材料力学有限元分析知识点总结

合集下载

有限元法及应用知识点总结

有限元法及应用知识点总结
• 虚应力原理可以应用于线弹性以及非线性弹性等不同 的力学问题。
• 但是必须指出,无论是虚位移原理还是虚应力原理, 他们所依赖的几何方程和平衡方程都是基于小变形理 论的,他们不能直接应用于基于大变形理论的力学问 题。
4.最小位能原理和最小余能原理
• 明确:最小位能原理是建立在虚位移原理基础上 的,而最小余能原理建立在虚应力原理基础上。
在工程实际中较为重要的材料非线性问题有:非线性弹性 (包括分段线弹性)、弹塑性、粘塑性及蠕变等。
2)几何非线性问题
几何非线性问题是由于位移之间存在非线 性关系引起的。
当物体的位移较大时,应变与位移的关系 是非线性关系。研究这类问题一般都是假 定材料的应力和应变呈线性关系。它包括 大位移大应变及大位移小应变问题。如结 构的弹性屈曲问题属于大位移小应变问题, 橡胶部件形成过程为大应变问题。
• 最小位能原理是指在所有可能位移中,真实位移 使系统总位能取最小值。
• 总位能是指弹性体变形位能和外力位能之和。
• 最小余能原理是指在所有的应力中,真实应力使 系统的总余能取最小值。
• 总余能是指弹性体余能和外力余能总和。
4.最小位能原理和最小余能原理(续)
• 一般而言,利用最小位能原理求得位移近似解 的弹性变形能是精确解变形能的下界,即近似 的位移场在总体上偏小,也就是说结构的计算 模型显得偏于刚硬;而利用最小余能原理求得 的应力近似解的弹性余能是精确解余能的上界, 即近似的应力解在总体上偏大,结构的计算模 型偏于柔软。
平面单元划分原则(续)
• 3)划分单元的形状,一般均可取成三角形或 等参元。对于平直边界可取成矩形单元,有时 也可以将不同单元混合使用,但要注意,必须 节点与节点相连,切莫将节点与单元的边相连。 4)单元各边的长不要相差太大,否则将影响 求解精度。

有限元基础知识培训

有限元基础知识培训

HB
HRB
HV
第3页/共34页
一、材料基础知识
➢根据经验,大部分金属的硬度和强度之间有如 下近似关系: 低碳钢 σb≈0.36 HB 高碳钢 σb≈0.34 HB 灰铸铁 σb≈0.1 HB
➢因而可用硬度近似地估计抗拉强度。
第4页/共34页
一、材料基础知识
塑性
➢ 材料的塑性是指材料受力时,当应力超过屈服点后, 能产生显著的变形而不立即断裂的性质。
约束:就是消灭自由度!?
有限元模型由一些简单形状的单元组成,单元间通过节 点连接,并承受一定载荷
第19页/共34页
二、CAE基础知识
节点和单元
第20页/共34页
二、CAE基础知识
节点和单元
第21页/共34页
二、CAE基础知识
有限单元法特点
第22页/共34页
二、CAE基础知识
有限元求解问题的基本步骤
作用在单元边界上的表面力、 作用在单元内的体积力和集中 力等,都必须等效移置到单元 节点上去,化为相应的单元等 效节点载荷
第25页/共34页
二、CAE基础知识
有限元求解问题的基本步骤
• 定义求解域 • 求解域离散化 • 单元推导 • 等效节点载荷计算 • 总装求解 • 联立方程组求解和结果解释
将单元总装形成离散域的总矩 阵方程(联合方程组) (1)由各单元刚度矩阵组集成 整体结构的总刚度矩阵 (2)将作用于各单元的节点载 荷矩阵组集成总的载荷列阵 求得整体坐标系下各单元刚度矩 阵后,可根据结构上各节点的力 平衡条件组集求得结构的整体刚 度方程
➢ 各向同性与各向异性。
第6页/共34页
一、材料基础知识
应力集中与应力集中系数
➢材料会由于截面尺寸改变而引起应力的局部增大, 这种现象称为应力集中。

有限元基础知识

有限元基础知识

有限元基础知识
嘿,朋友们!今天咱要来聊聊有限元基础知识啊,这可真是个超有意思的东西!
你们有没有玩过拼图游戏呀?有限元就有点像把一个复杂的东西,比如一个机器零件啦,拆分成好多好多小的部分,就像拼图的小块块一样。

比如说,你想想看一辆汽车,它那么复杂,要是直接去研究它可太难了。

但通过有限元,咱就可以把它分成一个个小区域,分别去分析、去理解,这不就简单多了嘛!
有限元就像是给我们一个探索复杂世界的秘密武器!它让那些看似遥不可及、搞不懂的东西变得清晰起来。

你知道吗?工程师们经常用这个方法来解决各种各样的问题呢!比如设计更牢固的桥梁,或者让飞机飞得更安全、更稳定。

就好比有一座摇摇欲坠的老桥,工程师们就可以用有限元方法,一点一点地分析每个部分,找出问题所在,然后想办法加固它,让它重新变得坚固可靠。

这多了不起啊!
那有限元具体是咋工作的呢?简单来说,就是先划分网格,这就像是给那个复杂的东西画格子。

然后再对这些小格子进行计算和分析。

就好像你在做数学题一样,一步步算出答案。

“哎呀,这听起来好难啊!”你可能会这么说。

但别害怕呀!一开始可能觉得有点难理解,但只要你深入进去,就会发现它的奇妙之处。

而且现在有好多软件可以帮我们进行有限元分析呢,超方便的!
总之,有限元基础知识是个非常有用、非常有趣的东西!它就像一把钥匙,能帮我们打开复杂工程世界的大门,让我们更好地去理解和创造。

大家赶紧去探索一下吧,相信你们一定会爱上它的!。

有限元动力学分析知识点

有限元动力学分析知识点

有限元动力学分析知识点复习目录一、模型输入、建模A 输入几何模型1、两种方法:No defeaturing 和 defeaturing(Merge合并选项、Solid实体选项、Small选项)2、产品接口。

输入IGES 文件的方法虽然很好,但是双重转换过程CAD > IGES > ANSYS 在很多情况下并不能实现100%的转换.ANSYS 的产品接口直接读入“原始”的CAD 文件,解决了上面提到的问题.3、输入有限元模型。

除了实体几何模型外, ANSYS 也可输入由某些软件包生成的有限元单元模型数据(节点和单元)。

B 实体建模1、定义实体建模:建立实体模型的过程。

(两种途径)1)自上而下建模:首先建立体(或面),对这些体或面按一定规则组合得到最终需要的形状.✓开始建立的体或面称为图元.✓工作平面用来定位并帮助生成图元.✓对原始体组合形成最终形状的过程称为布尔运算✓总体直角坐标系 [csys,0] 总体柱坐标系[csys,1]总体球坐标系[csys,2] 工作平面 [csys,4]2)自下而上建模:按照从点到线,从线到面,从面到体的顺序建立模型。

B 网格划分1、网格划分三步骤:定义单元属性、指定网格的控制参数、生成网格2、单元属性(单元类型 (TYPE)、实常数 (REAL)、材料特性(MAT))3、单元类型单元类型是一个重要选项,它决定如下单元特性:自由度(DOF)设置、单元形状、维数、假设的位移形函数。

1)线单元(梁单元、杆单元、弹簧单元)2)壳用来模拟平面或曲面。

3)二维实体用于模拟实体截面4)三维实体✓用于几何属性,材料属性,荷载或分析要求考虑细节,而无法采用更简单的单元进行建模的结构。

✓也用于从三维CAD系统转化而来的几何模型,而这些几何模型转化成二维模型或壳体会花费大量的时间和精力4、单元阶次与形函数•单元阶次是指单元形函数的多项式阶次。

•什么是形函数?–形函数是指给出单元内结果形态的数值函数。

总结材料力学、弹性力学、有限元三门课程解决问题的思路和步骤-指出其异同点

总结材料力学、弹性力学、有限元三门课程解决问题的思路和步骤-指出其异同点

总结材料力学、弹性力学、有限元三门课程解决问题的思路和步骤,指出其异同点航天航空学院1334班艾松学号:4113006012杆件在多种外力共同作用下的变形(或内力),可先分别求出各外力单独作用下杆件的变形(或内力),然后将这些变形(或内力)叠加,从而得到最终结果。

②几何非线性问题。

若杆件变形较大,就不能在原有几何形状的基础上分析力的平衡,而应在变形后的几何形状的基础上进行分析。

这样,力和变形之间就会出现非线性关系,这类问题称为几何非线性问题。

③物理非线性问题。

在这类问题中,材料内的变形和内力之间(如应变和应力之间)不满足线性关系,即材料不服从胡克定律。

在几何非线性问题和物理非线性问题中,叠加原理失效。

解决这类问题可利用卡氏第一定理、克罗蒂-恩盖塞定理或采用单解。

直角坐标系下的弹性力学的基本方程为:平衡微分方程(1)几何方程(2)解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个位载荷法等。

在许多工程结构中,杆件往往在复杂载荷的作用或复杂环境的影响下发生破坏。

例如,杆件在交变载荷作用下发生疲劳破坏,在高温恒载条件下因蠕变而破坏,或受高速动载荷的冲击而破坏等。

这些破坏是使机械和工程结构丧失工作能力的主要原因。

所以,材料力学还研究材料的疲劳性能、蠕变性能和冲击性能。

材料力学基本公式(解决问题方法): 一、应力与强度条件 拉压:[]σσ≤=maxmax AN剪切:[]ττ≤=AQmax 挤压:[]挤压挤压挤压σσ≤=AP物理方程(3)(1)式中的σx、σy、σz、τyz=τzy、τxz=τzx、τxy=τyx 为应力分量,X 、Y 、Z 为单位体积的体力在三个坐标方向的分量;(2)式中的u 、v 、w 为位移矢量的三个分量(简称位移分量),εx、εy、εz、γyz、γxz、γxy 为应变分量;(3)式中的E 和v 分别表示杨氏弹性模量和泊松比。

有限元分析基础知识共70页文档

有限元分析基础知识共70页文档
、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
有限元分析基础知识
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹

有限元法复习资料

有限元法复习资料

有限元法及其应用考点总结简答题1.什么是有限元法?人为的将一个受力物体划分为有限个大小和有限量单元,这些结构单元在有限个节点上相互连接,组成整个受力物体,再通过几何和力学分析得到这些单元的应力、应变和位移的代数方程组。

利用计算机对代数方程组联立求解,就可求出各个单元的应力、应变和位移。

用有限元法求解结构的应力、应变和位移的步骤是什么?(1)将受力结构划分成单元,结构离散化(2)单元特性分析,单元位移模式选择(3)构造单元位移函数,建立单元的应力,应变,位移之间的关系(4)简历整体结构的平衡方程(5)利用计算机进行数值计算,求出节点的位移,应变,应力(6)输出单元,绘制应力应变的图形曲线。

2.说明弹性力学中的连续性假设?(1)物体是连续的(2)物体是线性弹性的(3)物体是均匀的各向同性的(4)物体的位移和应变微小3.解释并绘简图说明圣维南原理?在弹性体的一小部分边界上,将所作用的面力作静力等效变换只对力作用处附近的应力有影响,对离力作用处较远的应力几乎无影响。

4.说明什么情况下的受力问题,可以归结为轴对称问题?在空间问题中,如果弹性体的几何形状、约束状态,以及其他外在因素都是对称于某一根轴(过该轴的任一平面都是对称面),那么弹性体的所有应力、应变和位移也就都对称于这根轴。

这类问题通常称为空间轴对称问题。

有限元的轴对称问题,既结构轴对称,载荷轴对称,约束也是轴对称。

5.说明求解弹性力学问题的两种不同途径是什么?应力法和位移法。

应力法:应力(物理)应变(几何)位移位移法:位移(几何)应变(物理)应力6.说明单元刚度矩阵和整体刚度矩阵的含义,二者有何区别?单元:联系力分量与位移分量之间的关系。

性质:分块形式,物理意义,对称性,奇异矩阵整体:将单元刚度矩阵中的每个子块进行换码,换成对应的整体码,送到整体刚度矩阵中的对应位置上,如果有几个单元的对应子块,就进行叠加。

性质:对称性,稀疏性,带形分布,奇异矩阵。

有限元学习总结

有限元学习总结

有限元学习总结最近在看有限元这类问题,在这几天的时间里,我弄懂了有限元的一些基本知识,下面进行一些必要的总结。

离散化既是将连续体用假象的线或面分割成有限个部分,各部分之间用有限个点连接,每个部分称为一个单元,连接的点称为结点。

常用的单元离散有三节点三角形单元,六节点三角形单元,四节点四边形单元,八节点四边形单元以及等参元。

例如,对于平面问题,最简单最常用的离散方式是将其分解成有限个三角形单元。

有限元的基本思想:首先将其求解域离散为有限个单元,单元与单元在节点相互连接,即原始连续求解域用有限个单元的集合近似代替,我们称这是第一次近似。

对每个单元选择一个简单的场函数近似表示真实场函数在其上的分布规律,该简单函数可由单元节点上物理量来表示,通常称为插值函数或位移函数,这也是第二次近似。

有限元通常用的是两种方法,第一种是力法,也称柔度法,这是用内力作为问题的未知量,要得到控制方程,首先要使用平衡方程,然后进行协调方程找出必要的附加方程,结果是一组确定多余力或未知力的代数方程组。

第二种叫位移法,也称刚度法,假定节点位移作为问题的未知量。

我们比较常用的是位移法。

通过这段时间的学习,我了解到用有限元求到的解一般都偏小,原因是连续体的一部分,具有多个自由度,在假定了单元位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散化后的刚度较实际的刚度k为大,所以,所求解的解偏小。

有限元分析的基本步骤:第一步,将结构进行离散化,包括单元划分,结点编号,单元编号,结点坐标计算,位移约束条件确定。

第二步,等效结点力的计算。

第三步,刚度矩阵的计算。

第四步,建立整体平衡方程,引入约束条件,求解结点位移。

第五步,应力计算.刚度矩阵具有什么特点:1刚度矩阵是对称矩阵,2每个元素有明确的物理意义,3刚度矩阵的主对角线上的元素总是正的,4刚度矩阵是一个稀疏矩阵,5刚度矩阵是一个奇异阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学有限元分析知识点总结材料力学是研究物质力学性质和行为的学科,而有限元分析是一种利用计算机数值模拟方法对工程问题进行分析和计算的技术。

本文将从理论基础、有限元建模、求解方法和误差分析等方面总结材料力学有限元分析的关键知识点。

一、理论基础
1. 材料力学基本原理:包括应力、应变、变形和弹性模量等基本概念,以及胡克定律和应力应变关系等基本理论。

2. 有限元法基本原理:包括将实际结构离散为有限个单元,建立节点和单元之间的关系,以及应用物理原理和数值方法求解得到数值解的基本思想。

3. 有限元离散方法:包括将连续问题离散化为有限个子问题,建立单元刚度矩阵和全局刚度矩阵,以及应用有限元法进行力学问题分析的基本步骤。

二、有限元建模
1. 几何建模:将实际工程结构进行几何建模,通常使用CAD软件进行建模,包括建立节点和单元等。

2. 材料建模:根据实际材料的物理性质和力学行为,选择适当的材料模型,如线性弹性模型或非线性材料模型。

3. 网格划分:将结构离散为有限个单元,通常使用三角形单元或四边形单元进行网格划分,确保离散后的单元足够小且保证几何形状的准确性。

三、求解方法
1. 单元应力应变计算:通过数值方法计算每个单元的应力和应变,可采用解析解、数值积分或有限元法求解。

2. 节点位移计算:根据应力应变关系和单元的几何形状,计算每个节点的位移,从而得到结构的变形情况。

3. 刚度矩阵的建立:根据单元的几何形状、材料性质和节点位移等信息,建立单元刚度矩阵和全局刚度矩阵,用于力学方程的求解。

4. 边界条件的施加:根据实际工程问题,施加适当的边界条件,如固支约束和荷载条件等,从而得到合理的求解结果。

四、误差分析
1. 收敛性分析:通过逐步增加单元数目或减小网格大小,观察求解结果是否趋近于稳定值,从而判断数值解的收敛性。

2. 精度分析:通过与解析解或实验结果进行比较,评估数值解的精度,包括位移误差、应力误差和能量误差等指标。

3. 稳定性分析:判断数值解的稳定性和可靠性,防止数值发散或出现明显的计算错误。

总结:
材料力学有限元分析是一种基于数值模拟的工程计算方法,通过对结构和材料进行离散化,建立适当的数学模型和力学方程,得到工程结构的应力、变形和位移等信息。

本文从理论基础、有限元建模、求解方法和误差分析等方面对材料力学有限元分析的关键知识点进行了总结。

通过深入理解和应用这些知识,能够更准确地分析和解决工程问题,提高工程设计和计算的效率和精度。

相关文档
最新文档