的计算
土体受到力的作用,以内力的形式作出响 应,即产生内力,内力的集度称为应力。 应力按起因可分为:自重应力和附加应力。
土中某点的总应力=
该点的自重应力与附加应力之和。
应力按分担作用可分为: 有效应力和孔隙应力(孔隙压力)。
土中某点的总应力=
该点的有效应力与孔隙应力之和。
均质土中的自重应力
关于基底压力简化计算的说明
基底压力的简化计算
(一) 中心荷载下的基底压力P(kPa)
室内设计地面 G
d d
F
+0.00
+0.00
G
F
室外设计地面
b
b
p (a) (b)
p
d — 基础埋 深(m);必 须从设计地 面或室内外 平均设计地 面算起。
F G p A
F — 作用任基础上的竖向力设计值(kN); G — 基础自重设计值及其上回填土总重 (kN);G=GAd , 其中G为基础及回填土之 平均重度,一般取20kN/m3。
单向偏心荷载下的基底压力
单向偏心荷载 下,设计时通常 取基底长边方向 与偏心方向一致, 此时两短边边缘 最大压力设计值 pmax 与最小压力设 计 值 pmin 按 材 料 力学短柱偏心受 压公式计算:
单向偏心荷载下的基底压力
pmax F G M pmin lb W
W=bl2/6 M=(F+G)e
2 pxz 2 pxz 2 2 p 2 zz zx cos sin 2 2 2 4 R1 R1 (x z )
2
均布的竖向条形荷载
dp
dp p0 d
dp
dp p0 d
三角形分布的竖向条形荷载
查P113表4-11
快速阅读教材
P106-P155 时间:4min
x
2
y2 z2
5
z c p0
αc为均布矩形荷载角点下的竖 向附加应力系数,简称角点应 力系数,可查得。 注意,b恒 为短边,l恒为长边。
c
2、地基中任意点竖向附加应力计算——角点法
例题1
P104
F=1940KN
设计地面
=18KN/m m
3
d=1.5m 1m 1m 1m 1m 1m 1m
3P y 2 z 1 2 R2 R z z 2 y 2 (2R z) 3 y 5 3 2 2 3 R (R z) R (R z) R
3P z 3 3P 3 z 5 cos 2 2 R 2R 3 P xyz 1 2 xy ( 2 R z ) xy 3 5 2 R 3 R ( R z)2
pmax F G 6e (1 ) pmin lb l
单向偏心荷载下的基底压力讨论
pmax F G 6e (1 ) pmin lb l
单向偏心基底压力重新分布
pmax F G 6e (1 ) pmin lb l
pmax
2( F G ) 3bk
b=
相邻基础的相互影响
中间基础地基附加应力是否受相邻基础的影
响? 如何计算增加的附加应力?
快速阅读教材 P97-P105 时间:2min
三角形分布的矩形荷载下附加应力
p0 xz 3 d z 2 b x 2 y 2 z 2
3
dxdy 5/ 2
均布的圆形荷载时地基附加应力
成层土中自重应力
成层土自重应力计算公式: c
计算时注意地下水位的影响:
1
n
i
hi
(1)在地下水位以下,如埋藏有不透水层,由于不透水 层中不存在水的浮力,所以层面及层面以下的自重 应力应按上覆土层的水土总重计算 (2)地下水位位于同一土层中时,地下水位面应作为分 层的界面。
地下水升降时的土中自重应力
天然地面
sz z
应力的单位为kPa,沿 深度线性地面
cz cx cy
cx= cy= K0cz xy=yz=zx=0
K0 称为土的侧压力系数或静 止土压力系数。
z
注意:
(1) 假设天然土体是一个半无限体,地基中的自重 应力状态属于侧限应力状态,地基土在自重作用 下只能产生竖向变形,不能有侧向变形和剪切变 形。地基中任意竖直面和水平面上均无剪应力存 在。 (2) 为了简便起见,把常用的竖向自重应力cz简 称为自重应力,并改用符号c表示。 (3) 计算点在地下水位以下时,采用浮重度代替天 然重度。
(1)地下水上 升时,自重应 力减小;
(2)地下水下 降时,自重应 力增大
课堂练习:P90 例题4-1
试:
计算地面下3.6米、 6.0米、9.0米处 的竖向自重应 力??
基底压力(P91)
基底压力与基底反力
一对作用力与 反作用力,
可通过现场
测试与理论 计算确定
基底压力的分布规律
当荷载较小时,基底压力分布形状如图a,接近 于弹性理论解;荷载增大后,基底压力呈马鞍形(图b); 荷载再增大时,边缘塑性破坏区逐渐扩大,所增加的 荷载必须靠基底中部力的增大来平衡,基底压力图形 可变为抛物线型(图d)以至倒钟形分布(图c)。
p0 z 3 3 d z 2 x 2 y 2 z 2
5/ 2
dxdy
1 dxdy
2
3 p0 z 3 z d z 2 A p0 2
0 0
l b
lbz l 2 b 2 2 z 2 lb arctan 2 2 2 2 2 2 2 2 2 2 z l b z l z b z l b z
竖向集中力 P(KN) 作用在无限半空间表面, 任意点 M(x 、 y 、 z) 处的六个应力分量和三个 位移分量的解析解——布辛奈斯克解。
三个正应力:
3P x 2 z 1 2 R 2 Rz z 2 x 5 R3 ( R z) 2 3 R x 2 (2 R z ) R3 ( R z) 2
线荷载作用下的地基附加应力
线荷载作用下的地基附加应力
z d z
2 x y z
2 2
3 pz 3dy
5/ 2
2 pz 3 ( x 2 z 2 )2
2 pz 3 2 p 3 COS 4 R1 R1 2 px 2 z 2 p 2 px 2 z 2 cos sin x 4 2 2 2 R1 R1 (x z )
双向偏心基底压力计算
基底附加压力(P95)
快速阅读教材 P86-P95
时间:4min
4.4 地基附加应力
1、竖向集中力作用时地基附加应力 2、均布矩形荷载作用时地基附加应力 3、三角形分布的矩形荷载作用时地基 附加应力 4、均布圆形荷载作用时地基附加应力 5、条形荷载作用时时地基附加应力
4.4.1竖向集中力作用下的地基附加应力
yx
yz
3P yz 2 3P y 2 zy 5 cos 3 2 R 2R
2 2) 2 3y 2 z R 3P (R )R R R R 1 2 z R( z zz y 2 (2R 3 y 5 3 3 R R (R z) 3 R (R 3 P z 3 2 P 3 剪应力和位移: 5 co s z 3 2 3P z 3P 2 2 R 3 zR co s 5 2 2 R 1 2 xyz 3P 2 R xy ( 2 R z ) xy P xyz 3 5 3 1 2 2 xy ( 2 R z ) 2 R 3 R ( R z ) xy 3 2 R 5 3 R ( R z)2 3 P yz 2 3P y 2 3P y yz zy 5 3 P yz 2 co s 2 3 yz co s 2 zy R 2 2 R 5 3 R 2R 2 2 3 P xz 3 P 3 Px 2 3P x xz 2 xz zx co s xz zx 5 co s 3 5 3 2 R 2 2 R R 2R
作业: P118-P119 4-8, 4-9, 4-10, 4-11
竖向集中力作用时竖向附加应力
令
1 2 [( r ) 1] z
2 5 2
z 的分布特征如下:
等代荷载法
Fn F1 F2 1 z 1 2 2 2 n 2 2 z z z z
F
i 1 i
n
i
均布矩形荷载下地基附加应力
1、矩形角点下任意深度处附加应力的计算