化学论文翻译 - 英文原文+汉语翻译
我们身边的化学的英文作文

我们身边的化学的英文作文English:Chemistry is an integral part of our everyday lives, permeating everything from the air we breathe to the food we eat. It is the study of matter, its properties, composition, and the changes it undergoes. From the moment we wake up until we go to sleep, chemistry influences our actions and decisions. When we cook a meal, we engage in chemical reactions that transform raw ingredients into delicious dishes. The water we drink, essential for our survival, is a chemical compound with unique properties that sustain life. Even the simple act of lighting a match involves combustion, a chemical reaction that releases energy in the form of heat and light. Beyond the confines of our homes, chemistry plays a crucial role in industries such as pharmaceuticals, agriculture, and manufacturing, driving innovation and technological advancements. In medicine, chemists develop drugs to treat diseases, improving and saving countless lives. In agriculture, fertilizers and pesticides enhance crop yields, ensuring food security for millions. In manufacturing, chemical processes are used to produce an array of products, from plastics to textiles. Chemistry also intersects with environmental issues, as scientistsstrive to develop sustainable solutions to mitigate pollution and combat climate change. Understanding chemistry allows us to appreciate the world around us on a deeper level, empowering us to make informed choices that benefit both society and the environment.中文翻译:化学是我们日常生活中不可或缺的一部分,渗透到我们呼吸的空气和我们食用的食物中。
化学化工类外文翻译+原文

化学工业Chemical Industry1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,但我们所谓的现代化学工业的发展却是从近代才开始的。
可以认为它起源于工业革命其间,大约在1800年,并发展成为为其它工业部门提供化学原料的产业。
比如制肥皂所用的碱,棉布生产所用的漂白粉,玻璃制造业所用的硅及Na2CO3。
我们会注意到所有这些都是无机物。
有机化学工业的开始是在十九世纪六十年代以William Henry Perkin 发现第一种合成染料—苯胺紫并加以开发利用为标志的。
20世纪初,德国花费大量资金用于实用化学方面的重点研究,到1914年,德国的化学工业在世界化学产品市场上占有75%的份额。
这要归因于新染料的发现以及接触法制硫酸和氨的哈伯生产工艺的发展。
而后者需要较大的技术突破使得化学反应第一次可以在非常高的压力条件下进行。
这方面所取得的成绩对德国很有帮助。
特别是由于1914年第一次世界大战的爆发,对以氮为基础的化合物的需求飞速增长。
这种深刻的改变一直持续到第一次世界大战结束至第二次世界大战开始这段时间(1918-1939年)。
1940年以来,化学工业一直以引人注目的速度飞速发展。
尽管这种发展的速度近年来已大大减慢。
化学工业的发展由于1950年以来石油化学领域的研究和开发大部分在有机化学方面取得。
石油化工在60年代和70年代的迅猛发展主要是由于人们对于合成高聚物如聚乙烯、聚丙烯、尼龙、聚脂和环氧树脂的需求巨大增加。
今天的化学工业已经是制造业中有着许多分支的部门,并且在制造业中起着核心的作用。
它生产了数千种不同的化学产品,而人们通常只接触到终端产品或消费品。
这些产品被购买是因为他们具有某些性质适合人们的一些特别的用途,例如,用于盆的不粘涂层或一种杀虫剂。
这些化学产品归根到底是由于它们能产生的作用而被购买的。
2.化学工业的定义在本世纪初,要定义什么是化学工业是不太困难的,因为那时所生产的化学品是很有限的,而且是非常清楚的化学品,例如,烧碱,硫酸。
中英文文献以及翻译(化工类)

Foreign material:Chemical Industry1.Origins of the Chemical IndustryAlthough the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin’s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939).Since 1940 the chemical industry has grown at a remarkable rate, although this has slowed significantly in recent years. The lion’s share of this growth has been in the organic chemicals sector due to the development and growth of the petrochemicals area since 1950s. The explosives growth in petrochemicals in the 1960s and 1970s was largely due to the enormous increase in demand for synthetic polymers such as polyethylene, polypropylene, nylon, polyesters and epoxy resins.The chemical industry today is a very diverse sector of manufacturing industry, within which it plays a central role. It makes thousands of different chemicals whichthe general public only usually encounter as end or consumer products. These products are purchased because they have the required properties which make them suitable for some particular application, e.g. a non-stick coating for pans or a weedkiller. Thus chemicals are ultimately sold for the effects that they produce.2. Definition of the Chemical IndustryAt the turn of the century there would have been little difficulty in defining what constituted the chemical industry since only a very limited range of products was manufactured and these were clearly chemicals, e.g., alkali, sulphuric acid. At present, however, many intermediates to products produced, from raw materials like crude oil through (in some cases) many intermediates to products which may be used directly as consumer goods, or readily converted into them. The difficulty cones in deciding at which point in this sequence the particular operation ceases to be part of the chemical industry’s sphere of activities. To consider a specific example to illustrate this dilemma, emulsion paints may contain poly (vinyl chloride) / poly (vinyl acetate). Clearly, synthesis of vinyl chloride (or acetate) and its polymerization are chemical activities. However, if formulation and mixing of the paint, including the polymer, is carried out by a branch of the multinational chemical company which manufactured the ingredients, is this still part of the chemical industry of does it mow belong in the decorating industry?It is therefore apparent that, because of its diversity of operations and close links in many areas with other industries, there is no simple definition of the chemical industry. Instead each official body which collects and publishes statistics on manufacturing industry will have its definition as to which operations are classified as the chemical industry. It is important to bear this in mind when comparing statistical information which is derived from several sources.3. The Need for Chemical IndustryThe chemical industry is concerned with converting raw materials, such as crude oil, firstly into chemical intermediates and then into a tremendous variety of other chemicals. These are then used to produce consumer products, which make our livesmore comfortable or, in some cases such as pharmaceutical produces, help to maintain our well-being or even life itself. At each stage of these operations value is added to the produce and provided this added exceeds the raw material plus processing costs then a profit will be made on the operation. It is the aim of chemical industry to achieve this.It may seem strange in textbook this one to pose the question “do we need a chemical industry?” However trying to answer this question will provide(ⅰ) an indication of the range of the chemical industry’s activities, (ⅱ) its influence on our lives in everyday terms, and (ⅲ) how great is society’s need for a chemical industry. Our approach in answering the question will be to consider the industry’s co ntribution to meeting and satisfying our major needs. What are these? Clearly food (and drink) and health are paramount. Other which we shall consider in their turn are clothing and (briefly) shelter, leisure and transport.(1)Food. The chemical industry makes a major contribution to food production in at least three ways. Firstly, by making available large quantities of artificial fertilizers which are used to replace the elements (mainly nitrogen, phosphorus and potassium) which are removed as nutrients by the growing crops during modern intensive farming. Secondly, by manufacturing crop protection chemicals, i.e., pesticides, which markedly reduce the proportion of the crops consumed by pests. Thirdly, by producing veterinary products which protect livestock from disease or cure their infections.(2)Health. We are all aware of the major contribution which the pharmaceutical sector of the industry has made to help keep us all healthy, e.g. by curing bacterial infections with antibiotics, and even extending life itself, e.g. ß–blockers to lower blood pressure.(3)Clothing. The improvement in properties of modern synthetic fibers over the traditional clothing materials (e.g. cotton and wool) has been quite remarkable. Thus shirts, dresses and suits made from polyesters like Terylene and polyamides like Nylon are crease-resistant, machine-washable, and drip-dry or non-iron. They are also cheaper than natural materials.Parallel developments in the discovery of modern synthetic dyes and the technology to “bond” th em to the fiber has resulted in a tremendous increase in the variety of colors available to the fashion designer. Indeed they now span almost every color and hue of the visible spectrum. Indeed if a suitable shade is not available, structural modification of an existing dye to achieve this canreadily be carried out, provided there is a satisfactory market for the product.Other major advances in this sphere have been in color-fastness, i.e., resistance to the dye being washed out when the garment is cleaned.(4)Shelter, leisure and transport. In terms of shelter the contribution of modern synthetic polymers has been substantial. Plastics are tending to replace traditional building materials like wood because they are lighter, maintenance-free (i.e. they are resistant to weathering and do not need painting). Other polymers, e.g. urea-formaldehyde and polyurethanes, are important insulating materials f or reducing heat losses and hence reducing energy usage.Plastics and polymers have made a considerable impact on leisure activities with applications ranging from all-weather artificial surfaces for athletic tracks, football pitches and tennis courts to nylon strings for racquets and items like golf balls and footballs made entirely from synthetic materials.Like wise the chemical industry’s contribution to transport over the years has led to major improvements. Thus development of improved additives like anti-oxidants and viscosity index improves for engine oil has enabled routine servicing intervals to increase from 3000 to 6000 to 12000 miles. Research and development work has also resulted in improved lubricating oils and greases, and better brake fluids. Yet again the contribution of polymers and plastics has been very striking with the proportion of the total automobile derived from these materials—dashboard, steering wheel, seat padding and covering etc.—now exceeding 40%.So it is quite apparent even from a brief look at the chemical industry’s contribution to meeting our major needs that life in the world would be very different without the products of the industry. Indeed the level of a country’s development may be judged by the production level and sophistication of its chemical industry4. Research and Development (R&D) in Chemical IndustriesOne of the main reasons for the rapid growth of the chemical industry in the developed world has been its great commitment to, and investment in research and development (R&D). A typical figure is 5% of sales income, with this figure being almost doubled for the most research intensive sector, pharmaceuticals. It is important to emphasize that we are quoting percentages here not of profits but of sales income, i.e. the total money received, which has to pay for raw materials, overheads, staff salaries, etc. as well. In the past this tremendous investment has paid off well, leading to many useful and valuable products being introduced to the market. Examplesinclude synthetic polymers like nylons and polyesters, and drugs and pesticides. Although the number of new products introduced to the market has declined significantly in recent years, and in times of recession the research department is usually one of the first to suffer cutbacks, the commitment to R&D remains at a very high level.The chemical industry is a very high technology industry which takes full advantage of the latest advances in electronics and engineering. Computers are very widely used for all sorts of applications, from automatic control of chemical plants, to molecular modeling of structures of new compounds, to the control of analytical instruments in the laboratory.Individual manufacturing plants have capacities ranging from just a few tones per year in the fine chemicals area to the real giants in the fertilizer and petrochemical sectors which range up to 500,000 tonnes. The latter requires enormous capital investment, since a single plant of this size can now cost $520 million! This, coupled with the widespread use of automatic control equipment, helps to explain why the chemical industry is capital-rather than labor-intensive.The major chemical companies are truly multinational and operate their sales and marketing activities in most of the countries of the world, and they also have manufacturing units in a number of countries. This international outlook for operations, or globalization, is a growing trend within the chemical industry, with companies expanding their activities either by erecting manufacturing units in other countries or by taking over companies which are already operating there.化学工业1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。
化学专业英语翻译1

01. THE ELEMENTS AND THE PERIODIC TABLE 01元素和元素周期表。
The number of protons in the nucleus of an atom is referred to as the atomic number, or proton number, Z. The number of electrons in an electrically neutral atom is also equal to the atomic number, Z. The total mass of an atom is determined very nearly by the total number of protons and neutrons in its nucleus. This total is called the mass number, A. The number of neutrons in an atom, the neutron number, is given by the quantity A-Z.原子核中的质子数的原子称为原子序数,或质子数,卓电子数的电中性的原子也等于原子序数Z,总质量的原子是非常接近的总数量的质子和中子在原子核。
这被称为质量数,这个数的原子中的中子,中子数,给出了所有的数量The term element refers to, a pure substance with atoms all of a single kind. To the chemist the "kind" of atom is specified by its atomic number, since this is the property that determines its chemical behavior. At present all the atoms from Z = 1 to Z = 107 are known; there are 107 chemical elements. Each chemical element has been given a name and a distinctive symbol. For most elements the symbol is simply the abbreviated form of the English name consisting of one or two letters, for example:术语元素是指,一个纯粹的物质与一个单一的一种原子。
化学化工类外文翻译 原文

化学化工类外文翻译原文Original Text:Chapter 1 Introduction1.1 BackgroundNuclear energy has been providing a significant share of the world’s electricity for more than half a century. Currently, nuclear power plants generate approximately 10% of the world’s electricity supply, with this figure increasing to over 30% in some countries such as France [1]. However, for nuclear energy to continue to be an important source of electricity in the future, the safe and efficient operation of nuclear power plants must be ensured. A key component of ensuring safe and efficient operation is the availability of inspection techniques that can detect defects, assess their severity, and monitor their growth over time.The presence of defects in materials used in nuclear power plants can arise from a number of sources including fabrication, welding, and service exposure. Defects can manifest themselves as a variety of features such as cracks, voids, inclusions, and inhomogeneities. Defects can be classified based on their size, shape, and orientation, with some defectsbeing more critical to the performance and safety of a component than others. For example, surface-breaking transverse cracks in pressure vessel components can be particularly critical since they can rapidly propagate under service loading and can lead to catastrophic failure if not detected and remedied in a timely manner [2].Inspection techniques used to detect and monitor defects in nuclear power plant components are continually evolving. Inspection methods have traditionally included visual examination, ultrasonics, radiography, and eddy current testing [3]. These techniques have proven reliable and effective, but have limitations such as the inability to inspect certain materials and geometries. In addition, advances in materials science and technology have led to the development of new materials with different physical and chemical properties that may not be well-suited to traditional inspection techniques. Therefore, there is a need to develop and optimize inspection techniques that are capable of detecting andmonitoring defects in advanced materials and structures.1.2 Objectives and ScopeThe primary objective of this chapter is to provide an overview of the different types of inspection techniques that are currently used in the nuclearpower industry for detecting, characterizing, and monitoring defects in materials and components. The chapter will discuss the limitations of current inspection techniques and the challenges associated with the inspection of advanced materials and structures. The chapter will also highlight recent developments in inspection techniques including the use of advanced sensors, imaging, and data analysis techniques.The scope of the chapter will cover a range of inspection techniques used in the nuclear power industry including visual examination, ultrasonics, radiography, eddy current testing, and other techniques such as thermography and acoustic emission testing. The chapter will focus on the application of these techniques to welds, pressure vessels, steam generators, and reactor components. The chapter will also briefly discuss the use of inspection techniques for other applications such as monitoring corrosion and degradation of materials.1.3 Organization of the ChapterThe remainder of this chapter is organized as follows. Section 2 provides an overview of visual examination and its application to the inspection of nuclear power plant components. Section 3 describes ultrasonic inspection techniques and their use in detecting and characterizing defects in materials and components.Section 4 discusses radiography and its use forimaging defects in materials. Section 5 covers eddy current testing and its application to the detectionof surface and subsurface defects. Section 6 provides an overview of other non-destructive evaluation techniques such as thermography and acoustic emission testing. Section 7 summarizes recent developments in inspection techniques including the use of advanced sensors and imaging techniques. Section 8 concludesthe chapter with a discussion of challenges and future directions in inspection technology for nuclear power plant components.中文翻译:第一章绪论1.1 背景核能已经为全球电力供应提供了半个多世纪的重要部分。
中英文文献以及翻译(化工类)

Foreign material:Chemical Industry1.Origins of the Chemical IndustryAlthough the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin’s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939).Since 1940 the chemical industry has grown at a remarkable rate, although this has slowed significantly in recent years. The lion’s share of this growth has been in the organic chemicals sector due to the development and growth of the petrochemicals area since 1950s. The explosives growth in petrochemicals in the 1960s and 1970s was largely due to the enormous increase in demand for synthetic polymers such as polyethylene, polypropylene, nylon, polyesters and epoxy resins.The chemical industry today is a very diverse sector of manufacturing industry, within which it plays a central role. It makes thousands of different chemicals whichthe general public only usually encounter as end or consumer products. These products are purchased because they have the required properties which make them suitable for some particular application, e.g. a non-stick coating for pans or a weedkiller. Thus chemicals are ultimately sold for the effects that they produce.2. Definition of the Chemical IndustryAt the turn of the century there would have been little difficulty in defining what constituted the chemical industry since only a very limited range of products was manufactured and these were clearly chemicals, e.g., alkali, sulphuric acid. At present, however, many intermediates to products produced, from raw materials like crude oil through (in some cases) many intermediates to products which may be used directly as consumer goods, or readily converted into them. The difficulty cones in deciding at which point in this sequence the particular operation ceases to be part of the chemical industry’s sphere of activities. To consider a specific example to illustrate this dilemma, emulsion paints may contain poly (vinyl chloride) / poly (vinyl acetate). Clearly, synthesis of vinyl chloride (or acetate) and its polymerization are chemical activities. However, if formulation and mixing of the paint, including the polymer, is carried out by a branch of the multinational chemical company which manufactured the ingredients, is this still part of the chemical industry of does it mow belong in the decorating industry?It is therefore apparent that, because of its diversity of operations and close links in many areas with other industries, there is no simple definition of the chemical industry. Instead each official body which collects and publishes statistics on manufacturing industry will have its definition as to which operations are classified as the chemical industry. It is important to bear this in mind when comparing statistical information which is derived from several sources.3. The Need for Chemical IndustryThe chemical industry is concerned with converting raw materials, such as crude oil, firstly into chemical intermediates and then into a tremendous variety of other chemicals. These are then used to produce consumer products, which make our livesmore comfortable or, in some cases such as pharmaceutical produces, help to maintain our well-being or even life itself. At each stage of these operations value is added to the produce and provided this added exceeds the raw material plus processing costs then a profit will be made on the operation. It is the aim of chemical industry to achieve this.It may seem strange in textbook this one to pose the question “do we need a chemical industry?” However trying to answer this question will provide(ⅰ) an indication of the range of the chemical industry’s activities, (ⅱ) its influence on our lives in everyday terms, and (ⅲ) how great is society’s need for a chemical industry. Our approach in answering the question will be to consider the industry’s co ntribution to meeting and satisfying our major needs. What are these? Clearly food (and drink) and health are paramount. Other which we shall consider in their turn are clothing and (briefly) shelter, leisure and transport.(1)Food. The chemical industry makes a major contribution to food production in at least three ways. Firstly, by making available large quantities of artificial fertilizers which are used to replace the elements (mainly nitrogen, phosphorus and potassium) which are removed as nutrients by the growing crops during modern intensive farming. Secondly, by manufacturing crop protection chemicals, i.e., pesticides, which markedly reduce the proportion of the crops consumed by pests. Thirdly, by producing veterinary products which protect livestock from disease or cure their infections.(2)Health. We are all aware of the major contribution which the pharmaceutical sector of the industry has made to help keep us all healthy, e.g. by curing bacterial infections with antibiotics, and even extending life itself, e.g. ß–blockers to lower blood pressure.(3)Clothing. The improvement in properties of modern synthetic fibers over the traditional clothing materials (e.g. cotton and wool) has been quite remarkable. Thus shirts, dresses and suits made from polyesters like Terylene and polyamides like Nylon are crease-resistant, machine-washable, and drip-dry or non-iron. They are also cheaper than natural materials.Parallel developments in the discovery of modern synthetic dyes and the technology to “bond” th em to the fiber has resulted in a tremendous increase in the variety of colors available to the fashion designer. Indeed they now span almost every color and hue of the visible spectrum. Indeed if a suitable shade is not available, structural modification of an existing dye to achieve this canreadily be carried out, provided there is a satisfactory market for the product.Other major advances in this sphere have been in color-fastness, i.e., resistance to the dye being washed out when the garment is cleaned.(4)Shelter, leisure and transport. In terms of shelter the contribution of modern synthetic polymers has been substantial. Plastics are tending to replace traditional building materials like wood because they are lighter, maintenance-free (i.e. they are resistant to weathering and do not need painting). Other polymers, e.g. urea-formaldehyde and polyurethanes, are important insulating materials f or reducing heat losses and hence reducing energy usage.Plastics and polymers have made a considerable impact on leisure activities with applications ranging from all-weather artificial surfaces for athletic tracks, football pitches and tennis courts to nylon strings for racquets and items like golf balls and footballs made entirely from synthetic materials.Like wise the chemical industry’s contribution to transport over the years has led to major improvements. Thus development of improved additives like anti-oxidants and viscosity index improves for engine oil has enabled routine servicing intervals to increase from 3000 to 6000 to 12000 miles. Research and development work has also resulted in improved lubricating oils and greases, and better brake fluids. Yet again the contribution of polymers and plastics has been very striking with the proportion of the total automobile derived from these materials—dashboard, steering wheel, seat padding and covering etc.—now exceeding 40%.So it is quite apparent even from a brief look at the chemical industry’s contribution to meeting our major needs that life in the world would be very different without the products of the industry. Indeed the level of a country’s development may be judged by the production level and sophistication of its chemical industry4. Research and Development (R&D) in Chemical IndustriesOne of the main reasons for the rapid growth of the chemical industry in the developed world has been its great commitment to, and investment in research and development (R&D). A typical figure is 5% of sales income, with this figure being almost doubled for the most research intensive sector, pharmaceuticals. It is important to emphasize that we are quoting percentages here not of profits but of sales income, i.e. the total money received, which has to pay for raw materials, overheads, staff salaries, etc. as well. In the past this tremendous investment has paid off well, leading to many useful and valuable products being introduced to the market. Examplesinclude synthetic polymers like nylons and polyesters, and drugs and pesticides. Although the number of new products introduced to the market has declined significantly in recent years, and in times of recession the research department is usually one of the first to suffer cutbacks, the commitment to R&D remains at a very high level.The chemical industry is a very high technology industry which takes full advantage of the latest advances in electronics and engineering. Computers are very widely used for all sorts of applications, from automatic control of chemical plants, to molecular modeling of structures of new compounds, to the control of analytical instruments in the laboratory.Individual manufacturing plants have capacities ranging from just a few tones per year in the fine chemicals area to the real giants in the fertilizer and petrochemical sectors which range up to 500,000 tonnes. The latter requires enormous capital investment, since a single plant of this size can now cost $520 million! This, coupled with the widespread use of automatic control equipment, helps to explain why the chemical industry is capital-rather than labor-intensive.The major chemical companies are truly multinational and operate their sales and marketing activities in most of the countries of the world, and they also have manufacturing units in a number of countries. This international outlook for operations, or globalization, is a growing trend within the chemical industry, with companies expanding their activities either by erecting manufacturing units in other countries or by taking over companies which are already operating there.化学工业1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。
化学论文翻译

多样性的进化和跳增Polo样激酶-1抑制剂Polo样激酶〔Plk1〕,是丝氨酸/苏氨酸酶中的一种,它是抗癌药物的发展历程中很具吸引力的样品,因为它涉及到细胞周期进程的规定及胞质分裂。
这个激酶为开发Plk1抑制剂提供了两种途径:n端催化域〔NCD〕和polo-box域〔PBD〕。
对于这两个域,一些天然产物被确定为Plk1抑制剂,一些则被模拟ATP和磷酸化肽段开发成P1k1抑制剂,天然产物分别为NCD和PBD所约束。
本文不仅评论Plk1抑制剂的这两个途径的发展,还讨论了以多样性进化及药物开发的跳增过程中使用Plk1抑制剂为例,以及它们是如何影响药物设计和药效团模型的。
1.介绍化学的空间是巨大的,据估计可能存在的药物如分子的数量就超过1060,这与目前已知的107形成了鲜明的比照。
对于药物的发现,部署这么一个多样性的化学库是非常重要的。
虽然天然产物,与特定分子的化合物和生物体产生不同的结构特点,可能只占化学空间里的很小一部分,通过自然选择,他们拥有一个独特的、巨大的化学多样性。
个体天然产物及其结构成员有多个最正确的生物活性,因此最有可能绑定多个目标,然后影响它们的功能。
因此,天然产物是目前最富有的新颖的化合物来源,在药物发现中发挥了重要作用,尤其是抗生素和癌症治疗领域的发展。
2.Plk1抑制剂的进展2.1 蛋白激酶和基于ATP抑制剂多样性跳增的设计蛋白激酶,拥有超过500个成员的的最大的蛋白家族之一,通过添加丝氨酸和苏氨酸的磷酸基团或酪氨酸残基来修饰其他蛋白质。
磷酸化是许多疾病的一个必要步骤,包括癌症,炎症,糖尿病。
因此,药物学家已经对蛋白激酶产生了极大的兴趣,已经作为治疗目标的药物靶点的第二大组。
自2001年起许多激酶抑制剂已经被批准用于治疗癌症和炎症。
所有的激酶在ATP反跳的时候都有一个催化结合域的结合。
ATP是一种核苷酸磷酸在细胞里作为辅酶。
设计激酶抑制剂的策略是模仿ATP来适合催化和抑制目标。
一篇化学文献的翻译

英语原文Highly Efficient One-Pot Three-Component Mannich Reaction in Water Catalyzed by Heteropoly AcidsAbstractHeteropoly acids efficiently catalyzed the one-pot, three-component Carrying out organic reactions in water has become highly desirable in recent years to meet environmental considerations.1The use of water as a sole medium for organic reactions would greatly contribute to the development of environmentally friendly processes. Indeed, industry prefers to use water as a solvent rather than toxic organic solvents. In this context, in recent years, much attention has been focused on Lewis acid catalyzed organic reactions in water.Heteropoly acids (HPAs) are environmentally benign and economically feasible solid catalysts that offer several advantages.2Therefore, organic reactions that exploit heteropoly acid catalysts in water could prove ideal for industrial synthetic organic chemistry applications, provided that the catalysts show high catalytic activity in water.Mannich reactions are among the most important carbon−carbon bondforming reactions in organic synthesis.3They provide β−amino carbonyl compounds, which are important synthetic intermediates for various pharmaceuticals and natural products.4The increasing popularity of the Mannich reaction has been fueled by the ubiquitous nature of nitrogen-containing compounds in drugs and natural products.5However, the classical Mannich reaction is plagued by a number of serious disadvantages and has limited applications. Therefore, numerous modern versions of the Mannich reaction have been developed to overcome the drawbacks of the classical method. In general, the improved methodology relies on the two-component system using preformed electrophiles, such as imines, and stable nucleophiles, such as enolates, enol ethers, and enamines.6But the preferable route is the use of a one-pot three-component strategy that allows for a wide range of structural variations. In this context, recent developments of asymmetric synthesis, using a three-component protocol, have made the Mannich reaction very valuable.7 However, despite the diverse synthetic routes so far developed for the asymmetric Mannich reaction, only a few one-pot procedures on the use of unmodified aldehydes or ketones in water have been reported in the literature. Furthermore, most of the reported Mannich reactions in water have been carried out in the presence of surfactants such as SDS. Unfortunately, normal-phase separation is difficult during workup due to the formation of emulsions because of the SDS.There is increasing interest in developing environmentally benign reactions and atom-economic catalytic processes that employ unmodified ketones, amines, and aldehydes for Mannich-type reaction in recent years. In continuation of our studies on the new variants, of one-pot, three-component Mannich-type reactions for aminoalkylation of aldehydes with different nucleophiles,9and our ongoing green organic chemistry program that uses water as a reaction medium, performs organic transformations under solvent-free conditions,10 herein we describe a mild, convenient, and simple procedure for effecting the one-pot, three-component reaction of an aldehyde, an amine, and a ketone for the preparation of β-amino carbonyl compounds in water using a heteropoly acid catalyst.Initially, the three-component Mannich reaction of 4-chlorobenzaldehyde (3.0 mmol), aniline (3.1 mmol), and the cyclohexanone (5 mmol) was examined (Scheme 1).Scheme 1. Direct Mannich Reaction Catalyzed by Heteropoly Acids in Different SolventsAs a preliminary study, several Lewis acids and solvents were screened in the model reaction. The results of extensive Lewis acid and solvent screening and optimization are shown in a table in the Supporting Information.Heteropolyacids (HPAs) catalyze Mannich reactions in organic solvents such as acetonitrile, 1,2-dichloroethane, methanol, ethanol, toluene and mixtures of toluene/water and gave the desired products in low yield with the foramtion of aldol side products. Among the screened solvent systems, water was the solvent of choice, since in this solvent the Mannich-type reactions proceeded smoothly and afforded the desired adducts in high yields at room temperature. Consequently, we conclude that the HPAs are much more reactive in water than in other organic solvents. At room temperature, the Mannich reaction proceeded to completion affording the Mannich adduct in good to excellent yield and relatively good diastereoselectivity. Addition of surfactants such as sodium dodecyl sulfate (SDS) or cetyltrimethylammonium bromide (CTAB) was not effective, and they did not improve diastereoselectivity. The reaction in pure water without using any catalyst gave a low yield of the product. Furthermore, we were excited to find that only 0.12 mol % of the catalyst gave good yields at room temperature. In the some cases, even 0.06 mol % of HPA was sufficient for the completion of the reaction. Furthermore, simple workup in water opened the route for an entirely green highly efficient one-pot Mannich reaction in water. In addition, H3PMo12O40has been compared with H3PW12O40, and we found the same results for both heteropoly acids in this reaction in water.Encouraged by the remarkable results obtained with the above reaction conditions, and in order to show the generality and scope of this new protocol, we used various aldehydes and amines and the results. T able 2 clearly demonstrates that HPAs are excellent catalysts for Mannich reactions in water. Thus, a variety of aromatic aldehydes, including electron-withdrawing and electron-donating groups, were tested using our new method in water in the presence of H3PW12O40or H3PMo12O40. The results are shown in T able 2. Generally, excellent yields of α-amino ketones were obtained for a variety of aldehydes including those bearing an electron-withdrawing group. Furthermore, several electron-rich aromatic aldehydes led to the desired products in good yield. However, under the same reaction conditions aliphatic aldehydes, such as isobutyaldehyde, gave a mixture, due to enamine formation; the desired product was obtained in low yield (Table 2, entry 22). The scope of our method was extended to other amines. In the case of amines having an electron-donating group, such as 4-isopropylaniline, the corresponding amino ketones were obtained in good yields. Furthermore, amines with electron-withdrawing groups, such as 4-chloroaniline and 3,4-dichloroaniline, gave the desired product in good yields.The high yield, simple reaction protocol, and originality of this novel process prompted us to use other ketones under these conditions (Table 1). Thus, the three-component coupling reactions were carried out with acyclic ketones such as 2-butanone and acetophenone. The expected products were obtained in moderate yields under these conditions. Acyclic ketones were less reactive than cyclohexanone and needed much more catalyst to afford the desiredproducts (T able 1). Table 1. HPA-Catalyzed Three-Component MannichReaction a Table 2. One-Pot, Three-Component Direct MannichReaction aaldehydes by the use of proline, HBF4, and dibutyltin dimethoxide.Scheme 2. Aldole and Mannich Reaction in Water翻译稿杂多酸高效催化三组分共混曼尼希反应Najmodin艾则孜,LallehT orkiyan,穆罕默德R •赛迪*谢里夫理工大学化学系,PO 11465-9516箱,伊朗,德黑兰11365ORG 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
School of Medical Engineering, Hefei University of Technology, Hefei 230009, China Received April 29, 2013; accepted June 23, 2013; published online August 21, 2013
Polo-like kinase 1 (Plk1), a member of a family of serine/threonine kinases, is an attractive target for the development of anticancer drugs because it is involved in the regulation of cell-cycle progression and cytokinesis. This kinase provides two pockets for developing Plk1 inhibitors: the N-terminal catalytic domain (NCD) and the polo-box domain (PBD). For both of the two pockets, some natural products were identified as Plk1 inhibitors and some synthetic Plk1 inhibitors were developed by mimicking ATP and phosphopeptides, natural products binding to NCD and PBD respectively. This article not only reviews the progression of Plk1 inhibitors binding to these two pockets, but also discusses diversity evolution and jump in the process of drug development using Plk1 inhibitors as examples and how they impact on drug design and pharmacophore modeling. diversity evolution, diversity jump, Polo-like kinase 1, ATP mimics, natural product
fications, i.e. natural products have provided numerous scaffolds for approved drugs and drug candidates for a multiplicity of diseases over the years [4]. Herein, we refer to minor/moderate chemical modification as diversity evolution. The probably most well-known example of this case is the derivatization and preparation of structurally simplified analogs of morphine (Figure 1(a)), which is isolated from opiate as a potent analgesic drug, to develop more analgesic compounds. Another example is Atorvastatin (Lipitor®), a statin (or a HMG-CoA reductase inhibitor), the best-selling drug in pharmaceutical history with a total sale of exceeding 125 billion USD. This compound was inspired and developed from Mevastatin, a cholesterol-lowering agent isolated from Penicillium citrinum (Figure 1(b)). More statins were developed through the way of diversity evolution. In such cases, based on the common molecular recognitions to their biological macromolecule, pharmacophore models can be developed. Nevertheless, in a few cases, the structures of developed ligands are so different from their original templates that it is hard to develop pharmacophores based on the similarities between them [5]. In extreme cases, the structures and sizes of some ligands are totally different although they bind to exactly the same binding site. It is impossible to abstract the common features of these ligands,
Liao C, et al.
Sci China Chem
October (2013) Vol.56 No.10
1393
Figure 1
Examples of diversity evolution from natural products.
inflammation since 2001 [6, 7]. All kinases have a catalytic domain in which adenosine triphosphate (ATP) is bound. ATP is a nucleotide triphosphate used in cells as a coenzyme. The strategy to design kinase inhibitors is to mimic ATP to fit the catalytic cleft and then inhibit the targets. However, the structures of ATP and the developed inhibitors are very different (Figure 2). ATP is a highly polar molecule with many negative charges under physiological conditions. Nevertheless, most of the developed protein kinase inhibitors are neutral; some of them even can be positively charged at pH 7.4. In this situation, it is a diversity jump to convert ATP to such synthetic kinase inhibitors. The kinase catalytic cleft, consisting of distinct binding subpockets, is formed between an N-terminal lobe and a larger C-terminal lobe. This ATP binding site, a narrow hydrophobic pocket, shows limited movement except the activation loop and the P-loop [8]. It was concerned that due to high degree of similarity of both the sequence and shape of the ATP binding clefts among different kinases, it is hard to develop ATP competitive kinase inhibitors with desired selectivity. However, a number of highly selective ATP competitive kinase inhibitors were developed. In the hinge regions of kinases, most ATP competitive kinase inhibitors form two, or even three hydrogen bonds with the protein, involving one hydrogen bond acceptor flanked by one or two hydrogen bond donors. The selectivity is partly defined
SCIENCE CHINA
Chemistry
• REVIEWS • · SPECIAL TOPIC · Chemistry for Life Sciences
October 2013 Vol.56 No.10: 1392–1401 doi: 10.1007/s11426-013-4963-0