数值分析试卷
数值分析试题与答案

一、单项选择题(每小题3分,共15分)1. 和分别作为π(de)近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y (de)拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x =B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =(de)根(de)牛顿法收敛,则它具有( )敛速.A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到(de)第3个方程( ).A .232x x -+=B .232 1.5 3.5x x -+=C .2323x x -+=D .230.5 1.5x x -=-二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根.5. 取步长0.1h =,用欧拉法解初值问题()211y y yx y ⎧'=+⎪⎨⎪=⎩(de)计算公式 .0,1,2分 人三、计算题(每题15分,共60分)1. 已知函数211y x =+(de)一组数据:求分段线性插值函数,并计算()1.5f (de)近似值.1. 解 []0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---[]1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--所以分段线性插值函数为()[][]10.50,10.80.31,2x x L x x x ⎧-∈⎪=⎨-∈⎪⎩ ()1.50.80.3 1.50.35L =-⨯=2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X (保留小数点后五位数字).1.解 原方程组同解变形为1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m =高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间(de)近似根(1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到. 3. 解()331f x x x =--,()130f =-<,()210f =>()233f x x '=-,()12f x x ''=,()2240f =>,故取2x =作初始值4. 写出梯形公式和辛卜生公式,并用来分别计算积分111dxx+⎰.四、证明题(本题10分)确定下列求积公式中(de)待定系数,并证明确定后(de)求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得(de)近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商 ()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X .4.求方程 21.250x x --= (de)近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么 1______x =。
数值分析试题集

..数值分析试题集(试卷一)一( 10 分)已知 x 1* 1.3409 ,x 2* 1.0125 都是由四舍五入产生的近似值, 判断 x 1*x 2* 及 x 1* x 2*有几位有效数字。
二( 10 分)由下表求插值多项式x 01 2 y2 34 y1- 1三( 15 分)设 f ( x)C 4 [a,b] , H ( x )是满足下列条件的三次多项式H (a) f (a) , H (b) f (b) , H (c)f (c) , H (c) f (c)( a c b )求 f (x)H ( x) ,并证明之。
12四( 15 分)计算13 dx ,10 2。
x五( 15 分)在 [0,2]上取 x 0 0 , x 1 1 , x 22 ,用二种方法构造求积公式,并给出其公式的代数精度。
六( 10 分)证明改进的尢拉法的精度是 2 阶的。
七( 10 分)对模型 yy , 0 ,讨论改进的尢拉法的稳定性。
八( 15分)求方程 x 34x 2 7x 1 0 在 -1.2 附近的近似值,10 3。
-----------------------------------------------------------------------------------------------------------------------------(试卷二)一填空( 4*2 分)1 {k ( x) } k 0 是区间 [0, 1]上的权函数为( x) x 2 的最高项系数为 1 的正交多项式族,其中10 (x)1,则x0 ( x) dx ------------------- , 1 ( x) ------------------。
2 12 A,则 A1 4----------- ,( A) ----------------- 。
a 1 2 时, A 可作 LU 分解。
3 设 A,当 a 满足条件 ---------------- 14..4 设非线性方程 f ( x) (x33x23x1)( x 3) 0 ,其根 x1* 3 , x2*1,则求 x1* 的近似值时,二阶局部收敛的牛顿迭代公式是--------------------------- 。
数值分析期末考试题

数值分析期末考试题一、选择题1. 在数值分析中,用于求解线性方程组的雅可比方法属于以下哪种迭代法?A. 直接迭代法B. 间接迭代法C. 外推法D. 松弛法2. 插值法中,拉格朗日插值多项式的主要特点是?A. 适用于多项式插值B. 适用于函数值已知的情况C. 只适用于单点插值D. 适用于分段插值3. 在数值积分中,辛普森法则是一种?A. 单区间求积公式B. 双区间求积公式C. 三区间求积公式D. 多区间求积公式4. 误差分析中,截断误差通常与以下哪个概念相关?A. 舍入误差B. 舍入误差的补偿C. 条件数D. 病态条件5. 非线性方程求解中,牛顿法的收敛速度通常?A. 较慢B. 较快C. 与初始值有关D. 与方程的性质有关二、填空题1. 在求解三对角线性方程组时,托马斯算法是一种________方法。
2. 多项式插值中,牛顿插值多项式可以通过________法来构建。
3. 数值积分中,高斯求积法是一种________方法。
4. 误差传递的估计通常通过________公式来进行。
5. 非线性方程的求解中,二分法是一种________方法。
三、简答题1. 请简述数值分析中的条件数概念及其在解方程中的应用。
2. 描述线性方程组迭代法中的收敛性判断方法,并给出收敛域的计算公式。
3. 解释插值和拟合的区别,并举例说明各自的应用场景。
4. 阐述数值积分中梯形法则的原理及其误差估计方法。
5. 讨论非线性方程求解中不动点理论和收敛性的关系。
四、计算题1. 给定线性方程组如下,请使用高斯消元法求解未知数x、y、z的值: \[\begin{cases}2x + y + z = 6 \\x + 3y + 2z = 11 \\3x + y + 4z = 17\end{cases}\]2. 假设有一个函数f(x) = sin(x),给定插值节点如下,请使用拉格朗日插值法构造一个三次插值多项式,并计算在x=π/4处的插值误差。
数值分析试卷

数值分析期末考试试卷一、填空题:(15分)1、为了使计算球体体积时的相对误差不超过1%,测量半径R 的允许相对误差 为2、设矩阵A=⎪⎪⎭⎫ ⎝⎛3.01.05.06.0,则A 是行范数 ,列范数 ,2范数 , F 范数3、要使积分值dx x ⎰-202)-(sinx πβα最小,则a= , β= 4、若矩阵A 是正交阵,则有cond (A )=5、对于矩阵A=⎪⎪⎪⎭⎫ ⎝⎛111a a a a a a ,若A 为正定矩阵则a的范围是 ,若A 只对J 法收敛,则a的范围是二、选择题:(15分)1、设x>0,x 的相对误差为δ,则lnx 的相对误差为()A.ln δB.δ1 C.δ D.2δ 2、以下哪个公式不需要做变换就可以避免有效数字的损失()A.212-x e B.sinx-siny C.arctanx-arctany D.都要做变换 3、计算过程中取有限位数字进行运算而引起的误差称为()A.模型误差B.截断误差C.舍入误差D.观测误差4、Legendre 多项式前五项根的范围是()A.(-1,1)B.(0,+∞)C.(-∞,0)D.(-∞,+∞)5、三、判断题:(15分)1、复化梯形求积公式和复化Simpson 求积公式都是二阶收敛的 ()2、三点Gauss-Legendre 求积公式具有5次代数精度 ()3、如果矩阵A 的按绝对值最大特征值和最小特征值之比很小,则A 是病态的()4、方程组Ax=b 的SOR 法收敛有20<<ω,则20<<ω时,方程组Ax=b 的SOR 法收敛 ()5、映内性既可保证不动点的存在,也可保证其唯一性 ()6、e=2.71828......,x=e ,则A x =2.7有两位有效数字 ()7、若A n n R ⨯∈矩阵,当B=PA PT 且P 为正交阵,则有F F A B = ()8、若矩阵A 为严格对角占优矩阵,则解方程Ax=b 的J 法和GS 法都收敛 ()9、设P n n R ⨯∈且非奇异,X 为R n 上的一种向量范数,则p X 也是R n 上的一种向量范数。
数值分析试题与答案

一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。
(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。
(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。
(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。
(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。
数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
数值分析期末考试题及答案

数值分析期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 插值法D. 傅里叶变换答案:B2. 以下哪个选项不是数值分析中的误差类型?A. 舍入误差B. 截断误差C. 测量误差D. 累积误差答案:C3. 多项式插值中,拉格朗日插值法的特点是:A. 插值点必须等距分布B. 插值多项式的次数与插值点的个数相同C. 插值多项式是唯一的D. 插值多项式在插值点处的值都为1答案:B4. 在数值分析中,下列哪个方法用于求解非线性方程?A. 辛普森法则B. 牛顿迭代法C. 欧拉法D. 龙格-库塔法答案:B5. 以下哪个是数值稳定性的指标?A. 收敛性B. 收敛速度C. 条件数D. 误差传播答案:C二、简答题(每题10分,共20分)1. 简述高斯消元法求解线性方程组的基本原理。
答案:高斯消元法是一种直接解法,通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。
它包括三个基本操作:行交换、行乘以非零常数、行相加。
2. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性是指数值解对输入数据小的扰动不敏感的性质。
例如,某些数值方法在计算过程中可能会放大舍入误差,导致结果不可靠,这样的方法就被认为是数值不稳定的。
三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}x + 2y - z &= 4 \\3x - y + 2z &= 1 \\-x + y + z &= 2\end{align*}\]使用高斯消元法求解该方程组,并给出解。
答案:首先将增广矩阵转换为上三角形式,然后回代求解,得到\( x = 1, y = 2, z = 1 \)。
2. 给定函数 \( f(x) = x^2 - 3x + 2 \),使用拉格朗日插值法在\( x = 0, 1, 2 \) 处插值,并求出插值多项式。
数值分析期末考卷

数值分析期末考卷一、选择题(每题4分,共40分)A. 插值法B. 拟合法C. 微分法D. 积分法A. 高斯消元法B. 高斯赛德尔迭代法C. 共轭梯度法D.SOR方法3. 下列哪个算法不是求解非线性方程的方法?A. 二分法B. 牛顿法C. 割线法D. 高斯消元法A. 梯形法B. 辛普森法C. 高斯积分法D. 复化求积法A. 欧拉法B. 龙格库塔法C.亚当斯法D. 高斯消元法A. 幂法B. 反幂法C. 逆迭代法D. QR算法A. 梯度下降法B. 牛顿法C. 共轭梯度法D. 高斯消元法A. 拉格朗日插值法B. 牛顿插值法C. 埃尔米特插值法D. 分段插值法A. 前向差分法B. 后向差分法C. 中心差分法D. 拉格朗日插值法A. 牛顿法B. 割线法C. 雅可比迭代法D. 高斯消元法二、填空题(每题4分,共40分)1. 数值分析的主要任务包括数值逼近、数值微积分、数值线性代数和______。
2. 在求解线性方程组时,迭代法的收敛速度与______密切相关。
3. 牛顿法的迭代公式为:x_{k+1} = x_k f(x_k)/______。
4. 在数值积分中,复化梯形公式的误差为______。
5. 求解常微分方程初值问题,龙格库塔法的阶数取决于______。
6. 矩阵特征值的雅可比方法是一种______方法。
7. 梯度下降法在求解无约束优化问题时,每次迭代的方向为______。
8. 拉格朗日插值多项式的基函数为______。
9. 数值微分中的中心差分公式具有______阶精度。
10. 在求解非线性方程组时,牛顿法的迭代公式为:x_{k+1} =x_k J(x_k)^{1}______。
三、计算题(每题10分,共60分)1. 给定数据点(1,2),(2,3),(3,5),(4,7),求经过这四个数据点的拉格朗日插值多项式。
2. 用牛顿迭代法求解方程x^3 2x 5 = 0,初始近似值为x0 = 2,计算前三次迭代结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
201- 201 学年第 专业班级(教学班) 学期 课程代码 课程名称 考试日期
1.(20%) Fill in the following blanks. (1) Let
末
统
考
试
卷
A
开卷□
数值分析
学分 命题教师
3.(12%)
√ 选修□ 限修□ 考试形式:闭卷□ √ 课程性质:必修□ 系(所或教研室)主任审批签名
8.(10%) (1)Suppose
y ''' (t ) exists on (a, b) .Show that the following two-step explicit scheme
w0 0 , w1 1 , wi 1 wi y (t0 ) 0 , y (t1 ) 1 , y ' (t ) f (t , y ), t [a, b] ba , ti a ih, i 0,1,2, , n n
' p3 ( xi ) f ( xi ) for i 0,1,2 ,and p3 ( x1 ) f ' ( x1 ) .
p3 ( x) of the degree three such that
Then the error (5) If
0
f ( x) 2 x 6 3 x 3 2 x 1 , then the divided differences f [20 ,21 , ,26 ] =____________, and
7.(10%) Determine constant
a, b, c, d that will produce a quadrature formula:
1
1
f ( x)dx af (1) bf (1) cf ' (1) df ' (1) that has degree of 3.
Test the convergence of the Gauss_Seidel iterative scheme by using the norm of its iterative matrix. 5.(12%) Suppose (a) Determine weight function
w( x) 1, P0 ( x) 1, P 1 ( x ) x B1 , P k ( x ) ( x Bk ) P k 1 Ck P k 2 ( x ) for k 2 .
n 2 gives 5,and Composite Simpson’s rule gives e the fact that f (1) f (1) and
f (0.5) f (0.5) 1 to determine f (1), f (0.5), f (0), f (0.5), f (1) .
x* is the root of the equation f ( x) 0 of
multiplicity
m(m 2) ,then the modified
Newton’s iterative formula for finding (4) Let
x* is______________________________________________.
4.(12%) Use the following data to construct an interpolating polynomial
f ( x) x 4 and the cubic Lagrange interpolating polynomial for f on the nodes 0,1,2,3 is p3 ( x) . f ( x) p3 ( x) =_______________________________, and p3 ( x) =_____________________.
(3) Suppose
f ( x) xe x 1 and x0 0.5 .Use Newton’s method to find x2 . f ( x) xe x 1 , x0 0.5 and x1 0.6 .Use the Secant method to find x3 .
[1,1]
命题教师注意事项:1、主考教师必须于考试一周前将“试卷 A” 、 “试卷 B”经教研室主任审批签字后送教务科印刷。 2、请命题教师用黑色水笔工整地书写题目或用 A4 纸横式打印贴在试卷版芯中。
期
201- 201 学年第 专业班级(教学班) 学期 课程代码 课程名称 考试日期
末
统
考
试
卷
A
(1) If the norm of the iterative matrix
B
is
B q 1 , please poof the following
x =5.3001 be an approximation to x =5.300186, then x retains _______________ significant x is __________________.
are orthogonal on [ 1,1] with respect to the B1 , B2 , C2 such that P0 ( x), P 1 ( x ), P 2 ( x)
w( x) . f ( x) x 4 on the interval
(b) Find the least squares approximating polynomial of degree two for the function
命题教师注意事项:1、主考教师必须于考试一周前将“试卷 A” 、 “试卷 B”经教研室主任审批签字后送教务科印刷。 2、请命题教师用黑色水笔工整地书写题目或用 A4 纸横式打印贴在试卷版芯中。
h 3 f (ti , wi ) f (ti 1 , wi 1 ), i 1,2,3,, n 1. 2
T *
*
*
digits,and the relative error of
formula:
x ( k ) x*
(2) Let (3) Let
q x ( k ) x ( k 1) 1 q
- 1 2 (2) Suppose x ( 2,1,3,4) , A , then x 1 =__________, A 2 =___________. 3 4
is a scheme of order two to solve the initial value problem for the ordinary differential equation:
Where
h
2.(12%) Establish the Jacobi iterative scheme and Gauss-Seidel iterative scheme for the following linear system:
4 x1 2 x2 x3 2, 2 x1 6 x2 3 x3 3, x1 2 x2 4 x3 5.
开卷□
数值分析
学分 命题教师
√ 选修□ 限修□ 考试形式:闭卷□ √ 课程性质:必修□ 系(所或教研室)主任审批签名
6.(12%) The Midpoint rule for the approximating with
1
1
f ( x)dx gives the value 12,the Composite Midpoint rule
7
i
0 1 2
1 2 4 3
2 3 12ຫໍສະໝຸດ f [2 , ,2 ] =_____________.
(6) Write an
xi
three-point formula to approximate
O(h 2 )
f ' ( x0 )
by
using
of
f ( xi ) f ' ( xi )
f ( x0 ) , f ( x0 h) , f(x0 2h) :__________________________________________________.