四川省新津中学2015届高三一诊模拟数学(理)试题
2015级(2018届)高三第一次诊断性检测数学(理)

= (k2 +1)x1x2 +k(m -1)(x1 +x2)+ (m -1)2 =0,
������ ������ ������7 分 ������ ������ ������8 分
数学(理科)“一诊”考试题答案第 2 页(共4页)
∴(k2 +1)44mk22+-14+k(m -1)4-k8 2k+m1+ (m -1)2 =0.
������ ������ ������3 分
∴H
(x)的
极小
值
为
H
(-1)=
-
1 e.
∴k
-b
的
最
小值
为
-
1 e.
������ ������ ������5 分
(2)∵ m >2,x ≥0,由g′(x)=x(ex -2m)=0,解得x =0或x =ln2m .
当x >ln2m 时,g′(x)>0,∴g(x)在 (ln2m ,+ ∞)上单调递增;
y 轴,z 轴建立如图所示的空间直角坐标系 Oxyz .
则 B(4,0,0),C(0,3,0),P(0,0,4),A(0,-3,0).
设点 Q(x,y,z).
由
AQ→
=
1 3
AP→,得
Q(0,-2,4 3).
������ ������ ������6 分
∴ B→C =(-4,3,0),BQ→ =(-4,-2,4 3).
20.解:(1)∵c= 3,ba =2,a2 =b2 +c2,
∴a =2,b=1.
∴
椭
圆
的
标
准
方
程
为
x2 4
+y2
=1.
������ ������ ������5 分
成都市2015届高三第一次诊断模拟试题 数学(理)Word版含答案

成都市2015届高中毕业班第一次诊断性检测数学试题(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|0}=≥U x x ,集合{1}=P ,则U P =ð (A )[0,1)(1,)+∞ (B )(,1)-∞ (C )(,1)(1,)-∞+∞ (D )(1,)+∞2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A ) (B ) (C ) (D ) 3.已知复数z 43i =--(i 是虚数单位),则下列说法正确的是(A )复数z 的虚部为3i - (B )复数z 的虚部为3 (C )复数z 的共轭复数为z 43i =+ (D )复数z 的模为54.函数31,0()1(),03x x x f x x ⎧+<⎪=⎨≥⎪⎩的图象大致为(A ) (B ) (C ) (D )5.已知命题p :“若22≥+x a b ,则2≥x ab ”,则下列说法正确的是 (A )命题p 的逆命题是“若22<+x a b ,则2<x ab ” (B )命题p 的逆命题是“若2<x ab ,则22<+x a b ” (C )命题p 的否命题是“若22<+x a b ,则2<x ab ” (D )命题p 的否命题是“若22x a b ≥+,则2<x ab ”GFEHPACBDA 1B 1C 1D 16.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是 (A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3]7.已知F 是椭圆22221+=x y a b(0>>a b )的左焦点,A 为右顶点,P 是椭圆上一点,⊥PF x轴.若14=PF AF ,则该椭圆的离心率是 (A )14(B )34 (C )12(D8.已知m ,n 是两条不同直线,α,β是两个不同的平面,且//m α,n ⊂β,则下列叙述正确的是(A )若//αβ,则//m n (B )若//m n ,则//αβ (C )若n α⊥,则m β⊥ (D )若m β⊥,则αβ⊥9.若552sin =α,1010)sin(=-αβ,且],4[ππα∈,]23,[ππβ∈,则αβ+的值是 (A )74π (B )94π (C )54π或74π (D )54π或94π 10.如图,已知正方体1111ABCD A B C D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长.则当点P 运动时, 2HP 的最小值是 (A )21(B )22 (C )23 (D )25二、填空题:本大题共5小题,每小题5分,共25分.11.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹角的大小为__________. 12.二项式261()x x-的展开式中含3x 的项的系数是__________.(用数字作答)13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B ,则∆ABC 的面积=S __________.14.已知定义在R 上的奇函数()f x ,当0x ≥时,3()log (1)=+f x x .若关于x 的不等式2[(2)](22)f x a a f ax x ++≤+的解集为A ,函数()f x 在[8,8]-上的值域为B ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________.15.已知曲线C :22y x a =+在点n P (n (0,a n >∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且00=x y .给出以下结论: ①1a =;②当*n ∈N时,n y 的最小值为54; ③当*n ∈N 时,n k <; ④当*n ∈N时,记数列{}n k 的前n 项和为n S ,则1)<n S .其中,正确的结论有 (写出所有正确结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球.(Ⅰ)求恰有一个黑球的概率;(Ⅱ)记取出红球的个数为随机变量X ,求X 的分布列和数学期望()E X .17.(本小题满分12分)如图,ABC ∆为正三角形,EC ⊥平面ABC ,//DB EC ,F 为EA 的中点,2EC AC ==,1BD =.(Ⅰ)求证:DF //平面ABC ;(Ⅱ)求平面DEA 与平面ABC 所成的锐二面角的余弦值. 18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T .19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象. (Ⅰ)根据图象,求A ,ω,ϕ,B 的值; (Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:20.(本小题满分13分)已知椭圆Γ:12222=+by a x (0>>b a )的右焦点为)0,22(,且椭圆Γ上一点M 到其两焦点12,F F 的距离之和为(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:(l y x m m =+∈R)与椭圆Γ交于不同两点A ,B ,且AB =0(,2)P x 满足=PA PB ,求0x 的值.21.(本小题满分14分)已知函数2()ln mx f x x =-,2()emx mx g x m =-,其中m ∈R 且0m ≠.e 2.71828=为自然对数的底数.(Ⅰ)当0m <时,求函数()f x 的单调区间和极小值;(Ⅱ)当0m >时,若函数()g x 存在,,a b c 三个零点,且a b c <<,试证明: 10e a b c -<<<<<;(Ⅲ)是否存在负数m ,对1(1,)x ∀∈+∞,2(,0)x ∀∈-∞,都有12()()f x g x >成立?若存在,求出m 的取值范围;若不存在,请说明理由.成都市2015届高中毕业班第一次诊断性检测 数学试题(理科)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)1.A ; 2.C ; 3.D ;4.A ;5.C ;6.B ;7.B ;8.D ;9.A ;10.B .第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)11.90︒ 12.20- 13 14.[2,0]- 15.①③④ 三、解答题:(本大题共6个小题,共75分) 16.(本小题满分12分) 解:(Ⅰ)记“恰有一个黑球”为事件A ,则21243641()205⋅===C C P A C .……………………………………………………………4分(Ⅱ)X 的可能取值为0,1,2,则343641(0)205====C P X C ……………………………………………………………2分122436123(1)205⋅====C C P X C ………………………………………………………2分 1(2)()5===P X P A ………………………………………………………………2分 ∴X 的分布列为∴X 的数学期望1310121555=⨯+⨯+⨯=EX .…………………………………2分∴//DF 平面ABC .……………………………………4分 (Ⅱ)∵//FO EC ,∴⊥FO 平面ABC .在正∆ABC 中,⊥BO AC ,∴,,OA OB OF 三线两两垂直. 分别以,,OA OB OF 为,,z x y 轴,建系如图. 则(1,0,0)A ,(1,0,2)-E,D . ∴(2,0,2)=-AE,(1=-AD . 设平面ADE 的一个法向量为1(,,z)=x y n ,则110⎧⋅=⎪⎨⋅=⎪⎩AE AD n n,即2200-+=⎧⎪⎨-+=⎪⎩x z x z ,令1=x ,则1,0==z y .∴平面ADE 的一个法向量为1(1,0,1)=n . 又平面ABC 的一个法向量为2(0,0,1)=n .∴121212,2⋅>===cos <n n n n n n . ∴平面DEA 与平面ABC.…………………………8分 18.(本小题满分12分) 解:(Ⅰ)∵22n n S a =- ①当2≥n 时,1122--=-n n S a ②①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ). 又当1≥n 时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .………………………………………4分 又由题意知,11b =,12n n b b +=+,即12+-=n n b b ∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………………2分 (Ⅱ)(Ⅱ)由(Ⅰ)知,(21)2=-nn c n ………………………………………………1分∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n …………………1分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n …………………………………………………1分∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n ………………………………………3分 19.(本小题满分12分) 解:(Ⅰ)由图知12T =,6πω=.………………………………………………………1分2125.15.22m i n m a x =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分 ∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f . (Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t . 又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t . 又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分 ∴应该在11.625时停产.……………………………………………………………1分 (也可直接由)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产) 20.(本小题满分13分)(Ⅰ)由已知2=a得=a,又=c ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴12=-=AB x又由AB =231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点. 设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=,当2m =时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分 综上所述,0x 的值为3-或1-. 21.(本小题满分14分)解:(Ⅰ)2222)(ln )ln 21()(ln ln 2)(ln 1ln 2)(x x mx x x x x m x x x x x mx f -⋅=-=⋅--='(0>x 且1≠x ). ∴由0)(>'x f ,得21e x >;由0)(<'xf ,得210e x <<,且1≠x .……………………1分 ∴函数)(x f的单调递减区间是(0,1),(1,单调递增区间是),(+∞e .………………2分 ∴me e f x f 2)()(-==极小值.………………………………………………………………1分(Ⅱ)222(2)(),(0)mx mx mx mxmxe mx e m mx mx g x m e e--'=-=>. ∴()g x 在(,0)-∞上单调递增,2(0,)m上单调递减,2(,)m +∞上单调递增. ∵函数()g x 存在三个零点.∴20(0)02402()00>⎧>⎧⎪⎪⎪⇒⇒<<⎨⎨<⎪⎪-<⎩⎪⎩m g m e g m m m e . ∴02<<me …………………………………………………………………………………3分 由(1)(1)0-=-=-<mmg m me m e .∴22()(1)0=-=-<em em me e g e m m e e.……………………………………………………1分综上可知,()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得:(1,0),(0,),(,)a b e c e ∈-∈∈+∞.即10a b e c -<<<<<,得证.…………………………………………………………1分 (III )由题意,只需min max ()()>f x g x∵2(12ln )()(ln )-'=mx x f x x 由0<m ,∴函数()f x 在12(1,)e 上单调递减,在12(,)e +∞上单调递增.∴12min ()()2==-f x f e me .………………………………………………………………2分 ∵(2)()-'=mxmx mx g x e由0<m ,∴函数()g x 在2(,)m -∞上单调递增,2(,0)m上单调递减. ∴max 224()()==-g x g m m e m .……………………………………………………………2分 ∴242->-me m e m ,不等式两边同乘以负数m ,得22242-<-m e m e.∴224(21)e m e+>,即224(21)m e e >+.由0<m ,解得(21)m e e <-+.综上所述,存在这样的负数(,)(21)∈-∞-+m e e 满足题意.……………………………1分。
2015年四川高考数学(理科)试题含答案

=2 答案:C 2010年普通高等学校招生全国统一考试(四川卷)数学(理工农医类)第I 卷参考公式:P n (k)=C ;p k (1 — p)n±(k =0,1,2,…n)一、选择题:(1) i 是虚数单位,计算i + i 2 + i 3 = (A )- 1( B ) 1(C ) -i(D ) i解析:由复数性质知:i 2=- 1 故 i + i 2+ i 3= i +( — 1)+( — i) =- 1 答案:A (2)下列四个图像所表示的函数,在点 x = 0处连续的是解析:由图象及函数连续的性质知, D 正确.答案:D (3)2log 510 + log 50 . 25=―(A ) 0( B ) 1( C ) 2解析:2log 510+ log 50. 25P(A+B) =P(A)+P(B)s 二 4 二 R 2如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A B)=P(A) P(B)球的体积公式如果事件A 在一次试验中发生的概率是 p ,那么4 D 2 v R3在n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径如果事件A 、B 互斥,那么 球的表面积公式(B ) (C )(D) 4w=log 5100 + log50. 25=log 525=2答案:C(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱80(4) 函数f(x) = x2+ mx+ 1的图像关于直线(A) m = _2 ( B) m = 2答案:A2解析:由BC = 16,得| BC| =4 AB AC I A^-A C而AB AC AM答案:C w…(6)将函数y =sin x的图像上所有的点向右平行移动'个单位长度,再把所得各点的横坐10标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是w—m(A) y =sin(2x ) (B) y = sin(2x )10 51 兀 1 兀(C) y 二sin(—x ) (D) y 二sin(—x )2 10 2 20解析:将函数y=sinx的图像上所有的点向右平行移动一个单位长度,所得函数图象的解析10式为y= sin(x—) •10再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是1 ny"门(异-石).答案:C(7)某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A产品,每千克A产品获利40元,乙车间加工一箱原料需耗费工时6小时可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两解析:函数f( x) = x2+ mx+ 1的对称轴为x= —曰疋—m= 1 =• m= —22x=1对称的充要条件是(C) m - -1(5)设点M是线段BC的中点,点A在直线BC夕卜,BC2=16,AB ACi IA^-A C.贝y(A)8 (B)4 (C) 2 (D ) 1w_w-=BC = 4故二2车间每天总获利最大的生产计划为(D )甲车间加工原料 40箱,乙车间加工原料 30箱 解析:设甲车间加工原料 x 箱,乙车间加工原料 y 箱x y _ 70nt I则 <10x+6y 兰480x, y N目标函数z = 280x + 300y结合图象可得:当 x = 15, y = 55时z 最大 本题也可以将答案逐项代入检验 . 答案:Bw … (8)已知数列的首项印=0,其前n 项的和为S n ,且S n.i =2S 「印,则lim n 二1(A )0( B ) —( C ) 1 ( D )22解析:由 & 1=2Sn ' a 1,且Sn 2-2S n 1a1 1作差得 a n +2 = 2a n +1^又 S 2 2S 1 + a 1, 即卩 a ? + a 1 2 a 1 + a^ —■ a ? 2 a 1故{a n }是公比为2的等比数列S n = a 1+ 2a 1 + 22a 1 + .......................... + 2n 1a 1= (2n — 1) a 1则 lima n= lim nn;:S nn ::(2n -1)a 1答案:B2 2xy(9)椭圆二 2 =1(a 的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点a bP 满足线段AP 的垂直平分线过点 F ,则椭圆离心率的取值范围是 co(A ) 0,彳(B ) 0,1(C )J2-1,1(D ) 1,1解析:由题意,椭圆上存在点 P ,使得线段AP 的垂直平分线过点F ,2nJ 31即F 点到P 点与A 点的距离相等m2 ,2ab而 | FA| = C = 一c c| PF| € [a — c, a + c]即 ac — c ?w ac + c ?.j ac _c 2 兰 a 2 _c 2 a 2 -c 2 乞ac c 2于是b 2€ [ a — c, a + c]c—叮屏11 或--a — 2又e€ (0, 1)故e€ |-,1 | '2丿答案:D(10)由1、2、3、4、5、6组成没有重复数字且-3都不与5相邻的六位偶数的个数是(A)72 ( B)96 ( C) 108 ( D)144w …解析:先选一个偶数字排个位,有3种选法_…①若5在十位或十万位,则1、3有三个位置可排,3 A f A f = 24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共3A2A2 = 12个算上个位偶数字的排法,共计3(24 + 12) = 108个答案:C(11)半径为R的球O的直径AB垂直于平面「,垂足为B , BCD是平面〉内边长为与球面交于点M , N,/A、f 17(A) Rarccos——25 那么R的正三角形,线段AC、M、N两点间的球面距离是厂18(B) Rarccos -25(C)AD分别解析: 由已知,1 AB = 2R, BC = R,故tan / BAC = —•一.…2cos/ BAC =连结OM,则△ OAM为等腰三角形4品4亦AM = 2AOcos / BAC = R,同理AN= R,且MN// CD w5 5而AC = . 5R, CD = R故MN : CD = AN:AC w一MN = 4R ,5连结OM、ON, 有OM = ON= R于是cos/ MON =2 2 2OM ON -MN2OM LON172517所以M 、N 两点间的球面距离是 Rarccos25答案:A1i(12)设 a >b :- c ,0 ,则 2a 2 10ac :-25c 2 的最小值是ab a(a_b)(A )2( B )4( C ) 2,5( D ) 5解析: 2a 2 — 110ac - 25c 2ab a(a —b)=(a -5c)2 ab 丄 a(a -b) --ab a(a —b)> 0 + 2+ 2=4当且仅当a — 5c = 0, ab = 1, a( a -b) = 1时等号成立2c = 2满足条件5答案:B=(a _5c)2a 2 —ab ab 丄 --ab a(a —b)如取a =第口卷、填空题:本大题共 4小题,每小题4分,共16分.把答案填在题中横线上1 6(13) (2-3—)6的展开式中的第四项是.Jx(14)直线x -2y 5=0与圆x 2 y 2 =8相交于A 、B 两点,则 AB 〒解析:方法一、圆心为(0,0),半径为2、、2故 LABJ 二.、二二=二 2 二…2得 | AB| = 2 3 答案:2 3(15)如图,二面角〉-I - '■的大小是60°,线段AB 二:;• B 三丨,AB 与I 所成的角为30° .则AB 与平面1所成的角的正弦值是•解析:过点A 作平面B 的垂线,垂足为 C ,在B 内过C 作I 的垂线•垂足为D 连结AD ,有三垂线定理可知 AD 丄I ,故/ ADC 为二面角:• -I - 1的平面角,为60° 又由已知,/ ABD = 30° 连结CB ,则/ ABC 为AB 与平面一:所成的角..设 AD = 2,贝V AC = /3 , CD = 1ADAB =0 =4sin 30AC 3--sin / ABC =AB 4答案:空解析: T 4= C ;23160x答案:160 x 圆心到直线x -2y • 5=0的距离为4(16)设S为复数集C的非空子集.若对任意x, y S ,都有x • y,x - y,xy • S ,则称S为封闭集。
四川省新津中学2015届高三一诊模拟数学(理)试题

四川省新津中学2015届高三一诊模拟数学(理)试题一.选择题(共10小题,每小题5分,满分50分)1.已知集合2{|230}A x x x =--<,2{|log 2}B x x =<,则A B =A.(1,4)-B.(1,3)-C.(0,3)D.(0,4)2.若复数3i(R,i 12ia a +∈-为虚数单位)为纯虚数,则实数a 的值为 A.6- B.2- C.4D.63.函数2cos(2)2y x π=-是A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为2π的奇函数D.最小正周期为2π的偶函数4.等差数列{}n a 中,已知112a =-,130S =,则使得0n a >的最小正整数n 为 A.7B.8C.9D.105.直线0x y m -+=与圆22210x y x +--=有两个不同交点的一个充分不必要条件是 A. 31m -<< B.42m -<< C.1m < D.01m << 6.用数字1,2,3,4,5组成无重复数字的五位数,要求1不在首位,3不在百位的五位数共有 A.72 B.78 C.96 D.547.定义某种运算⊕,a b ⊕的运算原理如图所示,设1S x =⊕, [2,2]x ∈-,则输出的S 的最大值与最小值的差为 A.2 B.1- C.4 D.38.下列命题:①若直线l 上有无数个点不在平面α内,则l ∥α;②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行;③如果两条平行直线中的一条与一个平面平行,那么另一条也与 这个平面平行;④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.其中正确的个数是A.1B.2C.3D.4 9.已知抛物线24y x =的焦点为F ,准线为l,点P 为抛物线上任意一点,且在第一象限,PA ⊥l ,垂足为A ,||4PF =,则直线AF 的倾斜角等于 A.712π B.23π C.34π D.56π 10.已知函数()f x 对定义域R 内的任意x 都有()(4)f x f x =-,且当2x ≠时,其导函数()f x ' 满足()2()xf x f x ''>,若24a <<,则A.2(2)(3)(log )a f f f a <<B.2(3)(log )(2)a f f a f <<C.2(log )(3)(2)a f a f f <<D.2(log )(2)(3)a f a f f <<二.填空题(本大题共5小题,每小题5分,共25分) 11.二项式52(1)x-的展开式中第四项的系数为 .12.一个几何体的三视图如图所示,其中网格纸上的小正方形的边长 为1,则该几何体的体积为 .S a =是否S 输出结束?a b ≥||S b =开始,a b输入13.点(,)P x y 在不等式组031x x y y x ≥⎧⎪+≤⎨⎪≥+⎩表示的平面区域内,若点(,)P x y到直线1(0)y kx k =->的最大距离为22,则实数k = .14.ABC ∆的外接圆半径为1,圆心为O ,且3450OA OB OC ++=,则OC AB ⋅的值为 . 15已知函数()ln f x x x =,且120x x <<,给出下列命题:①1212()()1f x f x x x -<-;②1221()()f x x f x x +<+;③2112()()x f x x f x <;④当1ln 1x >-时,112221()()2()x f x x f x x f x +>.其中所有正确命题的序号为 .三.解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分12分)已知{}n a 为等比数列,其中11a =,且2354,,a a a a +成等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n n a n b ⋅-=)12(,求数列{}n b 的前n 项和n T .17.(本小题满分12分)已知向量(2cos ,1),(cos ,23sin cos 1)m x n x x x ==-,函数()f x m n =⋅. (Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()1,7f B b ==,sin 3sin A C =,求ABC ∆的面积.18.(本小题满分12分)在2014年10月,某市进行了“居民幸福度”的调查,某师大附中学生会组织部分同学,用“10 分制”随机调查“狮子山”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎 叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶).(Ⅰ)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至 多有1人是“极幸福”的概率;19.(本小题满分12分)已知在四棱锥P ABCD -中,底面ABCD 是矩形,且2AD =,1AB =,PA ⊥平面ABCD ,E 、F 分别是线段AB 、BC 的中点.(Ⅰ)判断并说明PA 上是否存在点G ,使得//EG 平面PFD ?若存在,求出PGGA的值;若不 存在,请说明理由;(Ⅱ)若PB 与平面ABCD 所成的角为45︒,求二面角A PD F --的平面角的余弦值.20.(本小题满分13分)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>过点(,)22a aA 和点(3,1)B .(Ⅰ)求椭圆C 的方程;(Ⅱ)已知点00(,)P x y 在椭圆C 上,F 为椭圆的左焦点,直线l 的方程为00360x x y y +-=. (ⅰ)求证:直线l 与椭圆C 有唯一的公共点;(ⅱ)若点F 关于直线l 的对称点为Q ,探索:当点P 在椭圆C 上运动时,直线PQ 是否过定点?若过定点,求出此定点的坐标;若不过定点,请说明理由.P D C B A g F E21.(本小题满分14分)已知函数2()e (22)x f x ax x =--,R a ∈且0a ≠.(Ⅰ)若曲线()y f x =在点(2,(2))P f 处的切线垂直于y 轴,求实数a 的值; (Ⅱ)当0a >时,求函数(|sin |)f x 的最小值;(Ⅲ)在 (Ⅰ)的条件下,若y kx =与()y f x =的图像存在三个交点,求k 的取值范围.2015届“一诊”模拟考试(一)理科数学答案一.选择题(共10小题,每小题5分,满分50分) 题号 1 2 3 4 5 6 7 8 9 10 答案 C D A B D BAABC二.填空题(本大题共5小题,每小题5分,共25分) 11.80-. 12.2503. 13.1. 14.15-. 15.③④. 三.解答题:17.【解答】(Ⅰ)∵2()2cos 23sin cos 13sin 2cos 2f x m n x x x x x =⋅=+-=+, ∴()2sin(2)6f x x π=+.∵2[2,2](Z)622x k k k πππππ+∈-++∈,∴[,](Z)36x k k k ππππ∈-++∈,∴函数()f x 的单调递增区间为[,](Z)36k k k ππππ-++∈.(Ⅱ)∵()2sin(2)16f B B π=+=,∴15sin(2)26266B B πππ+=⇒+=,∴3B π=. ∵sin 3sin A C =,∴3a c =.∵7b =,2222cos b a c ac B =+-,∴3,1a c ==.∵1sin 2S ac B =,∴ABC ∆的面积为334.18.【解答】(Ⅰ)∴从这16人中随机选取3人,至多有1人是“极幸福”的概率为32112124316C C C 121()C 140P A +==.(Ⅱ)∵X 的取值为0,1,2,3,且033327(0)C ()464P X ==⨯=,1233127(1)C ()4464P X ==⨯⨯=, 223319(2)C ()4464P X ==⨯⨯=,33311(3)C ()464P X ==⨯=, ∴X 的分布列为X0 1 2 3 P2764 2764 964 164∴X 的数学期望是0271833()644E X +++==.19.【解答】(Ⅰ)建立如图所示的空间直角坐标系,设,PA a GA b ==. ∵(1,1,0),(0,2,0),(0,0,),(0,0,)F D P a G b ,∴(1,1,0)DF =-,(0,2,)PD a =-,1(,0,)2GE b =-.设平面PFD 的一个法向量(,,)m x a z =.∵020m DF x a m PD a az ⎧⋅=-=⎪⎨⋅=-=⎪⎩,∴2x a z =⎧⎨=⎩,∴(,,2)m a a =.∵1202GE m a b ⋅=-=,∴14b a =.∴3PG GE =. (Ⅱ)∵PBA ∠为直线PB 与平面ABCD 所成的角,20.【解答】(Ⅰ)∵2222()()221a aa b +=,且22311a b +=,∴226,2a b ==,∴椭圆C 的方程为22162x y +=. (Ⅱ)(ⅰ)联立方程组220036360x y x x y y ⎧+=⎨+-=⎩,整理为22220000(3)1236180x y x x x y +-+-=…①.∵P 在椭圆C 上,∴2200162x y +=,即220036y x =-, ∴方程①为220020x x x x -+=,即0∆=,∴直线l 与椭圆C 有唯一的公共点.(ⅱ)∵(2,0)F -,∴过点F 且与l 垂直的直线方程为00360y y x x --=.∵联立方程组0000360360y y x x x x y y --=⎧⎨+-=⎩,∴2002200000220061891869x y x x y y x y y x y ⎧-=⎪+⎪⎨+⎪=⎪+⎩.PDCB A gF E z xG y∵220036y x =-,且222QQx x y y =-+⎧⎪⎨=⎪⎩,∴Q 点坐标为0000466(,)33x y x x ---.(1)当02x ≠时,直线PQ 的斜率0000000634623y y x y k x x x x --==----.21.【解答】(Ⅰ)∵2()e (22)xf x ax x =--,∴22()e (22)e (22)e [2(1)4]xxxf x ax x ax ax a x '=--+-=+--.∵2(2)e (88)0f a '=-=,∴1a =.(Ⅱ)由(Ⅰ)知2()e ()(2)x f x a x x a'=-+.(1)当02a <≤时,∵21a≥,∴()f x 在区间(0,1)上单调递减, ∴()f x 的最小值为(1)(4)e f a =-.(2)当2a >时,∵201a <<,∴()f x 在区间2(0,)a 上单调递减,在区间2(,1)a上单调递增.∴()f x 的最小值为22()2e af a=-.综上所述,当02a <≤时,函数(|sin |)f x 的最小值为(4)e a -;当2a >时,函数(|sin |)f x 的最小值为22e a-.(Ⅲ)由2e (22)()x x x f x kx k x --=⇒=,设2e (22)()x x x g x x--=.∵2e ()(2)(1)(2)xg x x x x x'=--+,∴函数()g x 的单调递增区间为(2,0),(0,1),(2,)-+∞;O212-xy单调递减区间为(,2),(1,2)-∞-.∵x →-∞时,函数()g x 的图象在x 轴下方且无限靠近x 轴,2(2)2e g --=-,(1)3e g =-,2(2)2e g =-,∴实数k 的取值范围是22(2e ,3e)(2e ,0)----.15.已知直线:1(R)l y ax a a =+-∈.若存在实数a 使得一条曲线与直线l 有两个不同的交点, 且以这两个交点为端点的线段长度恰好等于||a ,则称曲线为直线l 的“绝对曲线”,给出下列 四条曲线方程: ①2|1|y x =--; ②2y x =;③22(1)(1)1x y -+-=; ④2234x y +=.其中直线l 的“绝对曲线”方程的所有序号为 . 21.(本小题满分14分)设函数2()(2)ln f x x a x a x =---,函数()f x '是函数()f x 的导函数. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 有两个零点,求正整数a 的最小值; (Ⅲ)若方程()f x c =有两个不相等的实数根12,x x ,求证:12()02x x f +'>.轴;()g x 在(2,0) 上单调递增,当x 无限接近于0时,()g x 无限增大,其图像在左侧向上29.【山东省滨州市滨城区一中2013届高三11月质检】(本题满分14分)定义:若∃R x ∈0,使得00)(x x f =成立,则称0x 为函数)(x f y =的一个不动点 (1)下列函数不.存在不动点的是( )---(单选)。
2015年3月2015届高三第一次全国大联考(四川版)理数卷(正式考试版)

第1页 共2页 ◎第2页 共2页 【2015年第一次全国大联考【四川卷】理科数学试卷考试时间:120分钟;满分150分 命题人:学科网大联考命题中心第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |ln 12x +<1},N 是自然数集,则A ∩N =( )A .{1,2,3,4}B .{0,1,2,3,4,5}C .{1,2,3,4,5}D .{0,1,2,3,4} 2.已知i 是虚数单位,则复数z =2ii+的共轭复数在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.已知命题p :∀x ∈R ,x 2-2x +1≥0.则⌝p 是( ) A .∃x ∈R ,x 2-2x +1≤0 B .∃x ∈R ,x 2-2x +1<0 C .∀x ∈R ,x 2-2x +1<0D .∀x ∈R ,x 2-2x +1≥04.十字路口的信号灯计时器是由7根发光灯管构成(如图),每根灯管的功率为50瓦,为节约能源,交管部门决定将其更换为节能发光管,每根灯管的功率仅为10瓦, 如果一天内这个计时器都是从9秒倒计时到0秒,并循环往复,那么,经过更换, 这个计时器每天(24小时)可以节约的电量约为( )A .4.3千瓦时B .4.5千瓦时 .4.7千瓦时 D .5.0千瓦时 5.如图,网格纸上小正方形的边长为1,粗实线画出的是某空间几何体的三视图,现需要用一个球装下这个几何体,则该球的体积最小为( ). ABCD6.已知函数的部分图象如右图所示,则Φ=( ) A .π6- B .π6 C .π3- D .π37.已知实数x y 、满足约束条件22,24,4 1.x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩若()(),,3,1a x y b ==-,设z 表示向量a 在向量b方向上射影的数量,则z 的取值范围是( )A .3,62⎡⎤-⎢⎥⎣⎦ B .[]1,6- C.⎡⎢⎣ D.⎡⎢⎣ 8.设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是( ) A .若l ⊥α,α⊥β,则l ∥β B .若l ∥α,l ∥β,则α∥βC .若l ⊥α,l ⊥β,则α∥βD .若l ∥α,α⊥β,则l ⊥β9.已知双曲线22221(00)x y a b a b-=>>,的中心为O ,左焦点为F ,P 是双曲线上的一点0OP PF ⋅=uu u r uu u r 且24OP OF OF ⋅=u u u r u u u r u u u r ,则该双曲线的离心率是( )ABCD10.已知定义在{|,}x x k k Z ≠∈上的奇函数()f x 对定义域内的任意实数x 满足:(2)()f x f x +=-,且1<x <2时,f (x )=x 2-x ,则下列结论错误..的是( ) A .函数f (x )的周期为4;B .y =f (x )在32x =处的切线的斜率为2; C .f (x )在(2014,2015)上单调递减;D .方程f (x )=log 2|x |的解的个数为6.第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11.已知直线3430x y +-=,6140x my ++=平行, 则它们之间的距离是___________ 12.设,则的值为_________.13.执行下列程序框图,则输出m 的的值为_______.14.若221a ab b -+=,a ,b 是实数,则a b +的最大值是 ______.15.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数Φ(x)组成的集合:对于函数Φ(x),存在一个正数M ,使得函数Φ(x)的值域包含于区间[],M M -.例如,当Φ1(x)=x 3,Φ2(x)=sinx 时,Φ1(x)∈A ,Φ2(x)∈B.现有如下命题:()10102210102xa x a x a a x+⋅⋅⋅+++=-()()293121020a a a a a a +⋅⋅⋅++-+⋅⋅⋅++第3页 共4页 ◎第4页 共4页 ①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“(),,b R a D f a b ∀∈∃∈=”; ②函数()f x B ∈的充要条件是()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()()()(),f x A g x B f x g x B ∈∈+∉,则; ④若函数()()()2ln 22,1xf x a x x a R x =++>-∈+有最大值,则()f x B ∈. 其中的真命题有_____________.(写出所有真命题的序号)三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分12分)一次数学测验,某班50名的成绩全部介于90分到140分之间.将成绩结果按如下方式分成五段:第一段[90,100),第二段[100,110),……,第五段[130,140].按上述分段方法得到 的频率分布直方图如图所示. (Ⅰ)若成绩大于或等于100分且小于120分认为是良 好的,求该校参赛学生在这次数学联赛中成绩良好的 人数; (Ⅱ)现将分数在[90,110)内同学分为第1组,在[110, 120)内的分为第2组,在[120,140)内的分为第3组, 然后从中随机抽取2人,用ξ表示这2人所在组数之 差的绝对值,求ξ的分布列和期望.17.(本小题满分12分)已知函数)22,0()sin()(πϕπωϕω<<->++=b x x f ,其中ω是使得函数图象相邻两对称轴间的距离不超过23π的最小正整数,若将)(x f 的图象先向左平移12π个单位,再向下平移1个单位,所得的函数)(x g 为奇函数. (Ⅰ)求)(x f 的解析式,并求)(x f 的对称中心; (Ⅱ)△ABC 中,如果f (26B π+)=1,b =且asinA -bsinB =sinC (c),求△ABC 的面积.18.(本小题满分12分)已知∠ABC =45°,B 、C 为 定点且BC =3,A 为动点,作AD ⊥BC ,垂足 D 在线段BC 上且异于点B ,如图1。
2015届成都一诊数学试题及答案(文科、理科)

成都市2015届高中毕业班第一次诊断性检测数学试题(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|0}=≥U x x ,集合{1}=P ,则UP =(A )[0,1)(1,)+∞ (B )(,1)-∞ (C )(,1)(1,)-∞+∞ (D )(1,)+∞2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A ) (B ) (C ) (D ) 3.已知复数z 43i =--(i 是虚数单位),则下列说法正确的是(A )复数z 的虚部为3i - (B )复数z 的虚部为3 (C )复数z 的共轭复数为z 43i =+ (D )复数z 的模为54.函数31,0()1(),03x x x f x x ⎧+<⎪=⎨≥⎪⎩的图象大致为(A ) (B ) (C ) (D )5.已知命题p :“若22≥+x a b ,则2≥x ab ”,则下列说法正确的是 (A )命题p 的逆命题是“若22<+x a b ,则2<x ab ” (B )命题p 的逆命题是“若2<x ab ,则22<+x a b ” (C )命题p 的否命题是“若22<+x a b ,则2<x ab ” (D )命题p 的否命题是“若22x a b ≥+,则2<x ab ”y xOxyO x y Ox yOGFEHPACBDA B C D 6.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是 (A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3]7.已知F 是椭圆22221+=x y a b(0>>a b )的左焦点,A 为右顶点,P 是椭圆上一点,⊥PF x轴.若14=PF AF ,则该椭圆的离心率是 (A )14(B )34 (C )12 (D 8.已知m ,n 是两条不同直线,α,β是两个不同的平面,且//m α,n ⊂β,则下列叙述正确的是(A )若//αβ,则//m n (B )若//m n ,则//αβ (C )若n α⊥,则m β⊥ (D )若m β⊥,则αβ⊥9.若552sin =α,1010)sin(=-αβ,且],4[ππα∈,]23,[ππβ∈,则αβ+的值是 (A )74π (B )94π (C )54π或74π (D )54π或94π10.如图,已知正方体1111ABCD A BC D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDDC 距离等于线段PF 的长.则当点P 运动时, 2HP 的最小值是(A )21 (B )22 (C )23 (D )25二、填空题:本大题共5小题,每小题5分,共25分.11.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹角的大小为__________.12.二项式261()x x-的展开式中含3x 的项的系数是__________.(用数字作答)13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B ,则∆ABC 的面积=S __________.14.已知定义在R 上的奇函数()f x ,当0x ≥时,3()log (1)=+f x x .若关于x 的不等式2[(2)](22)f x a a f ax x ++≤+的解集为A ,函数()f x 在[8,8]-上的值域为B ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________.15.已知曲线C :22y x a =+在点n P (n (0,a n >∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且00=x y .给出以下结论: ①1a =;②当*n ∈N时,n y 的最小值为54; ③当*n ∈N 时,n k <; ④当*n ∈N 时,记数列{}n k 的前n 项和为n S ,则1)<n S .其中,正确的结论有 (写出所有正确结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球.(Ⅰ)求恰有一个黑球的概率;(Ⅱ)记取出红球的个数为随机变量X ,求X 的分布列和数学期望()E X .17.(本小题满分12分)如图,ABC ∆为正三角形,EC ⊥平面ABC ,//DB EC ,F 为EA 的中点,2EC AC ==,1BD =.(Ⅰ)求证:DF //平面ABC ;(Ⅱ)求平面DEA 与平面ABC 所成的锐二面角的余弦值. 18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T .19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象. (Ⅰ)根据图象,求A ,ω,ϕ,B 的值; (Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:20.(本小题满分13分)已知椭圆Γ:12222=+by a x (0>>b a )的右焦点为)0,22(,且椭圆Γ上一点M 到其两焦点12,F F 的距离之和为43(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:(l y x m m =+∈R)与椭圆Γ交于不同两点A ,B ,且32AB =点0(,2)P x 满足=PA PB ,求0x 的值. 21.(本小题满分14分)已知函数2()ln mx f x x =-,2()emx mx g x m =-,其中m ∈R 且0m ≠.e 2.71828=为自然对数的底数.(Ⅰ)当0m <时,求函数()f x 的单调区间和极小值;(Ⅱ)当0m >时,若函数()g x 存在,,a b c 三个零点,且a b c <<,试证明:10e a b c -<<<<<;(Ⅲ)是否存在负数m ,对1(1,)x ∀∈+∞,2(,0)x ∀∈-∞,都有12()()f x g x >成立?若存在,求出m 的取值范围;若不存在,请说明理由.t (时)10 11 12 11.5 11.25 11.75 11.625 11.6875 ()f t (万千瓦时) 2.25 2.4332.5 2.48 2.462 2.496 2.490 2.493 ()g t (万千瓦时)53.522.753.1252.3752.5632.469数学(理科)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)1.A ; 2.C ; 3.D ;4.A ;5.C ;6.B ;7.B ;8.D ;9.A ;10.B .第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)11.90︒ 12.20- 1314.[2,0]- 15.①③④ 三、解答题:(本大题共6个小题,共75分) 16.(本小题满分12分) 解:(Ⅰ)记“恰有一个黑球”为事件A ,则21243641()205⋅===C C P A C .……………………………………………………………4分(Ⅱ)X 的可能取值为0,1,2,则343641(0)205====C P X C (2)分122436123(1)205⋅====C C P X C ………………………………………………………2分1(2)()5===P X P A ………………………………………………………………2分∴X 的分布列为∴X 的数学期望1310121555=⨯+⨯+⨯=EX .…………………………………2分17.(本小题满分12分)(Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC . ∴//=FO BD ,∴四边形FOBD 为平行四边形. ∴//DF OB ,又⊄DF 平面ABC ,⊂OB 平面ABC .∴//DF 平面ABC .……………………………………4分 (Ⅱ)∵//FO EC ,∴⊥FO 平面ABC .在正∆ABC 中,⊥BO AC ,∴,,OA OB OF 三线两两垂直. 分别以,,OA OB OF 为,,z x y 轴,建系如图. 则(1,0,0)A ,(1,0,2)-E,D . ∴(2,0,2)=-AE,(1=-AD . 设平面ADE 的一个法向量为1(,,z)=x y n ,则110⎧⋅=⎪⎨⋅=⎪⎩AE AD n n,即2200-+=⎧⎪⎨-++=⎪⎩x z x z ,令1=x ,则1,0==z y .∴平面ADE 的一个法向量为1(1,0,1)=n . 又平面ABC 的一个法向量为2(0,0,1)=n .∴121212,2⋅>===cos <n n n n n n .∴平面DEA 与平面ABC8分 18.(本小题满分12分) 解:(Ⅰ)∵22n n S a =- ①当2≥n 时,1122--=-n n S a ②①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ). 又当1≥n 时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .………………………………………4分又由题意知,11b =,12n n b b +=+,即12+-=n n b b∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………………2分(Ⅱ)(Ⅱ)由(Ⅰ)知,(21)2=-nn c n (1)分∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n (1)分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n …………………………………………………1分∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n (3)分19.(本小题满分12分) 解:(Ⅰ)由图知12T =,6πω=.………………………………………………………1分 2125.15.22minmax =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f .(Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t . 又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t . 又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分 ∴应该在11.625时停产.……………………………………………………………1分 (也可直接由)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产) 20.(本小题满分13分)(Ⅰ)由已知2=a=a=c ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴12=-==AB x .又由32AB =,得231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点. 设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=,当2m =时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分 综上所述,0x 的值为3-或1-. 21.(本小题满分14分)解:(Ⅰ)2222)(ln )ln 21()(ln ln 2)(ln 1ln 2)(x x mx x x x x m x x x x x mx f -⋅=-=⋅--='(0>x 且1≠x ).∴由0)(>'x f ,得21e x >;由0)(<'xf ,得210e x <<,且1≠x .……………………1分∴函数)(x f 的单调递减区间是(0,1),(1e),单调递增区间是),(+∞e .………………2分∴me e f x f 2)()(-==极小值.………………………………………………………………1分(Ⅱ)222(2)(),(0)mx mx mx mxmxe mx e m mx mx g x m e e --'=-=>. ∴()g x 在(,0)-∞上单调递增,2(0,)m 上单调递减,2(,)m+∞上单调递增. ∵函数()g x 存在三个零点.∴20(0)02402()00>⎧>⎧⎪⎪⎪⇒⇒<<⎨⎨<⎪⎪-<⎩⎪⎩m g m e g m m m e .∴02<<me …………………………………………………………………………………3分 由(1)(1)0-=-=-<mmg m me m e .∴22()(1)0=-=-<em em me e g e m m e e.……………………………………………………1分综上可知,()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得:(1,0),(0,),(,)a b e c e ∈-∈∈+∞.即10a b e c -<<<<<,得证.…………………………………………………………1分 (III )由题意,只需min max ()()>f x g x ∵2(12ln )()(ln )-'=mx x f x x 由0<m ,∴函数()f x 在12(1,)e 上单调递减,在12(,)e +∞上单调递增.∴12min ()()2==-f x f e me .………………………………………………………………2分 ∵(2)()-'=mxmx mx g x e由0<m ,∴函数()g x 在2(,)m-∞上单调递增,2(,0)m 上单调递减.∴max 224()()==-g x g m m e m .……………………………………………………………2分 ∴242->-me m e m ,不等式两边同乘以负数m ,得22242-<-m e m e.∴224(21)e m e+>,即224(21)m e e >+.由0<m ,解得(21)m e e <-+.综上所述,存在这样的负数(,(21)∈-∞-+m e e 满足题意.……………………………1分成都市2015届高中毕业班第一次诊断性检测数学试题(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|0}=≥U x x ,集合{1}=P ,则UP =(A )[0,1)(1,)+∞ (B )(,1)-∞ (C )(,1)(1,)-∞+∞ (D )(1,)+∞2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A ) (B ) (C ) (D ) 3.命题“若22≥+x a b ,则2≥x ab ”的逆命题是(A )若22<+x a b ,则2<x ab (B )若22≥+x a b ,则2<x ab (C )若2<x ab ,则22<+x a b (D )若2≥x ab ,则22≥+x a b4.函数31,0()1(),03x x x f x x ⎧+<⎪=⎨≥⎪⎩的图象大致为(A ) (B ) (C ) (D ) 5.复数5i(2i)(2i)=-+z (i 是虚数单位)的共轭复数为(A )5i 3- (B )5i 3(C )i - (D )i6.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是y xOxyO x y Ox yO消费支出/元(A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3] 7.已知53cos()25+=πα,02-<<πα,则sin 2α的值是 (A )2425 (B )1225 (C )1225- (D )2425-8.已知抛物线:C 28y x =,过点(2,0)P 的直线与抛物线交于A ,B 两点,O 为坐标原点,则OA OB ⋅的值为(A )16- (B )12- (C )4 (D )0 9.已知m ,n 是两条不同直线,α,β是两个不同的平面,且n ⊂β,则下列叙述正确的是(A )若//m n ,m ⊂α,则//αβ (B )若//αβ,m ⊂α,则//m n (C )若//m n ,m α⊥,则αβ⊥ (D )若//αβ,m n ⊥,则m α⊥10.如图,已知正方体1111ABCD A BC D -棱长为4,点H 在棱1AA 上,且11HA =.点E ,F 分别为棱11B C ,1C C 的中点,P 是侧面11BCC B 内一动点,且满足⊥PE PF .则当点P 运动时, 2HP 的最小值是 (A )72- (B )2762- (C )51142- (D )1422-二、填空题:本大题共5小题,每小题5分,共25分. 11.已知100名学生某月饮料消费支出情况的频率分布直方图如右图所示.则这100名学生中,该月饮料消费支出超过150元的人数是________.12.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹A BCD1A 1B 1C 1D HPE F角的大小为__________.13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B .则边c 的长度为__________.14.已知关于x 的不等式()(2)0---≤x a x a 的解集为A ,集合{|22}=-≤≤B x x .若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________. 15.已知函数21()()2f x x a =+的图象在点n P (,())n f n (*n ∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且11y =-.给出以下结论: ①1a =-;②记函数()=n g n x (*n ∈N ),则函数()g n 的单调性是先减后增,且最小值为1;③当*n ∈N 时,1ln(1)2n n n y k k++<+; ④当*n ∈N 时,记数列的前n 项和为n S ,则n S <其中,正确的结论有 (写出所有正确结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)口袋中装有除编号外其余完全相同的5个小球,编号依次为1,2,3,4,5.现从中同时取出两个球,分别记录下其编号为,m n . (Ⅰ)求“5+=m n ”的概率; (Ⅱ)求“5≥mn ”的概率.17.(本小题满分12分)如图,在多面体ECABD 中,EC ⊥平面ABC ,//DB EC ,ABC ∆为正三角形,F 为EA 的中点,2EC AC ==,1BD =. (Ⅰ)求证:DF //平面ABC ; (Ⅱ)求多面体ECABD 的体积. 18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且122+=-n n S ;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a 和{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T .19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象. (Ⅰ)根据图象,求A ,ω,ϕ,B 的值; (Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:20.(本小题满分13分)已知椭圆Γ:12222=+by a x (0>>b a )的右焦点为)0,22(,且过点(23,0).(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:()l y x m m =+∈R 与椭圆Γ交于不同两点A 、B ,且32AB =点0(,2)P x 满足=PA PB ,求0x 的值. 21.(本小题满分14分) 已知函数()ln 2mf x x x=+,()2g x x m =-,其中m ∈R ,e 2.71828=为自然对数的底数.(Ⅰ)当1m =时,求函数()f x 的极小值;(Ⅱ)对1[,1]e x ∀∈,是否存在1(,1)2m ∈,使得()()1>+f x g x 成立?若存在,求出m 的取值范围;若不存在,请说明理由;(Ⅲ)设()()()F x f x g x =,当1(,1)2m ∈时,若函数()F x 存在,,a b c 三个零点,且a b c <<,求证: 101ea b c <<<<<.t (时)10 11 12 11.5 11.25 11.75 11.625 11.6875 ()f t (万千瓦时) 2.25 2.4332.5 2.48 2.462 2.496 2.490 2.493 ()g t (万千瓦时)53.522.753.1252.3752.5632.469数学(文科)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)1.A ; 2.C ; 3.D ;4.A ;5.C ;6.B ;7.D ;8.B ;9.C ;10.B .第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)11.30 12.90︒ 13.4 14.[2,0]- 15.①②④ 三、解答题:(本大题共6个小题,共75分) 16.(本小题满分12分)解:同时取出两个球,得到的编号,m n 可能为: (1,2),(1,3),(1,4),(1,5) (2,3),(2,4),(2,5) (3,4),(3,5)(4,5)…………………………………………………………………………………6分(Ⅰ)记“5+=m n ”为事件A ,则 21()105==P A .……………………………………………………………………………3分(Ⅱ)记“5≥mn ”为事件B ,则 37()11010=-=P B .…………………………………………………………………… 3分 17.(本小题满分12分)(Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC . ∴//=FO BD ,∴四边形FOBD 为平行四边形. ∴//DF OB ,又⊄DF 面ABC ,⊂OB 平面ABC .∴//DF 面ABC .………………………6分 (Ⅱ)据题意知,多面体ECABD 为四棱锥-A ECBD . 过点A 作⊥AH BC 于H .∵⊥EC 平面ABC ,⊂EC 平面ECBD , ∴平面⊥ECBD 平面ABC .又⊥AH BC ,⊂AH 平面ABC ,平面ECBD 平面=ABC BC ,∴⊥AH 面ECBD .∴在四棱锥-A ECBD 中,底面为直角梯形ECBD ,高3=AH .∴1(21)23332-+⨯=⨯⨯=A ECBD V . ∴多面体ECABD 的体积为3.……………………………………………6分 18.(本小题满分12分) 解:(Ⅰ)∵122+=-n n S ① 当2≥n 时,122-=-n n S ② ①-②得,2=n n a (2≥n ).∵当2≥n 时,11222--==nn n n a a ,且12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .………………………………………4分又由题意知,11b =,12n n b b +=+,即12+-=n n b b ∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………………2分(Ⅱ)由(Ⅰ)知,(21)2=-nn c n ……………………………………………………1分 ∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n (1)分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n (1)分∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n (3)分19.(本小题满分12分) 解:(Ⅰ)由图知12T =,6πω=.………………………………………………………1分 2125.15.22minmax =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f . (Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t . 又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t . 又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分 ∴应该在11.625时停产.……………………………………………………………1分 (也可直接由)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产)20.(本小题满分13分)(Ⅰ)由已知得23=a ,又22=c . ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴2222129312(312)21244=+-=⨯--=⨯-+AB kx x m m m . 又由32AB =,得231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点. 设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=,当2m =时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分综上所述,0x 的值为3-或1-. 21.(本小题满分14分)解:(Ⅰ)1m =时,1()ln ,02=+>f x x x x. ∴221121()22-'=-=x f x x x x ……………………………………………………………………1分由()0'>f x ,解得12>x ;由()0'<f x ,解得102<<x ; ∴()f x 在1(0,)2上单调递减,1(,)2+∞上单调递增. (2)分∴=极小值)(x f 11()ln 11ln 222f =+=-.…………………………………………………… 2分(II )令1()()()1ln 21,,12⎡⎤=--=+-+-∈⎢⎥⎣⎦m h x f x g x x x m x x e ,其中1(,1)2m ∈ 由题意,()0h x >对1,1x e ⎡⎤∈⎢⎥⎣⎦恒成立,∵2221221()1,,122-+-⎡⎤'=--=∈⎢⎥⎣⎦m x x m h x x x x x e ∵1(,1)2m ∈,∴在二次函数222=-+-y x x m 中,480∆=-<m , ∴2220-+-<x x m 对∈x R 恒成立∴()0'<h x 对1,1x e ⎡⎤∈⎢⎥⎣⎦恒成立, ∴()h x 在1,1e ⎡⎤⎢⎥⎣⎦上单减. ∴min 5()(1)ln11212022==+-+-=->m h x h m m ,即45>m .故存在4(,1)5∈m 使()()f x g x >对1,1⎡⎤∀∈⎢⎥⎣⎦x e 恒成立.……………………………………4分(III )()(ln )(2),(0,)2mF x x x m x x=+-∈+∞,易知2x m =为函数()F x 的一个零点, ∵12>m ,∴21>m ,因此据题意知,函数()F x 的最大的零点1>c , 下面讨论()ln 2mf x x x=+的零点情况,∵2212()22m x mf x x x x -'=-=. 易知函数()f x 在(0,)2m 上单调递减,在(,)2m+∞上单调递增.由题知()f x 必有两个零点,∴=极小值)(x f ()ln 1022=+<m mf ,解得20<<m e ,∴122<<m e ,即(,2)2∈eme .…………………………………………………………3分 ∴11(1)ln10,()ln 11102222=+=>=+=-<-=m m em emf f e e .…………………1分又10101010101()ln 10100224---=+=->->m m f e e e e e .101()0,()0,(1)0f e f f e -∴><>.10101e a b c e -∴<<<<<<.101a b c e∴<<<<<,得证.……………………………………………………………1分。
四川省成都市2015届高三第一次诊断适应性考试数学(理)试卷

四川省成都市2015届高三第一次诊断适应性考试数学(理)试卷一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1、设集合}021|{≤-+=x x x M ,}212|{>=x x N ,则M N =( )A 、),1(+∞-B 、)2,1[-C 、)2,1(-D 、]2,1[- 2、下列有关命题的说法正确的是( )A 、命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.B 、“1x =-” 是“2560x x --=”的必要不充分条件.C 、命题“若x y =,则sin sin x y =”的逆否命题为真命题.D 、命题“x ∃∈R 使得210x x ++<”的否定是:“x ∀∈R 均有210x x ++<”. 3、方程()()2ln 10,0x x x+-=>的根存在的大致区间是( ) A 、()0,1 B 、()1,2 C 、()2,e D 、()3,4 4、执行上图所示的程序框图,则输出的结果是( ) A 、5B 、7C 、9D 、115、设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中错误的是( ) A 、若m α⊥,//m n ,//n β,则αβ⊥ B 、若αβ⊥,m α⊄,m β⊥,则//m α C 、若m β⊥,m α⊂,则αβ⊥ D 、若αβ⊥,m α⊂,n β⊂,则m n ⊥6、二项式102)2(x x +展开式中的常数项是( ) A 、180 B 、90 C 、45 D 、360 7、设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是( )A 、2a b =B 、//a bC 、13a b =- D 、a b ⊥8、已知O 是坐标原点,点()1,0A -,若()y x M ,为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则 OA OM+的取值范围是( )A 、[]51,B 、[]52,C 、[]21,D 、[]50, 9、已知抛物线C :x 2=4y 的焦点为F ,直线x-2y+4=0与C 交于A 、B 两点,则sin ∠AFB=( ) A 、54 B 、53 C 、43 D 、5510、已知函数)(x f y =是定义在R 上的偶函数,对于任意R x ∈都)3()()6(f x f x f +=+成立;当]3,0[,21∈x x ,且21x x ≠时,都有0)()(2121>--x x x f x f .给出下列四个命题:①0)3(=f ;②直线6-=x 是函数)(x f y =图象的一条对称轴;③函数)(x f y =在]6,9[--上为增函数;④函数)(x f y =在]2014,0[上有335个零点.其中正确命题的个数为( )A .1B .2C .3D .4 二、填空题:(本大题共5小题,每小题5分,共25分.)11、若复数z 满足(34)43i z i -=+,则z 的虚部为 ; 12、已知某四棱锥,底面是边长为2的正方形,且俯视图如右图所示. 若该四棱锥的侧视图为直角三角形,则它的体积为 ;13、各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生不同的填报专业志愿的方法有 种。
2015届成都一诊数学试题及答案(文科、理科)

(C)复数z的共轭复数为z?4?3i (D)复数z的模为5
?x3?1,x?0?4.函数f(x)??1x的图象大致为
?(),x?0?3
(A) (B) (C) (D)
2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是
(A) (B) (C) (D)
3.已知复数z??4?3i(i是虚数单位),则下列说法正确的是
(A)复数z的虚部为?3i (B)复数z的虚部为3
成都市2015届高中毕业班第一次诊断性检测
数学试题(理科)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设全集U?{x|x?0},集合P?{1},则eUP?
(A)[0,1)
(C)(??,1)(1,??) (B)(??,1) (1,??) (D)(1,??)
5.已知命题p:“若x?a?b,则x?2ab?a?b,则x?2ab”
(B)命题p的逆命题是“若x?2ab,则x?a?b ”
(C)命题p的否命题是“若x?a?b,则x?2ab”
(D)命题p的否命题是“若x?a?b,则x?2ab” 2222222222
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题(共10小题,每小题5分,满分50分)1.已知集合2{|230}A x x x =--<,2{|log 2}B x x =<,则A B =A.(1,4)-B.(1,3)-C.(0,3)D.(0,4)2.若复数3i(R,i 12ia a +∈-为虚数单位)为纯虚数,则实数a 的值为 A.6- B.2- C.4D.63.函数2cos(2)2y x π=-是A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为2π的奇函数D.最小正周期为2π的偶函数4.等差数列{}n a 中,已知112a =-,130S =,则使得0n a >的最小正整数n 为 A.7B.8C.9D.105.直线0x y m -+=与圆22210x y x +--=有两个不同交点的一个充分不必要条件是 A. 31m -<< B.42m -<< C.1m < D.01m << 6.用数字1,2,3,4,5组成无重复数字的五位数,要求1不在首位,3不在百位的五位数共有 A.72 B.78 C.96 D.547.定义某种运算⊕,a b ⊕的运算原理如图所示,设1S x =⊕, [2,2]x ∈-,则输出的S 的最大值与最小值的差为 A.2 B.1- C.4 D.38.下列命题:①若直线l 上有无数个点不在平面α内,则l ∥α;②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行; ③如果两条平行直线中的一条与一个平面平行,那么另一条也与 这个平面平行;④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.其中正确的个数是A.1B.2C.3D.4 9.已知抛物线24y x =的焦点为F ,准线为l ,点P 为抛物线上任意一点,且在第一象限,PA ⊥l ,垂足为A ,||4PF =,则直线AF 的倾斜角等于 A.712π B.23π C.34π D.56π 10.已知函数()f x 对定义域R 内的任意x 都有()(4)f x f x =-,且当2x ≠时,其导函数()f x ' 满足()2()xf x f x ''>,若24a <<,则A.2(2)(3)(log )a f f f a <<B.2(3)(log )(2)a f f a f <<C.2(log )(3)(2)a f a f f <<D.2(log )(2)(3)a f a f f <<二.填空题(本大题共5小题,每小题5分,共25分)S a =是否S 输出结束?a b ≥||S b =开始,a b输入11.二项式52(1)x-的展开式中第四项的系数为 .12.一个几何体的三视图如图所示,其中网格纸上的小正方形的边长 为1,则该几何体的体积为 .13.点(,)P x y 在不等式组031x x y y x ≥⎧⎪+≤⎨⎪≥+⎩表示的平面区域内,若点(,)P x y到直线1(0)y kx k =->的最大距离为2,则实数k = .14.ABC ∆的外接圆半径为1,圆心为O ,且3450OA OB OC ++=,则OC AB ⋅的值为 . 15已知函数()ln f x x x =,且120x x <<,给出下列命题:①1212()()1f x f x x x -<-;②1221()()f x x f x x +<+;③2112()()x f x x f x <;④当1ln 1x >-时,112221()()2()x f x x f x x f x +>.其中所有正确命题的序号为 .三.解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分12分)已知{}n a 为等比数列,其中11a =,且2354,,a a a a +成等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n n a n b ⋅-=)12(,求数列{}n b 的前n 项和n T .17.(本小题满分12分)已知向量(2cos ,1),(cos ,23cos 1)m x n x x x ==-,函数()f x m n =⋅. (Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()1,7f B b ==,sin 3sin A C =,求ABC ∆的面积.18.(本小题满分12分)在2014年10月,某市进行了“居民幸福度”的调查,某师大附中学生会组织部分同学,用“10 分制”随机调查“狮子山”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶).(Ⅰ)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至 多有1人是“极幸福”的概率;19.(本小题满分12分)已知在四棱锥P ABCD -中,底面ABCD 是矩形,且2AD =,1AB =,PA ⊥平面ABCD ,E 、F 分别是线段AB 、BC 的中点.(Ⅰ)判断并说明PA 上是否存在点G ,使得//EG 平面PFD ?若存在,求出PGGA的值;若不 存在,请说明理由; (Ⅱ)若PB 与平面ABCD 所成的角为45︒,求二面角A PD F --的平面角的余弦值.20.(本小题满分13分)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>过点(,)22a aA 和点(3,1)B .(Ⅰ)求椭圆C 的方程;(Ⅱ)已知点00(,)P x y 在椭圆C 上,F 为椭圆的左焦点,直线l 的方程为00360x x y y +-=. (ⅰ)求证:直线l 与椭圆C 有唯一的公共点;(ⅱ)若点F 关于直线l 的对称点为Q ,探索:当点P 在椭圆C 上运动时,直线PQ 是否过定点?若过定点,求出此定点的坐标;若不过定点,请说明理由.P DCBAFE21.(本小题满分14分)已知函数2()e (22)x f x ax x =--,R a ∈且0a ≠.(Ⅰ)若曲线()y f x =在点(2,(2))P f 处的切线垂直于y 轴,求实数a 的值; (Ⅱ)当0a >时,求函数(|sin |)f x 的最小值;(Ⅲ)在 (Ⅰ)的条件下,若y kx =与()y f x =的图像存在三个交点,求k 的取值范围.2015届“一诊”模拟考试(一)理科数学答案一.选择题(共10小题,每小题5分,满分50分) 题号 1 2 3 4 5 6 7 8 9 10 答案 C D A B D BAABC二.填空题(本大题共5小题,每小题5分,共25分) 11.80-. 12.2503. 13.1. 14.15-. 15.③④. 三.解答题:17.【解答】(Ⅰ)∵2()2cos 23sin cos 13sin 2cos 2f x m n x x x x x =⋅=+-=+, ∴()2sin(2)6f x x π=+.∵2[2,2](Z)622x k k k πππππ+∈-++∈,∴[,](Z)36x k k k ππππ∈-++∈,∴函数()f x 的单调递增区间为[,](Z)36k k k ππππ-++∈.(Ⅱ)∵()2sin(2)16f B B π=+=,∴15sin(2)26266B B πππ+=⇒+=,∴3B π=. ∵sin 3sin A C =,∴3a c =.∵7b =,2222cos b a c ac B =+-,∴3,1a c ==.∵1sin 2S ac B =,∴ABC ∆的面积为334.18.【解答】(Ⅰ)∴从这16人中随机选取3人,至多有1人是“极幸福”的概率为32112124316C C C 121()C 140P A +==. (Ⅱ)∵X 的取值为0,1,2,3,且033327(0)C ()464P X ==⨯=,1233127(1)C ()4464P X ==⨯⨯=, 223319(2)C ()4464P X ==⨯⨯=,33311(3)C ()464P X ==⨯=, ∴X 的分布列为X 0 1 2 3 P2764 2764 964 164∴X 的数学期望是0271833()644E X +++==.19.【解答】(Ⅰ)建立如图所示的空间直角坐标系,设,PA a GA b ==. ∵(1,1,0),(0,2,0),(0,0,),(0,0,)F D P a G b ,∴(1,1,0)DF =-,(0,2,)PD a =-,1(,0,)2GE b =-.设平面PFD 的一个法向量(,,)m x a z =.∵020m DF x a m PD a az ⎧⋅=-=⎪⎨⋅=-=⎪⎩,∴2x a z =⎧⎨=⎩,∴(,,2)m a a =.∵1202GE m a b ⋅=-=,∴14b a =.∴3PGGE=.(Ⅱ)∵PBA ∠为直线PB 与平面ABCD 所成的角,20.【解答】(Ⅰ)∵2222()()221a a a b +=,且22311a b +=,∴226,2a b ==,∴椭圆C 的方程为22162x y +=. (Ⅱ)(ⅰ)联立方程组220036360x y x x y y ⎧+=⎨+-=⎩,整理为22220000(3)1236180x y x x x y +-+-=…①.∵P 在椭圆C 上,∴2200162x y +=,即220036y x =-,∴方程①为220020x x x x -+=,即0∆=,∴直线l 与椭圆C 有唯一的公共点.PDCBAFEz xGy(ⅱ)∵(2,0)F -,∴过点F 且与l 垂直的直线方程为00360y y x x --=.∵联立方程组0000360360y y x x x x y y --=⎧⎨+-=⎩,∴2002200000220061891869x y x x y y x y y x y ⎧-=⎪+⎪⎨+⎪=⎪+⎩.∵220036y x =-,且222Q Qx x y y =-+⎧⎪⎨=⎪⎩,∴Q 点坐标为0000466(,)33x y x x ---.(1)当02x ≠时,直线PQ 的斜率0000000634623y y x yk x x x x --==----.21.【解答】(Ⅰ)∵2()e (22)xf x ax x =--,∴22()e (22)e (22)e [2(1)4]xxxf x ax x ax ax a x '=--+-=+--. ∵2(2)e (88)0f a '=-=,∴1a =. (Ⅱ)由(Ⅰ)知2()e ()(2)x f x a x x a'=-+.(1)当02a <≤时,∵21a≥,∴()f x 在区间(0,1)上单调递减, ∴()f x 的最小值为(1)(4)e f a =-.(2)当2a >时,∵201a <<,∴()f x 在区间2(0,)a 上单调递减,在区间2(,1)a上单调递增.∴()f x 的最小值为22()2e af a=-.综上所述,当02a <≤时,函数(|sin |)f x 的最小值为(4)e a -;当2a >时,函数(|sin |)f x 的最小值为22e a-.(Ⅲ)由2e (22)()x x x f x kx k x --=⇒=,设2e (22)()x x x g x x--=.∵2e ()(2)(1)(2)xg x x x x x'=--+,∴函数()g x 的单调递增区间为(2,0),(0,1),(2,)-+∞;单调递减区间为(,2),(1,2)-∞-.∵x →-∞时,函数()g x 的图象在x 轴下方且无限靠近x 轴,2(2)2e g --=-,(1)3e g =-,2(2)2e g =-,∴实数k 的取值范围是22(2e ,3e)(2e ,0)----.且以这两个交点为端点的线段长度恰好等于||a ,则称曲线为直线l 的“绝对曲线”,给出下列 四条曲线方程: ①2|1|y x =--; ②2y x =;③22(1)(1)1x y -+-=; ④2234x y +=.其中直线l 的“绝对曲线”方程的所有序号为 . 21.(本小题满分14分)设函数2()(2)ln f x x a x a x =---,函数()f x '是函数()f x 的导函数. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 有两个零点,求正整数a 的最小值;O212-xy(Ⅲ)若方程()f x c =有两个不相等的实数根12,x x ,求证:12()02x x f +'>.轴;()g x 在(2,0)上单调递增,当x 无限接近于0时,()g x 无限增大,其图像在左侧向上29.【山东省滨州市滨城区一中2013届高三11月质检】(本题满分14分)定义:若∃R x ∈0,使得00)(x x f =成立,则称0x 为函数)(x f y =的一个不动点 (1)下列函数不.存在不动点的是( )---(单选)。