信号与系统实验报告
信号与系统软件实验实验报告

信号与系统软件实验实验报告一、实验目的本次信号与系统软件实验的主要目的是通过使用相关软件工具,深入理解和掌握信号与系统的基本概念、原理和分析方法,并通过实际操作和实验结果的观察与分析,提高对信号处理和系统性能的认识和应用能力。
二、实验环境本次实验使用的软件工具为_____,运行环境为_____操作系统。
计算机配置为_____处理器,_____内存,_____硬盘。
三、实验内容1、信号的表示与运算生成常见的连续时间信号,如正弦信号、余弦信号、方波信号、锯齿波信号等,并观察其波形和特征参数。
对生成的信号进行加、减、乘、除等运算,分析运算结果的波形和频谱变化。
2、系统的时域分析构建简单的线性时不变系统,如一阶惯性系统、二阶振荡系统等。
输入不同类型的信号,如阶跃信号、冲激信号等,观察系统的输出响应,并分析系统的稳定性、瞬态性能和稳态性能。
3、系统的频域分析对给定的系统进行频率响应分析,计算系统的幅频特性和相频特性。
通过改变系统的参数,观察频率响应的变化规律,并分析系统对不同频率信号的滤波特性。
4、信号的采样与重构对连续时间信号进行采样,研究采样频率对信号重构的影响。
采用不同的重构方法,如零阶保持重构、一阶线性重构等,比较重构信号与原始信号的误差。
四、实验步骤1、打开实验软件,熟悉软件的操作界面和功能菜单。
2、按照实验内容的要求,依次进行各项实验操作。
在信号表示与运算实验中,通过软件提供的函数生成所需的信号,并使用绘图功能显示信号的波形。
然后,利用软件的计算功能进行信号运算,并观察运算结果的波形。
对于系统时域分析实验,首先在软件中构建指定的系统模型,然后输入相应的激励信号,使用仿真功能获取系统的输出响应。
通过观察输出响应的波形,分析系统的性能指标,如上升时间、调节时间、超调量等。
在系统频域分析实验中,利用软件的频率响应分析工具,计算系统的幅频特性和相频特性曲线。
通过调整系统的参数,如增益、时间常数等,观察频率响应曲线的变化情况,并总结规律。
信号与系统实验报告总结

信号与系统实验实验一常用信号的观察方波:正弦波:三角波:在观测中,虚拟示波器完全充当实际示波器的作用,在工作台上连接AD1为示波器的输入,输入方波、正弦波、三角波信号时,可在电脑上利用软件观测到相应的波形,其纵轴为幅值可通过设置实现幅值自动调节以观测到最佳大小的波形,其横轴为时间,宜可通过设置实现时间自动调节以观测到最佳宽度的波形。
实验四非正弦周期信号的分解与合成方波DC信号:DC信号几乎没有,与理论相符合,原信号没有添加偏移。
方波基波信号:基波信号为与原方波50Hz信号相对应的频率为50Hz的正弦波信号,是方波分解的一次谐波信号。
方波二次谐波信号:二次谐波信号频率为100Hz为原方波信号频率的两倍,幅值较一次谐波较为减少。
方波三次谐波信号:三次谐波信号频率为150Hz为原方波信号的三倍。
幅值较一二次谐波大为减少。
方波四次谐波信号:四次谐波信号的频率为200Hz为原方波信号的四倍。
幅值较三次谐波再次减小。
方波五次谐波信号:五次谐波频率为250Hz为原方波信号的五倍。
幅值减少到0.3以内,几乎可以忽略。
综上可知:50Hz方波可以分解为DC信号、基波信号、二次、三次、四次、五次谐波信号…,无偏移时即无DC信号,DC信号幅值为0。
分解出来的基波信号即一次谐波信号频率与原方波信号频率相同,幅值接近方波信号的幅值。
二次谐波、三次谐波、四次谐波、五次谐波依次频率分别为原方波信号的二、三、四、五倍,且幅值依次衰减,直至五次谐波信号时几乎可以忽略。
可知,方波信号可分解为多个谐波。
方波基波加三次谐波信号:基波叠加上三次谐波信号时,幅值与方波信号接近,形状还有一定差异,但已基本可以看出叠加后逼近了方波信号。
方波基波加三次谐波信号加五次谐波信号:基波信号、三次谐波信号、五次谐波信号叠加以后,比基波信号、三次谐波信号叠加后的波形更加接近方波信号。
综上所述:方波分解出来的各次谐波以及DC信号,叠加起来以后会逼近方波信号,且叠加的信号越多,越是接近方波信号。
《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。
上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。
t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。
三、实验步骤该仿真提供了7种典型连续时间信号。
用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。
图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。
界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。
控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。
图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。
在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。
在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。
矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。
图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。
信号与系统实验实验报告

信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。
具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。
2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。
3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。
4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。
二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。
2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。
3、计算机及相关软件:用于进行数据处理和分析。
三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。
连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。
常见的信号类型包括正弦信号、方波信号、脉冲信号等。
2、线性时不变系统线性时不变系统具有叠加性和时不变性。
叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。
3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。
对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。
2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。
3、在示波器上观察并记录不同信号的波形、频率和幅度。
信号与系统实验报告

信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。
二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。
傅里叶级数有三角形式和指数形式两种。
1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。
Matlab中进行数值积分运算的函数有quad函数和int函数。
其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。
因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。
quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。
其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。
信号与系统实验报告

信号与系统实验报告
实验名称:信号与系统实验
一、实验目的:
1.了解信号与系统的基本概念
2.掌握信号的时域和频域表示方法
3.熟悉常见信号的特性及其对系统的影响
二、实验内容:
1.利用函数发生器产生不同频率的正弦信号,并通过示波器观察其时域和频域表示。
2.通过软件工具绘制不同信号的时域和频域图像。
3.利用滤波器对正弦信号进行滤波操作,并通过示波器观察滤波前后信号的变化。
三、实验结果分析:
1.通过实验仪器观察正弦信号的时域表示,可以看出信号的振幅、频率和相位信息。
2.通过实验仪器观察正弦信号的频域表示,可以看出信号的频率成分和幅度。
3.利用软件工具绘制信号的时域和频域图像,可以更直观地分析信号的特性。
4.经过滤波器处理的信号,可以通过示波器观察到滤波前后的信号波形和频谱的差异。
四、实验总结:
通过本次实验,我对信号与系统的概念有了更深入的理解,掌
握了信号的时域和频域表示方法。
通过观察实验仪器和绘制图像,我能够分析信号的特性及其对系统的影响。
此外,通过滤波器的处理,我也了解了滤波对信号的影响。
通过实验,我对信号与系统的理论知识有了更加直观的了解和应用。
信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
信号与系统 实验报告

信号与线性系统实验报告
班级: 电科122
学号: 124633224
姓名: 纳扎尔·库尔曼别克
2015年10月
计算机与信息工程学院
2. 已知{}{}12()1,1,1,2,()1,2,3,4,5f k f k ==,求两序列的卷积和>> a=[1,1,1,2];
>> b=[1,2,3,4,5];
>> g=conv(a,b);
2.利用ifourier( ) 函数求下列频谱函数的傅氏反变换
22()16F j j ω
ωω=-+
已知下列系统函数H (s),求其频率特性。
已知系统函数H (s),求其频率特性和零极点图。
t
已知信号的拉氏变换如下,请用MATLAB画出其三维曲面图,观察其图形特点,
.已知下列单边离散序列的z 变换表达式,求其对应的原离散序列2121()2z z F z z z ++=+-
syms k z
3. 已知离散系统的系统函数H (z)如下,请绘出系统的幅频和相频特性曲线,统的作用
122344()()()
z H z z z +=++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一、离散系统的Z 域分析(3学时)班级 090824 学号 09082435 姓名 景佳伟一、 实验目的求H(Z)=)()(Z A Z B 的频率响应H(e j ω),其中B(Z)=0.001836+0.007344Z -1+0.011016 Z -2+0.007347 Z -3+0.001836 Z -4,A(Z) =1-3.0544Z -1+3.8291 Z -2-2.2925 Z -3+0.55075 Z -4二、实验环境MATLAB Edit/Debugger 编辑与调试工具环境三、实验环境MATLAB Edit/Debugger 编辑与调试工具环境四、实验要求根据H(Z),求出幅频响应│H(e j ω)│和相频响应arg H(e j ω)的表达式,并编制程序作图。
五、实验步骤启动MATLAB ,启动M 文本编辑器,输入程序,建立M 文件,进行调试,调试成功后运行程序,观察实验结果。
六、参考程序1.实验程序%-----------------------------------------------------------------% exa020803_freqz.m, for example 2.8.3% to test freqz.m and to obtain the frequency response.%-----------------------------------------------------------------clear all;b=[.001836,.007344,.011016,.007374,.001836];a=[1,-3.0544,3.8291,-2.2925,.55075];[H,w]=freqz(b,a,256,1);Hr=abs(H);Hphase=angle(H);Hphase=unwrap(Hphase); % 解卷绕subplot(211)plot(w,Hr);grid on;ylabel(' Amplitude Freq. Res.')subplot(212)plot(w,Hphase);grid on;ylabel(' Phase Freq. Res.')结果:2. 求单位抽样响应%-----------------------------------------------------------------% exa020802_impz.m, for example 2.8.2% to test impz.m and to obtain the impulse response.%-------------------------------------------------------------clear;b=[.001836,.007344,.011016,.007374,.001836];a=[1,-3.0544,3.8291,-2.2925,.55075];[h,t]=impz(b,a,40); % 求单位抽样响应stem(t,h,'.');grid on;结果:3. 求所给系统的阶跃响应%-----------------------------------------------------------------% exa020801_filter.m, for example 2.8.1% to test filter.m and to obtain the step response.%-----------------------------------------------------------------clear;x=ones(100);t=1:100;b=[.001836,.007344,.011016,.007374,.001836];a=[1,-3.0544,3.8291,-2.2925,.55075];%y=filter(b,a,x);% 求所给系统的输出,本例实际上是求所给系统的阶跃响应;plot(t,x,'r.',t,y,'k-');grid on;ylabel('x(n) and y(n)')xlabel('n')结果:4. 求画出所给系统的极零图%-----------------------------------------------------------------% exa020804_zplane.m, for example 2.8.4% to test zplane.m and to obtain the pole-zero plot.%-----------------------------------------------------------------clear;b=[.001836,.007344,.011016,.007374,.001836];a=[1,-3.0544,3.8291,-2.2925,.55075];subplot(221);zplane(b,a); % 求并画出所给系统的极零图,该系统为IIR系统;b=[1 -1.7 1.53 -0.68];a=1;subplot(222);zplane(b,a); % 求并画出第二个系统的极零图,该系统为FIR系统;结果:5. 计算两个序列的线性卷积%-----------------------------------------------------------------% exa011006_conv.m: for example 1.10.6% to test conv.m% 计算两个序列的线性卷积;%-----------------------------------------------------------------clear;N=5;M=6;L=N+M-1;x=[1,2,3,4,5];h=[6,2,3,6,4,2];y=conv(x,h);nx=0:N-1;nh=0:M-1;ny=0:L-1;subplot(231);stem(nx,x,'.k');xlabel('n');ylabel('x(n)');grid on;subplot(232);stem(nh,h,'.k');xlabel('n');ylabel('h(n)');grid on;subplot(233);stem(ny,y,'.k');xlabel('n');ylabel('y(n)');grid on;y结果:y =6 14 25 42 63 50 55 52 28 10实验二、按时间抽选快速傅立叶变换程序设计(3学时)班级090824 学号09082435 姓名景佳伟一、实验目的按时间抽选快速傅立叶变换算法设计FFT变换程序并利用该FFT变换程序分析两个正弦信号和白噪声叠加后的频谱。
二、实验环境MATLAB Edit/Debugger 编辑与调试工具环境三、试验任务运用按时间抽选快速傅立叶变换变换程序并利用FFT变换程序分析两个正弦信号和白噪声叠加后的频谱,作出信号x(n)的图形和它的幅频响应│X(K)│。
四、实验要求产生两个正弦加白噪声并作图,应用按时间抽选FFT 求频谱并作幅频响应图。
五、实验步骤启动MATLAB,启动M文本编辑器,输入程序,建立M文件,进行调试,调试成功后运行程序,观察实验结果。
六、参考程序1. 实验程序%-----------------------------------------------------------------% exa040801_fft.m: for example 4.8.1% to test fft.m dn ifft.m%-----------------------------------------------------------------clear all;% 产生两个正弦加白噪声;N=256;f1=.1;f2=.2;fs=1;a1=5;a2=3;w=2*pi/fs;x=a1*sin(w*f1*(0:N-1))+a2*sin(w*f2*(0:N-1))+randn(1,N);% 应用FFT 求频谱;subplot(3,1,1);plot(x(1:N/4));f=-0.5:1/N:0.5-1/N;X=fft(x);y=ifft(X);subplot(3,1,2);plot(f,fftshift(abs(X)));subplot(3,1,3);plot(real(x(1:N/4)));结果:2.用FFT计算线性调频Z变换CZT%-----------------------------------------------------------------% exa040802_czt.m, for example 4.8.2% to test czt.m%-----------------------------------------------------------------clear all;% 构造三个不同频率的正弦信号的叠加作为试验信号N=128;f1=8;f2=8.22;f3=9;fs=40;stepf=fs/N;n=0:N-1;t=2*pi*n/fs;n1=0:stepf:fs/2-stepf;x=sin(f1*t)+sin(f2*t)+sin(f3*t);M=N;W=exp(-j*2*pi/M);% A=1时的czt变换A=1;Y1=czt(x,M,W,A);subplot(311)plot(n1,abs(Y1(1:N/2)));grid on;% DTFTY2=abs(fft(x));subplot(312)plot(n1,abs(Y2(1:N/2)));grid on;% 详细构造A后的cztM=60;f0=7.2;DELf=0.05;A=exp(j*2*pi*f0/fs);W=exp(-j*2*pi*DELf/fs);Y3=czt(x,M,W,A);n2=f0:DELf:f0+(M-1)*DELf;subplot(313);plot(n2,abs(Y3));grid on;结果:3. 产生均匀分布的随机白噪信号,并观察数据分布的直方图%-----------------------------------------------------------------% exa011001_rand.m: for example 1.10.1% to test rand.m and to generate the white noise signal u(n)% with uniform distribution% 产生均匀分布的随机白噪信号,并观察数据分布的直方图%-----------------------------------------------------------------clear;N=50000;u=rand(1,N);u_mean=mean(u)power_u=var(u)subplot(211)plot(u(1:100));grid on;ylabel('u(n)')xlabel('n')subplot(212)hist(u,50);grid on;ylabel('histogram of u(n)')结果:u_mean =0.5022power_u =0.08394. 产生高斯分布的白噪信号,使功率为p,并观察数据分布的直方图%-----------------------------------------------------------------% exa011003_randn, for example 1.10.3% to test randn.m and to generate the white noise signal u(n)% with Gaussian distribution and power p% 产生高斯分布的白噪信号,使功率为p,并观察数据分布的直方图%-----------------------------------------------------------------clear;p=0.1;N=500000;u=randn(1,N);a=sqrt(p)u=u*a;power_u=var(u)subplot(211)plot(u(1:200));grid on;ylabel('u(n)');xlabel('n')subplot(212)hist(u,50);grid on;ylabel('histogram of u(n)');结果:a =0.3162power_u =0.09995.产生一chirp 信号%-----------------------------------------------------------------% exa011005_chirp.m: for example 1.10.5% to test chirp.m and to generate the chirp signal x(t)% 产生一chirp 信号;% chirp(T0,F0,T1,F1):% T0: 信号的开始时间;F0:信号在T0时的瞬时频率,单位为Hz;% T1: 信号的结束时间;F1:信号在T1时的瞬时频率,单位为Hz;%-----------------------------------------------------------------clear;t=0:0.001:1;x=chirp(t,0,1,125);plot(t,x);ylabel('x(t)')xlabel('t')结果:实验三、IIR(Butterworth)滤波器设计(3学时)班级 090824 学号 09082435 姓名 景佳伟一、实验目的用双线性变换法设计一个Butterworth 低通数字滤波器。