材料成型有限元复习思考题
有限元思考题(1)

思考题第一章V u1-1. 用加权余量法求解微分方程,其权函数和场函数的选择没有任何限制。
(×)答:权函数V的选取必须保证残值的加权积分为零,强迫近似解所产生的残值在某种平均意义上等于零;场函数u必须保证任何一点都满足积分方程式(不一定连续),在边界每一点上都满足边界条件。
1-2. 加权余量法仅适合为传热学问题建立基本的有限元方程,而基于最小势能原理的虚功原理仅适合为弹性力学问题建立基本的有限元方程。
(×)分析:加权余量法只要能形成场的微分方程都能用,不局限于温度场。
尤其适合于具有连续场的非力学问题(如声、电、磁、热)的有限元方程的建立。
虚功原理(或虚位移原理)不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。
最小势能原理仅适用于弹性力学问题。
加权残值法尤其适用于具有连续场的非力学问题的有限元方程的建立。
1-3. 现代工程分析中的数值分析方法主要有有限差分法、有限元法和边界元法。
这些方法本质上是将求解区域进行网格离散化,然后求解方程获得数值结果。
是否可以将求解区域离散成结点群,但是没有网格进行求解?答:可以用无网格方法求解。
有限元法是基于网格的数值方法,它通用、灵活并被作为一种工业标准广泛遵循,但其在分析涉及特大变形(如:加工成型、高速碰撞、流固耦合)、奇异性或裂纹动态扩展等问题时遇到了许多困难。
近年来,无网格法得到了迅速发展,它不需要划分网格,克服了有限元法对网格的依赖,在涉及网格畸变、网格移动等问题时显示出明显的优势,同时无网格法的前处理过程也比有限元更为简单。
目前无网格法主要还是处在研究阶段,解决的工程实际问题相对较简单,与有限元的发展还有较大距离。
(无网格方法数值求解的基本思想:在每个节点上构建待求物理量近似值的插值函数,并用加权残量法和该近似函数对微分方程进行离散,形成与待求物理量相关的各节点近似值的离散方程,并求解之。
)第二章2-1. ANSYS软件有哪些功能模块?在GUI方式下的六个窗口有何功能和特点。
(完整版)材料成型复习思考题(含完整答案版)

《材料成形技术基础》复习思考题第一篇铸造1.何谓液态合金的充型能力?充型能力不足,铸件易产生的主要缺陷有哪些?充型能力:液态金属充满铸型型腔,获得形状完整、尺寸精确、轮廓清晰铸件的能力。
充型能力不足,会产生浇不足、冷隔、气孔、夹渣等缺陷。
提高充型能力的方法:1)选择凝固温度范围小的合金;2)适当提高浇注温度、充型压力;3)合理设计浇注系统结构;4)铸型预热,合理的铸型蓄热系数和铸型发气量;5)合理设计铸件结构。
2•影响液态合金充型能力的主要因素有哪些?影响液态合金充型能力的主要因素有:流动性、铸型条件、浇注条件和铸件结构等。
3•浇注温度过高或过低,对铸件质量有何影响?浇注温度过低,会产生浇不足、冷隔、气孔、夹渣等缺陷。
浇注温度过高, 液态合金的收缩增大,吸气量增加,氧化严重,容易导致产生缩孔、缩松、气孔、粘砂、粗晶等缺陷。
可见,浇注温度过高或过低,都会产生气孔。
4•如何实现同时凝固?目的是什么?该原则适用于何种形状特征的铸件?铸件薄璧部位设置在浇、冒口附近,而厚璧部位用冷铁加快冷却,使各部位的冷却速度趋于一致,从而实现同时凝固。
目的:防止热应力和变形。
该原则适用于壁厚均匀的铸件。
注意:壁厚均匀,并非要求壁厚完全相同,而是铸件各部位的冷却速度相近。
5•试述产生缩孔、缩松的机理。
凝固温度范围大的合金,其缩孔倾向大还是缩松倾向大?与铸铁相比较,铸钢的缩孔、缩松倾向如何?产生缩孔、缩松的机理:物理机制是因为液态收缩量+凝固收缩量> 固态收缩量(或写为:体收缩量〉线收缩量);工艺原因则是由于补缩不足。
凝固温度范围大的合金,其缩松倾向大。
与铸铁相比较,铸钢的缩孔、缩松倾向大。
6•试述冒口与冷铁的作用。
冒口:补缩、排气。
冷铁:调整冷却速度。
冒口:补缩、排气。
冷铁:调整冷却速度。
7•—批铸钢棒料(①200X L mm),落砂清理后,立即分别进行如下的切削第1页共13页加工:(1) 沿其轴线,在心部钻①80mm 通孔, 加工后棒料长度为L 1; (2) 将其车为①80mm 的轴,车削后的长 度为L2。
材料成形原理课后习题解答

材料成型原理第一章(第二章的内容)第一部分:液态金属凝固学1.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。
原子集团的空穴或裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。
(2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏。
1.2答:液态金属的表面张力是界面张力的一个特例。
表面张力对应于液-气的交界面,而界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。
表面张力σ和界面张力ρ的关系如(1)ρ=2σ/r,因表面张力而长生的曲面为球面时,r为球面的半径;(2)ρ=σ(1/r1+1/r2),式中r1、r2分别为曲面的曲率半径。
附加压力是因为液面弯曲后由表面张力引起的。
1.3答:液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确定条件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂质含量决定,与外界因素无关。
而冲型能力首先取决于流动性,同时又与铸件结构、浇注条件及铸型等条件有关。
提高液态金属的冲型能力的措施:(1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比热、密度、导热系大;④粘度、表面张力大。
(2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。
(3)浇注条件方面:①提高浇注温度;②提高浇注压力。
(4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度;②降低结构复杂程度。
1.4 解:浇注模型如下:则产生机械粘砂的临界压力ρ=2σ/r显然 r =21×0.1cm =0.05cm 则 ρ=410*5.05.1*2-=6000Pa 不产生机械粘砂所允许的压头为H =ρ/(ρ液*g )=10*75006000=0.08m 1.5 解: 由Stokes 公式 上浮速度 92(2v )12r r r -= r 为球形杂质半径,γ1为液态金属重度,γ2为杂质重度,η为液态金属粘度γ1=g*ρ液=10*7500=75000γ2=g 2*ρMnO =10*5400=54000所以上浮速度 v =0049.0*95400075000(*10*1.0*223)-)(-=9.5mm/s 3.1解:(1)对于立方形晶核 △G 方=-a 3△Gv+6a 2σ①令d △G 方/da =0 即 -3a 2△Gv+12a σ=0,则临界晶核尺寸a *=4σ/△Gv ,得σ=4*a △Gv ,代入① △G 方*=-a *3△Gv +6 a *24*a △Gv =21 a *2△Gv 均质形核时a *和△G 方*关系式为:△G 方*=21 a *3△Gv (2)对于球形晶核△G 球*=-34πr *3△Gv+4πr *2σ 临界晶核半径r *=2σ/△Gv ,则△G 球*=32πr *3△Gv 所以△G 球*/△G 方*=32πr *3△Gv/(21 a *3△Gv) 将r*=2σ/△Gv ,a *=4σ/△Gv 代入上式,得△G 球*/△G 方*=π/6<1,即△G 球*<△G 方*所以球形晶核较立方形晶核更易形成材料成型原理第 3 页 共 16 页3-7解: r 均*=(2σLC /L)*(Tm/△T)=319*6.618702731453*10*25.2*25)+(-cm =8.59*10-9m △G 均*=316πσLC 3*Tm/(L 2*△T 2) =316π*262345319*)10*6.61870(2731453*10*10*25.2()+()-=6.95*10-17J3.2答: 从理论上来说,如果界面与金属液是润湿得,则这样的界面就可以成为异质形核的基底,否则就不行。
材料力学思考题 -回复

材料力学思考题 -回复
材料力学思考题需要具有一定的材料力学知识和解题能力,以下是一些常见的材料力学思考题:
1. 弹性模量的测定方法有哪些,各有何特点?
2. 实际工程中,为什么会出现材料的疲劳破坏现象,如何预防和延长材料的疲劳寿命?
3. 材料的断裂韧性与应变速率有关吗?如果有关,有什么特点?
4. 塑性变形过程中,为什么细晶粒材料比粗晶粒材料更容易发生断裂?
5. 如何通过研究材料的应力应变曲线,来判断材料的力学性能和断裂机制?
6. 岩石的强度是如何影响地质工程设计和施工的?
7. 材料的蠕变行为是什么?在高温环境下,材料的蠕变性能会如何变化?
8. 材料的固溶强化和位错强化是如何增强材料的力学性能的?
9. 如何通过组织显微结构的观察,来分析材料的力学性能和断裂特点?
10. 如何通过有限元分析方法,来解决复杂结构的力学问题?
以上仅是一些常见的材料力学思考题,如果你有具体的材料力学问题或者需要更深入的讨论,可以提供更具体的问题,以便提供更准确的回答。
材料成型原理课后答案

材料成型原理课后答案材料成型原理是指通过不同的成型工艺,将原料加工成所需形状和尺寸的零部件或制品的原理。
在工程制造领域中,材料成型是非常重要的一环,它直接影响着制品的质量和性能。
下面就材料成型原理的相关问题进行解答。
1. 什么是材料成型原理?材料成型原理是指将原料加工成所需形状和尺寸的零部件或制品的原理。
它是通过对原料进行加工,使其发生形状、尺寸和性能的改变,从而得到符合要求的制品。
材料成型原理是工程制造中的重要环节,它直接关系到制品的质量和性能。
2. 材料成型的基本过程是什么?材料成型的基本过程包括原料的预处理、成型工艺和制品的后处理。
首先,原料需要进行预处理,包括清洁、除杂、干燥等工序,以保证原料的质量和加工的顺利进行。
然后,根据制品的要求,选择合适的成型工艺,如锻造、压铸、注塑等,对原料进行加工成型。
最后,对成型后的制品进行后处理,包括去除余渣、表面处理、热处理等工序,以提高制品的质量和性能。
3. 材料成型原理的影响因素有哪些?材料成型原理的影响因素包括原料的性能、成型工艺、成型设备和操作技术等。
首先,原料的性能直接影响着成型的难易程度和制品的质量。
其次,成型工艺的选择和设计对成型效果起着决定性的作用。
成型设备的性能和精度也会影响成型的质量和效率。
操作技术则是保证成型过程顺利进行的重要因素。
4. 材料成型原理的发展趋势是什么?随着科学技术的不断发展,材料成型原理也在不断创新和完善。
未来,材料成型将更加注重节能环保、智能化和数字化。
新材料、新工艺、新设备的不断涌现,将推动材料成型原理朝着高效、精密、绿色的方向发展。
同时,数字化技术的应用将使成型过程更加智能化和可控化,提高生产效率和产品质量。
5. 如何提高材料成型的质量和效率?要提高材料成型的质量和效率,首先需要加强对原料的质量控制,保证原料的质量稳定。
其次,要优化成型工艺和设备,提高成型的精度和效率。
同时,加强操作技术的培训和管理,确保成型过程的稳定和可控。
材料成型原理思考题及解答..

材料成型原理思考题本课程教学要求:1.掌握液态金属和合金的凝固、结晶基本规律和冶金处理及它们对材质和零件性能的影响。
2.重点掌握塑性成型的基础及塑性成型理论的应用。
3.重点掌握材料成型过程中化学冶金和现象、缺陷的形成机理、影响因素及预防措施。
第二章液态金属重点内容1、液态金属的基本特性2、液态金属的粘度、表面张力、G吸附方程3、流动方程、相似定律4、流变行为和流变铸造思考题1.在固相表面上有液相和气相,且三者处于界面平衡的情况,什么条件下固-液互相之间是润湿的。
到达平衡时,在气、液、固三相交界处,气-液界面和固-液界面之间的夹角称为接触角(contact angle),用θ表示。
它实际是液体表面张力和液-固界面张力间的夹角。
接触角的大小是由在气、液、固三相交界处,三种界面张力的相对大小所决定的。
从接触角的数值可看出液体对固体润湿的程度。
当、和达平衡时以下关系:γSG-γSL=γLG cosθ上述方程称为杨(Young)方程。
从杨方程我们可以得到下列结论:(1)如果(γSG-γSL)=γLG,则cosθ=1,θ=0°,这是完全润湿的情况.如果(γSG-γSL)>γLG,则直到θ=0还没有达到平衡,因此杨方程不适用,但是液体仍能在固体表面铺展开来。
(2)如果0<(γSG-γSL)<γLG,则1>cosθ>0,θ<90o ,固体能为液体所润湿. (3)如果(γSG-γSL)< 0,则cosθ<0,θ>90o ,固体不为液体所润湿.2.分析物质表面张力产生的原因以及与物质原子间结合力的关系。
表面张力是由于物体在表面上的质点受力不均所造成。
由于液体或固体的表面原子受内部的作用力较大,而朝着气体的方向受力较小,这种受力不均引起表面原子的势能比内部原子的势能高。
因此,物体倾向于减小其表面积而产生表面张力。
原子间结合力越大,表面内能越大,表面张力也就越大。
有限元课后第三章习题答案

有限元课后第三章习题答案有限元课后第三章习题答案第一题:根据题目给出的信息,我们可以得出以下结论:1. 题目中提到了一个平面问题,即只考虑二维情况。
2. 材料的弹性模量为E = 210 GPa。
3. 材料的泊松比为ν = 0.3。
4. 材料的厚度为t = 10 mm。
5. 材料的长度为L = 100 mm。
6. 材料的宽度为W = 50 mm。
7. 材料的边界条件为固定边界。
根据以上信息,我们可以开始解题。
首先,我们需要确定有限元模型的几何形状和单元类型。
由于题目给出的是一个平面问题,我们可以选择使用二维平面应力单元来建模。
根据题目给出的材料尺寸,我们可以选择一个矩形区域作为有限元模型的几何形状。
接下来,我们需要确定有限元模型的单元划分。
由于题目没有给出具体的单元划分要求,我们可以根据经验选择适当的单元尺寸和划分密度。
在这里,我们可以将矩形区域划分为若干个等大小的四边形单元。
然后,我们需要确定有限元模型的边界条件。
根据题目给出的信息,材料的边界条件为固定边界。
这意味着模型的边界上的节点在计算过程中将保持固定位置,不发生位移。
因此,我们需要将边界上的节点固定。
接下来,我们可以开始进行有限元计算。
首先,我们需要确定有限元模型的节点和单元编号。
然后,我们可以根据材料的弹性模量和泊松比,以及节点和单元的位置信息,计算出每个节点和单元的刚度矩阵。
然后,我们可以根据边界条件,将固定边界上的节点的位移设置为0。
这样,我们就可以得到一个由位移未知数构成的线性方程组。
通过求解这个线性方程组,我们可以得到模型中每个节点的位移。
最后,我们可以根据节点的位移和单元的刚度矩阵,计算出每个单元的应力和应变。
根据题目给出的材料厚度,我们可以得到每个单元的应力和应变的平均值。
综上所述,根据题目给出的信息,我们可以使用有限元方法来求解这个平面问题。
通过建立有限元模型,确定边界条件,进行有限元计算,我们可以得到模型中每个节点的位移和每个单元的应力和应变。
工程材料及成形工艺思考题 Word 文档 (2)

第一章材料的力学行为和性能思考题1.解释下列力学性能指标。
(1) HB (2) HRC (3) HV2.解释下列名词。
(1)蠕变(2)低应力脆断(3)疲劳(4)断裂韧度3.下列工件应采用何种硬度试验方法来测定其硬度?(1)锉刀(2)黄铜轴套(3)供应状态的各种碳钢钢材(4)硬质合金刀片(5)耐磨工件的表面硬化层4.下列硬度表示方法是否正确,为什么?(1)HBW250~300 (2)5~10HRC (3)HRC70~75 (4)HV800~850 (5)800~850H5.比较铸铁与低碳钢拉伸应力-应变曲线的不同,并分析其原因。
6.一根两端固定的低碳钢丝,承受拉应力为20Mpa,当温度从30摄氏度突然下降到10摄氏度时,钢丝内新产生的应力为多少?7.现有原始直径为10mm圆形长、短试样各一根,经拉伸试验测得的伸长率均为25%,求两试样拉断后的标距长度。
两试样中哪一根塑性好?为什么?8.甲乙丙丁四种材料的硬度分别为45HRC、90HRB、800HV、240HBW,试比较这四种材料硬度的高低。
第二章材料的结构思考题1.为何单晶体具有各向异性?而多晶体在一般情况下却显示各向同性?2.解释下列基本概念;晶体与非晶体;晶体的各向异性;同素异晶转变;位错;晶界;固溶体;金属化合物。
3.试述高分子链的结合力、分子链结构、聚集态结构对高聚物的性能的影响。
4.何为高分子材料的老化?如何防止?5.试计算面心立方晶格的致密度。
6.说明结晶对高聚物性能的影响。
第三章1.过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响?2.在铸造生产中,采用哪些措施控制晶粒的大小?3.如果其他条件相同,试比较下列铸造条件下,铸件晶粒的大小:(1).金属模浇注与砂模浇注;(2).高温浇注宇与低温浇注;(3).铸成薄件与铸成厚件;(4).浇注时采用振动和不振动。
4.二元匀晶相图、共晶相图与合金的力学性能和工艺性能之间存在什么关系?5.画出Fe-Fe3C相图,指出图中各点及线的意义,并标出个相区的相组成物和组织组成物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习思考题
1、有限元法的基本思想是什么?结合Ansys 软件的使用,举例说明求解有限元问题的一般过程。
2、弹性力学的基本方程有哪些,各有何物理意义?
3、线弹性体系的基本特点有哪些?成立的前提条件是什么?
4、求解线弹性问题需要哪些物理参数和边界条件?
5、何谓虚功原理(方程)?虚功原理有哪两种表现形式,其物理意义是什么?
6、何谓最小势能原理?最小势能原理的物理意义是什么?
7、有限元解的误差主要来自何方?怎样解决?
8、有限元解的收敛性、收敛速度和稳定性对工程应用有何影响?
9、下图中的4条实线分别表示有限元方程的数值计算轨迹。
说明相对于真实解(虚线),这4条实线的含义。
题9图 10、建立有限元方程的主要途径有哪些?简述其基本原理。
11、求解稳态热传导问题需要哪些物理参数和边界条件?
12、求解物体内部由于温度变化而引发的热应力需要哪些物理参数?
13、怎样求解瞬态物理场问题?怎样确定瞬态物理场问题是否有解?
14、试推导求解一维稳态温度场的有限元通式。
15、在ANSYS 的计算流体动力学案例中(见下图),给出的空气Air 是粘性流体,还是非粘性流体?怎样判断?有何特征?
Step
③
①
F(u)
② ④
真实解
题15图
16、材料非线性的共同特征是什么?主要体现在材料的哪几个性质上?请分别举例说明。
17、试比较线弹性、弹塑性、粘塑性材料的本构方程特点(数学表达式及其代表的物理意义)。
18、分析比较用直接迭代法、Newton -Raphson 法、修正Newton -Raphson 法和增量法求解非线性方程组的算法特点。
19、说明利用增量法和迭代法混合求解场变量a 时,公式
n m n m n m a a a 1111++++∆+=
中各项的含义(包括上、下标)。
20、试推导弹塑性材料的本构方程(假设材料各向同性)。
21、温度对材料非线性本构方程的影响主要体现在哪些方面?
22、怎样求解非线性问题?弹塑性非线性和粘塑性非线性在求解上有何异同。
23、请总结用增量法求解弹塑性有限元问题和粘塑性有限元问题的异同。
24、非线性边界条件主要体现在哪些方面?请举例说明。
25、试说明求解几何非线性问题时,全Lagrange 增量计算格式与更新Lagrange 增量计算格式的基本特点和应用范围?
26、何谓单元形函数?单元形函数对求解对象而言是几何近似还是物理近似?为什么?
27、选择有限元单元的依据是什么?最简单的平面单元和空间单元有哪些?
28、提高有限元求解精度的主要途径有哪些?
29、怎样提高有限元的求解精度和求解效率?
30、选择单元有哪些基本原则?为什么?请举例说明。
31、自适应网格划分的含义是什么?请举例说明。
32、请利用结构对称性为下列工件建立有限元模型,并用符号表示其边界条件。
题32图
33、求解金属砂型铸件的凝固问题,需要哪些材料参数和初边值条件?
34、求解工件的淬火热处理问题,需要哪些材料参数和初边值条件?
35、求解图32所示两问题,需要哪些材料参数和初边值条件?
36、线弹性有限元、弹塑性有限元、刚(粘)塑性有限元和传热问题有限元、流体力学问题有限元可分辨用于材料成形的哪些领域或对象?
37、通过查阅文献资料,列举1~2个有限元法在本专业或本研究领域的应用实例,并给与简要说明。
38、怎样使有限元分析结果更接近工程实际?
P
求解在高温环境中,工件的径
向热膨胀(轴向膨胀不考虑)。