焊接新
四新技术应用总结_焊工个人技术总结

四新技术应用总结_焊工个人技术总结
最近几年,随着技术的不断发展,许多新兴的技术也逐渐被应用到各个领域中。
在焊
接行业中,也出现了许多新的技术应用,如激光焊接技术、等离子焊接技术、电弧增材制
造技术等。
这些新技术的出现,为焊接行业带来了革命性的变化,提高了焊接质量和效率,下面将对这几种新技术应用进行总结。
一、激光焊接技术
激光焊接技术是指利用激光束对工件进行焊接的方法。
这种技术具有焊接速度快、热
影响区小、无污染等优点。
激光焊接技术被广泛应用于汽车、航空、石油化工等行业。
二、等离子焊接技术
等离子焊接技术是指使用气体等离子体进行焊接的方法。
该技术具有焊接速度快、熔
深大、焊接质量高等特点。
等离子焊接技术被广泛应用于管道、船舶、石化等领域中。
三、电弧增材制造技术
电弧增材制造技术是指利用电弧加热将材料添加到工件表面上的方法。
该技术具有焊
接速度快、无模具、加工精度高等特点。
电弧增材制造技术被广泛应用于航空航天、汽车
制造、艺术品制造等领域中。
总结来说,这四种新技术的应用为焊接行业带来了深刻的变革。
它们不仅提高了焊接
效率和质量,还降低了生产成本,使焊接行业更加自动化、智能化。
而在未来,随着科技
的不断进步,焊接行业也将迎来更多更先进的技术,这将为焊接行业带来更广阔的发展前景。
漆包线焊接新工艺

漆包线焊接新工艺
漆包线焊接是一种常见的电线电缆连接方式,通常用于连接电器设备或电路板之间的导线。
传统的漆包线焊接工艺中,焊接前需先剥去漆包线表面的绝缘漆,再将裸露的金属导线进行焊接连接。
然而,新的漆包线焊接工艺采用了先进的技术和材料,使得焊接更加高效和可靠。
以下是一些常见的新工艺:
1. 激光焊接:利用激光束对漆包线进行焊接,激光束能够快速加热和熔化金属导线,使其实现焊接。
激光焊接具有高精度和快速的特点,可以在短时间内完成大量的焊接作业。
2. 冷压焊接:通过冷压技术将漆包线连接在一起,不需要加热。
冷压焊接不仅可以提高焊接速度,还能减少能耗和环境污染,是一种环保的焊接方式。
3. 无焊接连接:利用特殊的连接器或夹子将漆包线连接在一起,无需进行焊接。
这种连接方式避免了焊接产生的热量和潜在的损坏,适用于一些对焊接需求不高的应用场景。
总体而言,新的漆包线焊接工艺能够提高焊接效率、质量和可靠性,使得电线电缆的制造更加高效和可持续。
不同的工艺适用于不同的应用场景,根据具体需求选择合适的焊接方式非常重要。
穿孔回流焊一种新型焊接技术

穿孔回流焊一种新型焊接技术在传统的电子组装工艺中,对于安装有过孔插装元件(THD)印制板组件的焊接一般采用波峰焊接技术。
但波峰焊接有许多不足之处:不适合高密度元件焊接;桥接、漏焊较多;需喷涂助焊剂;印制板受到较大热冲击翘曲变形。
因此波峰焊接在许多方面不能适应电子组装技术的发展。
为了适应表面组装技术的发展,解决以上焊接难点的措施是采用穿孔回流焊PIHR(p in—in—h ole ref lo w)。
该技术原理是在印制板完成贴片后,使用一种安装有许多针管的特殊模板,调整模板位置使针管与插装元件的过孔焊盘对齐,然后使用刮刀将模板上的锡膏漏印到焊盘上,然后安装插装元件,最后插装元件与贴片元件一起通过回流焊完成焊接。
穿孔回流焊的优越性在于:首先是减少了工序,省去了波峰焊这道工序,在费用上自然可节省不少,同时也减少了所需的工作人员,在效率上也得到了提高;其次回流焊相对于波峰焊,产生桥接的可能性要小得多,这样就提高了一次通过率。
穿孔回流焊相对传统工艺在经济性、先进性上都有很大优势。
目前日本SONY公司有在1—2年内以穿孔回流焊全面代替波峰焊的计划,而我国生产调谐器的企业和高技术、高附加值的一些通信产品已率先使用PIHR工艺,预计不远的将来这项新技术将会得到普遍采用。
下一代的回流焊接技术By Hiro Suganuma and Alvin Tamanaha本文介绍,世界范围内无铅锡膏的实施出现加快,随着元件变得更加形形色色,从大的球栅阵列(BGA)到不断更密间距的零件,要求新的回流焊接炉来提供更精确控制的热传导。
表一、典型的无铅焊锡特性合金熔点蠕变强度熔湿热阻Sn/3.5Ag 216~221°C 良好一般良好Sn/3.5Ag/0.7Cu 共晶Sn/3.5Ag/4.8BiSn/5.8Bi 139~200°C 一般一般良好Sn/7.5Bi/2.0Ag/0.5CuSn/0.7Cu 227°C 一般??Sn/9.0Zn 190~199°C 良好一般良好Sn/8.0Zn/3.0Bi 共晶表一与表二列出了典型的无铅(lead-free)锡膏(solder paste)的特性和熔湿(wetting)参数。
汽车铝合金焊接新技术

汽车铝合金焊接新技术摘要:铝合金具有密度低、比强度高、耐腐蚀等综合性能,使得铝合金成为航空、铁路运输、建筑等许多制造行业的一种重要金属材料。
并且,随着我国汽车产业的发展,无论是安全性能还是节能减排,可提高汽车整体强度,使得铝合金成为汽车轻量化的重要材料之一。
因此,铝合金焊接技术已成为汽车制造业的基本工艺之一,本文主要对汽车铝合金车身焊接新工艺和新方法进行了探讨和分析研究。
关键词:汽车;铝合金;焊接技术引言近年来,由于节能环保的要求日益严格,汽车轻量化便已成为世界汽车发展的必然趋势。
对于燃油车辆,车身质量每下降10%,燃料效率就可以提高6%-8%;对于纯电动车辆,车身质量减轻100公斤,汽车续航可提高10%。
车身质量约占汽车总质量的40%,车身轻量化最重要的是使用铝合金材料。
铝密度仅为钢密度的1/3,具有良好的塑性和可回收性,是汽车轻量化的理想材料之一。
铝合金车身比钢制车身具有更高的连接技术要求和更高的技术难度,而铝合金点焊(RSW)、自冲铆接(SPR)、自攻热铆接(FDS)、激光焊接(LW)等技术在连接过程中是铝合金车身常用的连接方法,与其他几种连接方法相比,铝点焊具有设备投资低、无需使用辅助材料、适配板的柔性厚度以及连接后板材表面没有较高的间隙等优点,正被越来越多的汽车厂家所使用。
1汽车制造中铝合金焊接技术概述一方面,由于全球能源紧张等因素,汽车燃料消费受到越来越多的关注,因此,汽车轻量化已成为大型汽车企业产品设计的重点。
作为轻型发展系统的一部分,轻型金属,如中高端钢结构、铝和铝合金结构、镁和镁合金结构,将逐步取代在轻型汽车车身系统中广泛使用传统钢结构,这是因为铝的重量比钢结构少60%,相较于传统的钢结构,车身实际上可以减少45%以上的总重量,而且铝和铝合金在承受同样的冲击强度时可以吸收更高的冲击能量。
另一方面,基于节能环保的发展理念,铝合金是符合节能降耗要求的更加环保的应用材料,铝合金零部件回收率较高。
焊接新技术-电子束焊

焊接新技术-电⼦束焊电⼦束焊⼀、电⼦束焊的基本原理电⼦束焊是⼀种⾼能束流焊接⽅法。
⼀定功率的电⼦束经电⼦透镜聚焦后,其功率密度可以提⾼到106 W/cm2以上,是⽬前已实际应⽤的各种焊接热源之⾸。
电⼦束传送到焊接接头的热量和其熔化⾦属的效果与束流强度、加速电压、焊接速度、电⼦束斑点质量以及被焊材料的热物理性能等因素有密切的关系。
⼆、电⼦束焊的特点1.电⼦束焊的优点(1)电⼦束穿透能⼒强,焊缝深宽⽐⼤。
通常电弧焊的深宽⽐很难超过2:1,⽽电⼦束焊的深宽⽐可达到60:1以上,可⼀次焊透0.1~300mm厚度的不锈钢板。
(2)焊接速度快,热影响区⼩,焊接变形⼩。
电⼦束焊速度⼀般在1m/mm 以上。
电⼦束焊缝热影响区很⼩。
由于热输⼈低,控制了焊接区晶粒长⼤和变形,使焊接接头性能得到改善。
由于焊接变形⼩,对精加⼯的⼯件可⽤作最后连接⼯序,焊后⼯件仍保持⾜够⾼的尺⼨精度。
(3)焊缝纯度⾼,接头质量好。
真空电⼦束焊接不仅可以防⽌熔化⾦属受氢、氧、氮等有害⽓体的污染,⽽且有利于焊缝⾦属的除⽓和净化,因⽽特别适于活泼⾦属的焊接,也常⽤于焊接真空密封元件,焊后元件内部保持在真空状态。
可以通过电⼦束扫描熔池来消除缺陷,提⾼接头质量。
(4)再现性好,⼯艺适应性强。
电⼦束焊的焊接参数可独⽴地在很宽的范围内调节,易于实现机械化、⾃动化控制,重复性、再现性好,提⾼了产品质量的稳定性。
通过控制电⼦束的偏移,可以实现复杂接缝的⾃动焊接;电⼦束在真空中可以传到较远(约500mm)的位置上进⾏焊接,因⽽也可以焊接难以接近部位的接缝。
对焊接结构具有⼴泛的适应性。
(5)可焊材料多。
电⼦束焊不仅能焊接⾦属和异种⾦属材料的接头,也可焊⾮⾦属材料,如陶瓷、⽯英玻璃等。
真空电⼦束焊的真空度⼀般为5×10-4Pa,尤其适合焊接钛及钛合⾦等活性材料。
2.电⼦束焊的缺点:(1)设备⽐较复杂,投资⼤,费⽤较昂贵。
(2)电⼦束焊要求接头位置准确,间隙⼩⽽且均匀,因⽽,焊接前对接头加⼯、装配要求严格。
传动轴焊接新方法

传动轴焊接新方法
以下是传动轴焊接的新方法:
1. 激光焊接:激光焊接是一种高能束焊接方式,通过聚焦激光能量,将传动轴材料熔化并连接在一起。
激光焊接具有高精度、高速度和高深宽比等优点,适用于薄壁材料和精密零件的焊接。
2. 摩擦焊接:摩擦焊接是一种通过摩擦热能将材料连接在一起的方法。
在传动轴焊接中,可以将两个传动轴的端面放置在一起,通过旋转和轴向压力的作用,使端面摩擦生热,熔化接触面并连接在一起。
3. 超声波焊接:超声波焊接是一种利用高频振动能量的焊接方法。
在传动轴焊接中,可以将两个传动轴的端面紧贴在一起,利用超声波振动器的振动能量,使端面材料相互摩擦并产生热量,从而实现熔化并连接。
4. 电子束焊接:电子束焊接是一种利用高能电子束作为热源的焊接方法。
在传动轴焊接中,高能电子束可以穿过较薄的材料,将传动轴熔化并连接在一起。
电子束焊接具有高精度和高深宽比等优点,适用于精密零件的焊接。
需要注意的是,不同的焊接方法适用于不同的材料和工艺要求,因此在选择传动轴焊接方法时,需要根据实际情况进行评估和选择。
焊接技术的新进展与应用

焊接技术的新进展与应用现代焊接技术的新进展和应用在现代生产制造过程中,焊接技术被广泛应用。
仅在船舶、建筑、桥梁、航空、军工等领域中,焊接技术就扮演了重要角色。
不论是传统的手工电弧焊还是自动化的激光焊接,都得到了进一步的发展和应用。
本文旨在介绍现代焊接技术的新进展和应用。
1.新进展1.1 激光焊接技术的进步激光焊接技术已经被应用于多种领域,如航空航天、精密机械加工和自动化生产线。
随着技术的发展,激光焊接已经被广泛应用于汽车和航空工业。
激光焊接的好处在于零件的热影响面积非常小,焊接质量高、速度快和焊接接缝小且精确。
近年来,激光焊接技术已经出现了许多进步。
例如,激光高功率密度、高速度、高质量等特点正在成为未来大规模工业生产所需。
1.2 超声波焊接技术的发展超声波焊接技术在汽车工业、医疗设备和电子行业中得到了广泛应用。
超声波焊接是将两个塑料部件通过高频振动连接,该技术的优势包括高效、精确和节能。
随着技术的发展,超声波焊接技术已经取得了一定的进展。
例如,通过改进振动头和振动辅助系统,提高超声波焊接的速度、质量和稳定性。
此外,超声波焊接技术还可以用于复合材料和非常规材料。
2.应用2.1 汽车制造在汽车制造过程中,焊接技术是一个不可或缺的环节。
车身结构的强度和稳定性有赖于焊接技术的质量。
在汽车制造中,常用的焊接技术有手工电弧焊、激光焊、激光钎焊等。
例如,现代汽车生产线上全自动焊接技术的应用,产生了高精度、高质量和高产量的效果。
同时,这项技术还能够保证车身的稳定性和安全性。
2.2 船舶制造焊接技术在船舶制造行业中也扮演了重要角色。
船舶结构的瞬时载荷、弯曲应力和振动等因素使得船舶焊接技术要求高。
随着现代技术的发展,激光焊接成为了船舶制造中首选的焊接技术之一。
激光焊接可以消除焊接接缝的变形,提高焊接质量和效率。
因此,它被广泛应用于船舶外壳、船舱和舵等部件中。
2.3 飞机制造在飞机制造中,要求焊接接缝的质量较高,如航空铝、钛合金等金属素材往往需要采用高质量和无缝的焊接技术。
建筑钢结构高效焊接新技术及应用3篇

建筑钢结构高效焊接新技术及应用3篇建筑钢结构高效焊接新技术及应用1建筑钢结构高效焊接新技术及应用随着工业化和城市化的不断发展,钢结构建筑的应用越来越广泛。
而钢结构的连接方式以及连接质量是决定建筑安全和可靠性的重要因素之一。
因此,高效焊接技术在钢结构建筑中的应用越来越受到关注。
本篇文章将介绍建筑钢结构高效焊接新技术及其应用。
一、高效焊接技术的分类高效焊接技术是针对传统焊接技术的缺点,结合了新材料、新设备、新工艺,研究开发出的新一代焊接技术。
根据不同的焊接方式,高效焊接技术主要分为以下几类:1. 离子束焊离子束焊是一种高能量束焊方法,它采用离子束束流与工作件交互的方式,通过加热和融化工作件来实现焊接的目的。
这种焊接方法的好处是焊缝精度高,热影响区小,能够焊接非常薄的材料,并且焊接速度快,生产效率高。
2. 激光焊激光焊是一种高能量密度焊接方法,它利用激光的高能量束焊焊缝,并且由于能量密度高,使得焊缝深度浅,HAZ小,表面形态好。
激光焊接的优点是焊缝质量高,成本低,速度快,适用于小型、精密的工作件焊接。
3. 摩擦焊接摩擦焊接是利用材料表面在高速摩擦过程中所产生的热量来进行焊接。
该方法的焊缝质量高,成本低,适用于连续焊接大量的同一型材构件。
4. 电子束焊电子束焊是一种高能量密度焊接方法,它利用电子束加热金属材料的表面,使其熔化,并在熔池中形成焊缝。
该方法的优点是焊接速度快,热影响区小,适用于特殊材料的焊接。
二、高效焊接技术在建筑钢结构中的应用1. 激光焊接钢结构建筑中主要应用的是激光钢板焊接技术。
该技术采用激光束焊接工艺和互锁缝及缩头榫结构的设计方式,是一种绿色环保、高品质、高效率的新技术。
该技术的主要优点是焊接速度快,焊缝美观,焊接质量高,能够提高钢结构建筑的整体性能。
2. 摩擦焊接随着城市化的不断发展,很多建筑钢结构大型构件的焊接成本越来越高。
而摩擦焊接可以克服一些传统焊接技术无法解决的问题。
摩擦焊接可以克服传统巨型构件的难点,通过快速摩擦而产生的高温热源在加压作用下直接将材料熔化,再结合高速旋转的轴承还能充分搅拌和混合两个材料,形成拼接熔池,达到了均质化、强度一致的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二低碳钢熔化焊焊接接头组织分析
一、实验目的
1、观察焊接接头的宏观组织及焊接缺陷
2、观察焊缝、热影响区及母材的各种典型结晶形态
3、掌握低碳钢焊接接头各区域的组织变化
4、测定在不同的焊接工艺下热影响区的宽度
二、实验概述
手工电弧焊的焊接过程如图2-1所示。
当电弧在焊条与焊件之间引燃后,电弧热使焊件(与电弧接触部分)及焊条末端熔化,熔化的焊件和焊条(以熔滴形式下落)形成共同的金属熔池。
焊条外面的药皮受热熔化并发生分解反应,产生液态熔渣和大量气体。
液态熔渣包围着熔滴,当其进入金属熔池后,因其比重小而浮在熔池表面。
所产生的气体则包围在电弧和熔池周围。
图2-1 手工电弧焊过程示意图
1、焊条芯
2、焊条药皮
3、液态熔渣
4、固态渣壳
5、气体
6、金属熔滴
7、熔池
8、焊缝
9、工件
焊条因不断熔化下滴而应连续向下送进,以保持一定的电弧长度。
同时,焊条还应沿焊接方向前进。
当电弧离开熔池后,被熔渣覆盖的熔化金属就缓慢冷却凝固成焊缝金属,液态熔渣也凝固成固态熔壳。
在电弧移达的下方,又形成新的熔池及其上的液态熔渣,以后又凝固成新的焊缝金属和渣壳。
上述过程继续进行下去,只至整个焊缝被焊完为止。
从而形成一条连续的焊缝金属。
在焊接过程中,由于焊接接头各部分经受了不同的热循环,因而所得组织各异。
组织的不同,导致机械性能的变化。
对焊接接头进行金相组织分析,是对接头机械性能鉴定的不可缺少的环节。
焊接接头的金相分析包括宏观和显微分析两个方面。
宏观分析的主要内容为:观察与分析焊缝成型、焊缝金属结晶方向和宏观缺陷等。
显微分析的主要内容为:借助于放大100倍以上的光学金相显微镜或电子显微镜进行观察,分析焊缝的结晶形态,焊接热影响区金属的组织变化,焊接接头的微观缺陷等。
焊接接头由焊缝金属和焊接热影响区金属组成。
焊缝金属的结晶形态与焊接热影响区的组织变化不仅与焊接热循环有关,而且与所用的焊接材料和被焊材料有密切关系。
(一)焊缝凝固时的结晶形态
熔化焊是通过加热使被焊金属的联接处达到熔化状态,焊缝金属凝固后实现金属的焊接。
联接处的母材和焊缝金属具有交互结晶的特征,图2-2为母材和焊缝金属交互结晶的示意图。
由图可见,焊缝金属与联接处母材具有共同的晶粒,即熔池金属的结晶是从熔合区母材的半熔化晶粒上开始向焊缝中心成长的。
这种结晶形式称为交互结晶或联生结晶。
当晶体最易长大方向与散热最快方向一致时,晶体便优先得到成长,有的晶体由于取向不利于成长,晶粒的成长会被竭止,这就是所谓选择长大,并形成焊缝中的柱状晶形态,如图2-2所示。
图2-2 焊缝金属的交互结晶示意图
(二)不易淬火钢焊接热影响区金属的组织变化
不易淬火钢包括低碳钢,16Mn、15MnTi、15MnV等低合金钢。
现以20号钢为例,根据其焊接热影响区金属的组织特征,可以分为4个区域,如图2-3所示。
图2-3 低碳钢焊接接头组织变化图
1、熔合区
2、过热区
3、正火区
4、部分相变区
1、熔合区
紧邻焊缝的母材与焊缝交界处的金属称为熔合区或半熔合区。
焊接时,该区金属处于。