有限元复习

合集下载

有限元复习题及答案

有限元复习题及答案

1.弹性力学和材料力学在研究对象上的区别?材料力学的研究对象是杆状构件,即长度远大于宽度和厚度的构件;弹性力学除了研究杆状构件外,还研究板、壳、块,甚至是三维物体等,研究对象要广泛得多。

2.理想弹性体的五点假设?连续性假设,完全弹性假设,均匀性假设,各向同性假定,小位移和小变形的假定。

3.什么叫轴对称问题,采用什么坐标系分析?为什么?工程实际中,对于一些几何形状、载荷以及约束条件都对称于某一轴线的轴对称体,其体内所有的位移、应变和应力也都对称于此轴线,这类问题称为轴对称问题。

通常采用圆柱坐标系r、θ、z分析。

这是因为,当弹性体的对称轴为z轴时,所有的应力分量、应变分量和位移分量都将只是r和z的函数,而与无θ关。

4.梁单元和杆单元的区别?杆单元只能承受拉压荷载,梁单元那么可以承受拉压弯扭荷载。

具体的说,杆单元其实就是理论力学常说的二力杆,它只能在结点受载荷,且只有结点上的荷载合力通过其轴线时,杆件才有可能平衡,像均布荷载、中部集中荷载等是无法承当的,通常用于网架、桁架的分析;而梁单元那么根本上适用于各种情况〔除了楼板之类〕,且经过适当的处理〔如释放自由度、耦合等〕,梁单元也可以当作杆单元使用。

5.薄板弯曲问题与平面应力问题的区别?平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是平行于板面且沿厚度均布载荷作用,变形发生在板面内;后者受力特点是垂直于板面的力的作用,板将变成有弯有扭的曲面。

平面应力问题有三个独立的应力分量和三个独立的应变分量,薄板弯曲问题每个结点有三个自由度,但是只有一个是独立的其余两个可以被它表示。

6.有限单元法结构刚度矩阵的特点?对称性,奇异性,主对角元恒正,稀疏性,非零元素呈带状分布。

7.有限单元法的收敛性准那么?完备性要求,协调性要求。

完备性要求:如果出现在泛函中场函数的最高阶导数是m阶,那么有限元解收敛的条件之一是单元内场函数的试探函数至少是m次完全多项式,或者说试探函数中必须包括本身和直至m阶导数为常数的项,单元的插值函数满足上述要求时,我们称单元是完备的。

有限元期末复习

有限元期末复习
相同点是:求解原理相同,都是基于最小势能原理的变分法。
9、形函数的概念
形函数:形状函数的简称,是坐标的函数,反映单元的位移状态。
二、小计算
等参元
形函数求解
刚度矩阵
三、大计算
平面问题的计算
二、三题计算参考p83也的计算实例,可能会从中截取一部分进行求解
等参单元:进行有限元分析时,其坐标变换式和位移模式采用同样的形函数和相同的参数,这种单元叫做~。
优点:(1)应用范围广。在平面和空间连续体、杆系结构和板壳问题中都可应用;
(2)易于构造位移模式;
(3)易于适用边界的形状和改变单元的大小;
(4)可以灵活的增减节点,容易构造各种过渡单元;
(5)推导过程具有通用性。
6、等效节点载荷概念、有几种情况
等效节点载荷:是由作用在单元上的集中力、表面力和体积力分别移置到节点上,再逐点加以合成求得。
包括集中力、表面力、体积力三种
7、有限元完备性、相容性概念
完备性:位移模式必须包含刚体位移和常应变;
相容性:位移模式在单元内要连续,且位移在相邻单元之间要协调;
各向同性:所选的位移模式应该跟局部坐标系的方位无关。
4、雅克比矩阵的概念,为什么要引入雅克比矩阵
在等参变换中,形函数是局部坐标的函数,所以在求单元应变矩阵时需要进行偏导数的变换,雅可比矩阵就是在这个过程中引入的。通过引入雅可比矩阵把求单元应变矩阵时要用的 和 转化成了局部坐标的函数,从而保证能够求出单元应变矩阵 和单元应变 。
5、等参元的概念、优点、适用什么单元
有限元算,计算三大题
老师没说具体出几道题,让大家好好看看印的那本书
一、简答、填空:
1、节点力,节点载荷,节点位移概念
答:节点力是单元与节点之间的作用力,如果取整个结构为研究对象,节点力是内力。

有限元考试复习资料(含计算题)

有限元考试复习资料(含计算题)

有限元考试复习资料(含计算题)1试说明用有限元法解题的主要步骤。

(1)离散化:将一个受外力作用的连续弹性体离散成一定数量的有限小的单元集合体,单元之间只在结点上互相联系,即只有结点才能传递力。

(2)单元分析:根据弹性力学的基本方程和变分原理建立单元结点力和结点位移之间的关系。

(3)整体分析:根据结点力的平衡条件建立有限元方程,引入边界条件,解线性方程组以及计算单元应力。

(4)求解方程,得出结点位移(5)结果分析,计算单元的应变和应力。

2.单元分析中,假设的位移模式应满足哪些条件,为什么?要使有限元解收敛于真解,关键在于位移模式的选择,选择位移模式需满足准则:(1)完备性准则:(2)连续性要求。

P210面简单地说,当选取的单元既完备又协调时,有限元解是收敛的,即当单元尺寸趋于0时,有限元解趋于真正解,称此单元为协调单元;当单元选取的位移模式满足完备性准则但不完全满足单元之间的位移及其导数连续条件时,称为非协调单元。

3什么样的问题可以用轴对称单元求解?在工程问题中经常会遇到一些实际结构,它们的几何形状、约束条件和外载荷均对称某一固定轴,我们把该固定轴称为对称轴。

则在载荷作用下产生的应力、应变和位移也都对称此轴。

这种问题就称为轴对称问题。

可以用轴对称单元求解。

4什么是比例阻尼?它有什么特点?其本质反映了阻尼与什么有关?答:比例阻尼:由于多自由度体系主振型关于质量矩阵与刚度矩阵具有正交性关系,若主振型关于阻尼矩阵亦具有正交性,这样可对多自由度地震响应方程进行解耦分析。

比例阻尼的特点为具有正交性。

其本质上反应了阻尼与结构物理特性的关系。

5何谓等参单元?等参单元具有哪些优越性?①等参数单元(简称等参元)就是对坐标变换和单元内的参变量函数(通常是位移函数)采用相同数目的节点参数和相同的插值函数进行变换而设计出的一种单元。

②优点:可以很方便地用来离散具有复杂形体的结构。

由于等参变换的采用使等参单元特性矩阵的计算仍在单元的规则域内进行,因此不管各个积分形式的矩阵表示的被积函数如何复杂,仍然可以方便地采用标准化的数值积分方法计算。

有限元复习试题库完整

有限元复习试题库完整

有限元复习一、选择题(每题1分,共10分)二、判断题(每空1分,共10分)三、填空题(每空1分,共10分)三、简答题(共44分)共6题四、综述题(共26分)两题一.基本概念1. 平面应力/平面应变问题;空间问题/轴对称问题;杆梁问题;线性与非线性问题平面应力问题(1) 均匀薄板(2)载荷平行于板面且沿厚度方向均匀分布在六个应力分量中,只需要研究剩下的平行于XOY 平面的三个应力分量,即x y xy yx σσττ=、、 (000z zx xz zy yz σττττ=====,,)。

一般0z σ=,z ε并不一定等于零,但可由x σ及y σ求得,在分析问题时不必考虑。

于是只需要考虑x y xy εεγ、、三个应变分量即可。

平面应变问题(1) 纵向很长,且横截面沿纵向不变。

(2)载荷平行于横截面且沿纵向均匀分布z yz zx εγγ===只剩下三个应变分量x y xy εεγ、、。

也只需要考虑x y xy σστ、、三个应力分量即可轴对称问题物体的几何形状、约束情况及所受外力都对称于空间的某一根轴。

轴对称单元的特点(与平面三角形单元的区别):轴对称单元为圆环体,单元与单元间为节圆相连接;节点力与节点载荷是施加于节圆上的均布力;单元边界是一回转面;应变不是常量。

在轴对称问题中,周向应变分量θε是与r 有关。

板壳问题一个方向的尺寸比另外两个方向尺寸小很多,且能承受弯矩的结构称为板壳结构,并把平分板壳结构上下表面的面称为中面。

如果中面是平面或平面组成的折平面,则称为平板;反之,中面为曲面的称为壳。

杆梁问题杆梁结构是指长度远大于其横断面尺寸的构件组成的系统。

在结构力学中常将承受轴力或扭矩的杆件称为杆,而将承受横向力和弯矩的杆件称为梁。

平面(应力应变)问题与板壳问题的区别与联系平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。

而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化。

有限元复习

有限元复习

第四章 空间弹性力学问题
单元形函数的构造方法 位移模式及收敛性要求 单元刚度矩阵和荷载列阵的计算 高斯数值积分
第六章 有限元程序设计
主元素序号指示矩阵MA 主元素序号指示矩阵 半带宽的计算 一维变带宽储存 结点自由度序号矩阵JR 结点自由度序号矩阵 体力引起的荷载列阵 面力引起的荷载列阵 荷载列阵的集成 刚度矩阵的集成 读懂源程序 在源程序基础上修改某些功能
第一章 绪论 第二章 平面弹性力学问题
位移模式与收敛性条件 形函数及其性质 面积坐标及三角形高次形函数的构造 有限元支配方程的推导 荷载列阵: 荷载列阵:单元到整体 刚度矩阵:单元到整体 刚度矩阵: 简单问题的有限元具体计算 计算结果的整理与分析 网格剖分的注意事项
第三章 平面等参有限元
等参单元的概念 单元形函数的构造方法 位移模式及收敛性要求 单元刚度矩阵和荷载列阵的计算 高斯数值积分
第七章 弹塑性问题
弹塑性有限元支配方程的建立 弹塑性矩阵的计算 塑性状态的判断与应力计算 非线性方程的解法
第九章 温度场与温度应力
温度场的变分原理 温度场的有限元支配方程 迭代格式的稳定性 温度应力
ห้องสมุดไป่ตู้
第十章 弹性动力问题
动力平衡方程 质量矩阵、阻尼矩阵 质量矩阵、 结构动力特性: 结构动力特性:频率与振型 直接率频法 振型叠加法 逐步积分法: 逐步积分法:线性加速度法

有限元考试必备

有限元考试必备

有限元考试必备
1
有限元知识点归纳及复习题
1.、有限元解的特点、原因?
答:有限元解一般偏小,即位移解下限性原因:单元原是连续体的一部分,具有无限多个自由度。

在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。

2有限元法的基本原理
是一种工程物理问题的数值分析方法,根据近似分
割和能量极值原理,把求解区域离散为有限个单元
的组合,研究每个单元的特性,组装各单元,通过
变分原理,把问题化成线性代数方程组求解。

分析指导思想:化整为零,裁弯取直,以简驭繁,
变难为易
有限元分析的基本步骤
(1)将结构进行离散化,包括单元划分、结点编号、单元编号、结点坐标计算、位移约束条件确定(2)等效结点力的计算
(3)刚度矩阵的计算(先逐个计算单元刚度,再组装成整体刚度矩阵)
(4)建立整体平衡方程,引入约束条件,求解结点位移(5)应力计算 2。

有限元(复习参考)

有限元(复习参考)

一.简答题:1.有限单元法和里兹法的区别:有限单元法:(1) 将连续的求解域离散为有限个单元组合体,利用在每一个单元内假设的近似函数来表示全求解域上待求的未知场函数。

(2)数学意义上,是把微分方程的连续形式转化为代数形式方程组。

里兹法:在整个求解域上,直接从泛函出发,通过假设试探函数,求得问题的近似解。

2. 泛函的两个基本点:(1)泛函有它的定义域,这个定义域是指满足一定条件的函数集。

(2)泛函](xy具有明确的对应关系,泛函的值是由一条可取曲线 与可取函数)[y的整体性质决定的,它表现在“积分”上。

3. 有限单元法的基本步骤:(1)结构或物体的离散化。

(2)选取单元内的场变量插值函数。

(3)进行单元分析,求单元特性矩阵和单元特性列阵。

(4)进行整体分析,组装整体特性矩阵和整体特性列阵,建立整体方程。

(5)计算单元内部的场变量。

4. 选取插值函数的原则:(1)广义坐标的个数与单元自由度数一致。

(2)为提高单元精度,插值多项式应尽量选取完全多项式。

有时完全多项式的项数与单元自由度数并不相同,这时可以增加单元的节点个数以使单元的自由度数和完全多项式的项数相同;还可以减少多项式的项数,以使问题变得简单,但此时应注意保持多项式的对称性。

5. 收敛准则:准则1 完备性要求。

如果出现在泛函中场函数的最高阶导数为m阶,则有限单元法收敛的条件之一是单元内场函数的插值函数至少是m次完全多项式,或者说插值函数必须包括本身和直至m阶导数为常数的项。

准则2 协调性要求。

如果出现在泛函中的最高阶导数是m阶,则试探函数在相邻单元的交界面上应有函数直到m - 1阶的连续导数。

6. 等参变换的定义:将局部(自然)坐标中几何形状规则的单元变换为整体坐标系中几何形状扭曲的单元。

当坐标变换和函数插值采用相同的节点,为等参单元;当坐标变换节点数多于插值函数节点数,为超参变换;当坐标变换节点数少于插值函数节点数,为亚参变换。

7. 等参单元基本思想:用相同数目的节点参数和相同的插值函数来定义单元的形状以及单元内的场变量。

有限元参考复习题

有限元参考复习题
(1)有限元模型:
有材料属性:密度、弹性、屈服极限等
有约束信息:约束条件(固定、支撑条件)
有载荷信息:受力情况
(2)几何模型:只有几何形状信息
4.有限元分析在机械设计中能起到什么作用 机械设计方面主要用的多的就是对机械产品做受力分析、看看产品在承受
载荷之后的变形情况、从而验证设计是否合理.
就是设计的产品仿真它的运行情况,看他的受力变形,震动等实际相比符 不符合,或者对新设计的产品进行改进后进行分析仿真
② 有限元方法的实施主要是依靠手工计算还是商业软件?
③ 有限元法能够用于固体结构的分析,是否可以用于流体、热、电磁场、声 场的分析? ④ 传统的机械零件强度校核中,一般要求零件形状简单,可以简化成杆或 者梁,有限元方法有这方面的要求么? ⑤ CAD建模得到的模型与有限元的模型之间有什么联系?
三 ① 列举常用的5个常用有限元软件? ② 工程中常用的模拟、仿真技术除了有限元方法以外,还有哪几种? ③ 主流的有限元软件架构一般是怎样的? ④ CAD软件经常在有限元软件中经常扮演什么角色? ⑤ 有限元分析在机械设计中能起到什么作用? 四
7.什么是 Tresca 应力和 Mises 应力?分别说明其应用场合。 第三强度理论的等效应力(Tresca stress,stress intensity, 应力强度,
最大
剪应力理论,1864,1773,库伦)s 1 2 1, 2,3 0
第四强度理论的等效应力(Von Mises stress,equinvalent stress, 等
减缩积分即选取高斯积分点的数目少于精确积分要求的积分点数。 9. 什么是有限元位移解的下限性质?
有限元解的特点:过刚,变形小于实际结果; 有意识地软化结构刚度,可以 改善解的精度; 连续结构上任意一点都可以变形;有限元模型的变形只在单元尺 度上 10. 雅可比矩阵对单元形状的要求是什么? 11. 什么是应力磨平?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元复习重点掌握一般问题的描述、模型简化、有限元的基本思想及分析原理、位移法求解基本过程、位移函数构造、单元特性、有限元计算的具体操作(单元刚阵形成、总纲阵组装)、边界条件处理(载荷等效/边界约束施加)、有限元分析的具体操作 场问题的一般描述---微分方程+边界条件 1) 应力场----弹性力学 2) 温度场----热传导 3) 电磁场----电磁学 4) 流速场----流体力学A 、B----微分算子(如对坐标或时间的微分) u----未知场函数,可为标量场(如温度),也可为矢量场(如位移、应变、应力等) 一、基本概念1、 平面应力/平面应变问题;空间问题/轴对称问题;板壳问题;杆梁问题;温度场;线性问题/非线性问题(材料非线性/几何非线性)等1.)平面应力问题:如等厚度薄板。

弹性体在一个坐标方向的几何尺寸远小于其他两个方向的几何尺寸,只受平行于板面,且不沿厚度变化的外力(表面力或体积力)。

在六个应力分量中,只需要研究剩下的平行于XOY 平面的三个应力分量,即x y xy yx σσττ=、、 (000z zx xz zy yz σττττ=====,,)。

一般0z σ=,z ε并不一定等于零,但可由x σ及y σ求得,在分析问题时不必考虑。

于是只需要考虑x y xyεεγ、、三个应变分量即可。

2.)平面应变问题:如长厚壁圆筒(受均匀内压或外压)重力坝一纵向(即Z 向)很长,且沿横截面不变的物体,受有平行于横截面而且不沿长度变化的面力和体力,所有一切应力分量、应变分量和位移分量都不沿Z 方向变化,它们都只是x 和y 的函数。

此外,在这一情况下,由于对称(任一横截面都可以看作对称面),所有各点都只会有x 和y 方向的位移而不会有Z 方向的位移,即w = 0这种问题称为平面位移问题,习惯上常称为平面应变问题。

z yz zx εγγ===只剩下三个应变分量x y xyεεγ、、。

也只需要考虑x y xyσστ、、三个应力分量即可。

两种平面问题,几何方程,虚功方程,物理方程相同。

弹性矩阵不同。

3.) 空间轴对称问题—即弹性体内任一点的位移、应力与应变只与坐标r 、z 有关,与θ无关• 几何形状关于轴线对称;• 作用于其上的载荷关于轴线对称。

• 约束条件关于轴线对称。

轴对称单元的特点(与平面三角形单元的区别)• 轴对称单元为圆环体,单元与单元间为节圆相连接; • 节点力与节点载荷是施加于节圆上的均布力; • 单元边界是一回转面;• 应变分量{}ε中出现了r u r,即应变不是常量;且应变矩阵在r--》0时,存在奇异点,需特殊处理,通常用该单元的形心坐标替代节点坐标。

4.) 力学概念定义的板是指厚度尺寸相对长宽尺寸小很多的平板1111 8010058t b ≤≤ 薄板,且能承受横向或垂直于板面的载荷。

如板不是平板而为曲的(指一个单元),则称为壳问题。

如作用于板上的载荷仅为平行于板面的纵向载荷,则称为平面应力问题;如作用于板上的载荷为垂直于板面的横向载荷,则称为板的弯扭问题,常简称板的弯曲问题。

• 常用的单元有三角形和矩形。

为了使相邻单元间同时可传递力和力矩,节点当作刚性节点,即节点处同时有节点力和节点力矩作用。

每个节点有三个自由度,即一个扰度和分别绕x ,y 轴的转角• 薄板矩形/三角形单元是非协调单元(相邻单元在公共边界上扰度是连续的但转角不一定连续)。

但实践表明,当单元细分,其解完全能收敛真实解。

3、 有限元法的基本思想(二次近似)与有限元分析的基本步骤(5步) 有限元法的基本思想:• 先将求解域离散为有限个单元,单元与单元只在节点相互连接;----即原始连续求解域用有限个单元的集合近似代替( 第一次近似)• 对每个单元选择一个简单的场函数近似表示真实场函数在其上的分布规律,该简单函数可由单元节点上物理量来表示----通常称为插值函数或位移函数(第二近似) • 基于问题的基本方程,建立单元节点的平衡方程(即单元刚度方程)• 借助于矩阵表示,把所有单元的刚度方程组合成整体的刚度方程,这是一组以节点物理量为未知量的线形方程组,引入边界条件求解该方程组即可。

有限元分析的基本步骤: • 所研究问题的数学建模 • 物体离散( 第一次近似)网格划分---即把结构按一定规则分割成有限单元边界处理---即把作用于结构边界上约束和载荷处理为节点约束和节点载荷要求:1)离散结构必须与原始结构保形----单元的几何特性2)一个单元内的物理特性必须相同----单元的物理特性 • 单元分析(第二近似)• 整体分析与求解,整体分析的四个步骤: 1、)建立整体刚度矩阵; 2、)根据支承条件修改整体刚度矩阵; 3、)解方程组,求节点位移(消元法和迭代法); 4、)根据节点位移求出应力。

• 结果分析及后处理4、 有限元法的基本定义(节点、单元、节点力、节点载荷)• 单元:即原始结构离散后,满足一定几何特性和物理特性的最小结构域 • 节点:单元与单元间的连接点。

• 节点力:单元与单元间通过节点的相互作用力 • 节点载荷:作用于节点上的外载(等效)。

注意:1)节点是有限元法的重要概念,有限元模型中,相邻单元的作用通过节点传递,而单元边界不传递力,这是离散结构与实际结构的重大差别;2) 节点力与节点载荷的差别5、 位移函数的构造方法及基本条件定义:有限单元法的基本原理是分块近似,对每个单元选择一个简单的场函数近似表示真实场函数在其上的分布规律,该简单函数可由单元节点上物理量来表示----通常称为插值函数或位移函数1.)广义坐标法——构造一维单元位移函数:20112012()... (){1...}{...}n n nT n u x x x xu x xx x αααααααααα=+++=ΦΦ==简记为 123456v u x y x y αααααα=++=++⎫⎬⎭3节点三角形单元的位移函数i α为待定系数,也称为广义坐标2.)插值函数法——即将位移函数表示为各个节点位移与已知插值基函数积的和。

一维:11221()()()...()ni iu x N x u N x u N x u =++=∑二维:11(,)(,)ni ini iu x y N u v x y N v ==∑∑ Ni 可为形函数• 选择位移函数的一般原则(基本条件):1)位移函数在单元节点的值应等于节点位移(即单元内部是连续的); 2)所选位移函数必须保证有限元的解收敛于真实解。

注:为了便于微积分运算,位移函数一般采用多项式形式,在单元内选取适当阶次的多项式可得到与真实解接近的近似解6、 位移函数的收敛性条件(协调元、非协调元)及单元协调性的判断影响有限元解的误差:1)离散误差 2)位移函数误差 • 收敛准则:1)位移函数必须包括常量应变(即线形项)2635x y xy u x v yu v yx εαεεαγαα⎧⎫∂⎪⎪∂⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪∂===⎨⎬⎨⎬⎨⎬∂⎪⎪⎪⎪⎪⎪+⎩⎭⎩⎭∂∂⎪⎪+∂∂⎩⎭——3节点三角形单元为例证明 2)位移函数必须包括单元的刚体位移(即单元应变2635,,αααα+为0时的位移)(即常量项)1040v u y x αθαθ=-=+⎫⎬⎭(平动和转动), 3)位移函数在单元内部必须连续(连续性条件),因为线性函数,内部连续。

4)位移函数应使得相邻单元间的位移协调(协调性条件),(相邻单元在公共边界上位移值相同)。

设公共边界直线方程为y=Ax+B ,代入位移函数可得:边界上位移为123456()()u x Ax B v x Ax B αααααα=+++=+++u,v 仍为线性函数,即公共边界上位移连续协调。

综上所述,常应变三角形单元的位移函数满足解的收敛性条件,称此单元为协调单元 注:上述四个条件称为有限元解收敛于真实解的充分条件;前三个条件称为必要条件。

满足四个条件的位移函数构成的单元称为协调元;满足前三个条件的单元称为非协调元;满足前两个条件的单元称为完备元。

7、 弹性力学的几个基本概念(位移、应力、应变等)剪应力互等定律; 任一线素的长度的变化与原有长度的比值称为线应变(或称正应变) 任意两个原来彼此正交的线素,在变形后其夹角的变化值称为角应变或剪应变 8、 弹性力学的基本方程(平衡方程、几何方程、物理方程)(注意基本假设/与非线性对比) 9、 虚功原理、最小势能原理及变分法(里兹法) 外力虚功 T = 内力虚功 U 10、形函数特点即插值基函数,反映了单元的位移形态,由节点位移求单元内任意一点的位移 1)形函数Ni 为x 、y 坐标的函数,与位移函数有相同的阶次。

2)形函数Ni 在i 节点处的值等于1, (,) 1 (,)0 (,)0(,)0 (,) 1 (,)0 (,)0 (,)0 (,)1i i i i j j i m m j i i j j j j m m m i i m j j m m m N x y N x y N x y N x y N x y N x y N x y N x y N x y =========类似而在其他节点上的值为0。

3)单元内任一点的三个形函数之和恒等于1。

(,)(,)(,)1i j m N x y N x y N x y ++= 4)形函数的值在0—1间变化。

11、 单元刚度矩阵的性质及元素的物理意义1.)对常应变三角形单元:单元刚度阵的一般格式可表示为[]=⎰⎰⎰eTVK [B][D][B]dxdydz 则{}[]{}=e eeF K δ它建立了单元的节点力与节点位移之间的关系,是6*6矩阵,其元素表示该单元的各节点沿坐标方向发生单位位移时引起的节点力,它决定于该单元的形状、大小、方位和弹性常数,而与单元的位置无关,即不随单元或坐标轴的平行移动而改变。

2.)平面应力问题和平面应变问题中的单元刚度矩阵单元刚阵[K]的物理意义是单元受节点力作用后抗变形的能力。

其元素ij k 的意义为:当第j 个自由度发生单位位移,而其他自由度的位移为0时,在第i 个自由度上所施加的力。

若按节点来说明,则刚阵中每个子块ij k 表示:当节点j 处发生单位位移,而其他节点固定时,在节点i 上所施加的力。

K 的脚码,标有“-”的表示水平方向,没有标“-”的表示垂直方向。

ij K 表示节点j 在垂直方向产生单位位移时,在节点i 所需要施加的水平节点力的大小单元刚度矩阵的性质:1)对称阵 2)主对角线元素恒为正值 3)奇异阵,即|K|=0,4)所有奇数行的对应元素之和为零,所有偶数行的对应元素之和也为零。

由此可见,单元刚阵各列元素的总和为零。

由对称性可知,各行元素的总和也为零。

12、常用单元的特性(如单元内部边界位移/应变/应力分布,相邻单元边界的协调性分析)(常应变单元三角形/四面体;矩形单元;等参四边形单元;矩形板单元)1.) 三节点三角形单元的位移函数为线性函数,则单元的应变分量均为常量,故这类三角形单元称为常应变单元(位移在单元内和边界上为线性变化,应变为常量) 应变矩阵[B]反映了单元内任一点的应变与节点位移间的关系 • 应力矩阵[S]反映了单元内任一点的应力与节点位移间的关系• 显然,常应变三角形单元的应变矩阵[B]为常量矩阵,说明在该单元上的应力和应变为常值。

相关文档
最新文档